Hardware-software timing coverification of
concurrent embedded real-time systems

P.-A.Hsiung

Abstract: The results of hardware-software codesign of concurrent embedded real-time systems
arc often not verified or not easily verifiable, This has serious consequences when high-assurance
systems arc codesigned. The main difficuity lics in the difforent time-scales of the cmbedded
hardware, of the cmbedded software, and of the environment. This differcnce makes hardware-
software timing coverification not only a difficult task for most systems, but has also restricted
coverification to the initial system specifications. Currently, most codesign tools or methodologies
only support validation in the form of cosimulation and testing of design alternatives. ITere, a new
formal coverification approach is proposed based on finear hybrid automata. The basic timing
problems found in most coverification tasks are presented and solved. l'or complex systems, a
simplification strategy is proposed to attack the state-space cxplosion occurring in formal
covertfication. Experimental results show the feasibility of the approach and the increase in

verification scalability through the application of the proposed method.

1 Introduction

An embedded real-time system is one which is installed
within a larger system called its eavironment. It is generally
a compact, task-oriented, and budget-limited system. It has
to satisfy timing constraints as well as cost limits. Hence,
cmbedded real-time systems usually have both hardware
and softwarce interacting with cach other to accomplish a
specific task. Hardware tries to satisfy timing constrainis,
and software reduces the overall cost and provides design
flexibility. The presence of both hardware and software
incurs difficulties in verifying an cmbedded rcal-time
system. Some common obstacles faced are: the lack of a
formal mcthod that can specily both hardware and soft-
ware, the different time scales of the hardwarce, the sofli-
ware and the environment, the requirement of com-
munication protocols between hardware and software,
synchronisation mechanisms in hardware-software inter-
faces, and the lack of a formal verification technology
devoted to hardware-sofiware coverification, After carciul
analysis of possible verification techniques and a survey of
existing approaches, the need was felt of a new cover-
ification method that can tackle some of these problems
and at the samc time has the potential of scaling to
industrial processes.

Coverification is defined as formally verifying if a
hardware-software ecmbedded system satisties prespecilied
real-time propertics. A popular technology for verifying
real-time systems is called mode! checking, Model check-

4 TEE, 2000
HEE Proceedings online no. 20000452
DOL: 10.1049ip-cdt: 20000452

Paper fust received 30th Seplember 1999 and in revised form 29th
Tebruary 2000

The author is with the Tnstitute of Information Science, Academia Sinica,
Taipei, Taiwan

[-mail: hpaggeomputer.org

IEE Proc-Comput, Digir. Tech, Voi. 147, No. 2, March 2000

ing [1, 2] is an algorithmic procedure for verifying if a real-
time system satisfies given temporal properties, A real-time
system is often modelled by fimed automara (TA) [3] and
temporal propertics are specified using timed computation
ftree logic (TCTL) [2].

The three different time-scales of an embedded system
and ils environment posed a great problem in previous
approaches (sce Scction 2). The differing time-scales Tead
to an explosion of state space during model composition
for coverification. Hybrid automata, as defined in Section
3, were proposed for modeling hybrid systems [4]. Not
only can each hybrid automaton have a different time scale,
but a hybrid automaton can also have different time scales
within each location (collection of states). This featurc
allows the modelling of a multirate system that has several
timers with dilferent progress rates. In the hardware-sofi-
ware context, this means nol only can one model single-
chip hardware (1-ASIC} and a uniprocessor soltware (1-
CPU), but also multichip hardware {#-ASIC) and multi-
processor software {(m-CPU), where n =0 and m > 0.

It is well-known that a protocoi or any other control-
related system is best modelled by finite state machines
(FSM} [5]. The states and transitions occurring in proto-
cols or controllers can be explicitly and formally specified
by FSM. The theory of formal verification has a large part
based on FSM, Further, hardwarc-software systems cither
require communication protocols for message-passing or
shared memory for synchronisation. For these two rcasons,
it a complcte hardware-software system is modeled by
FSM, there is no need of specifying the interfaces scpa-
rately. Hybrid automata arce just another extension of FSM.

Another rcason for using the hybrid automata model is
that an embedded digital system can always be perceived
as a lincar systom, that is, the clock rates are all linear. The
verification theory for linear hybrid automala was proposed
by Alur e al. in [4] and already implemented in the
HyTech tool [6]. Our contribution mainly lics in modelling
embedded digital systems using the linear hybrid automata
modcl, demonstrating how basic caverification problems

B3

can be solved, experimenting with real examples, and
proposing a simplification strategy for coverifying complex
systems.

2 Previous work

In recent years, due to computer technology evolution, the
widespread use of computers, and the obvious benefits of
installing a computing processor within a system,
embedded systems have taken advantage of this trend.
Large systems can now significantly decrease their overall
cost by designing parts of embedded systems as software
executing on a gencral-purpose computation processor.
This cost reduction is desirable, but it has also created a
few new problems of its own such as the need for a
communication protocol between the hardware and soft-
ware parts, more complicated fault-tolerance problems, the
myth that software can be easily chenged without any
heavy consequences, and timing coverification problems.

Codesign is an emerging field of research that deals with
designing systems that have both hardware and software.
In the past few years, several codesign methodologies were
proposed, such as COSMOS [7], TOSCA [8], ECOS
project [9], LOTOS-based codesign [10], and CMAPS
[11], to name a few, Codesign tools also abound, such as
SpecSyn {12], Ptolemy, and Polis [13] all three of UC
Berkeley, VULCAN [14] of Stanford University,
COSYMA [15] of Braunschweig University, CODES
[16] of Siemens, Tyndex of INRIA, SAW of CMU,
COWARE of TMEC, and CHINOQOK [17] of Washington
University. Either a combined programming language such
as VIIDL with C and HardwareC, or some formal speci-
fication language such as LOTOS, ETOILE, Esterel,
graphical FSM, CSP, etc are used for specifying embedded
systems. Formal techniques have often been limited to the
specification stage such as formal verification of the
system specification in LOTOS [10].

From this, most codesign methodologies or tools
currently validate the codesigns produced, instead of
verifping then. Validation occurs in the form of ecmulation,
cosimulation, and testing. Coverification, although diffi-
cult, should not be neglected, especially in high-conse-
quence systems such as nuclear projects, safety systems,
cte. The main problems faced in coverifying a design, such
as time-scale disparity, ete. were presented in Section |.

Compared with the succcssful application of formal
methods to hardware design [18-21] and verilication,
there has been little efforts on formalising hardware-soft-
ware codesign and coverification. Two formal models that
have been used for coverification and/or codesign are
codesign FSM and interpreted Petri nets.

Codesign FSM (CFSM) [22-24] is a formal model used
in the POLIS codesign tool [13]. Coverification is
performed by translating CFSM into traditional FSM and
cxisting FSM-based verification techniques applied. The
problem of different time-scales is not solved because
traditional FSM either have no notion of time or their
extension such as fimed automata [3] allow specification of
clocks with a single uniform rate only.

Intepreted Petri nets (IPN) were used for synthesising
interfaces in [25]. Temporal constraints were specilied by
agserting a delay to a place in IPN. But the delays
occurring in a muitirate system must be transformed into
a common base rate. This transformation is not always
ideal or straightforward.

Both CFSM and IPN have the same problem of having
to handle different time-scales, cither for coverification or

84

codesign. The hybrid automata modcl used for formal
coverification solves the problem of different time-scales
and at the same time automatic coverification can be
performed. Using this model, scveral coverification
problems arc solved. Further, existing real-time system
verification tools such as Uppaal [26], SGM (statc-graph
manipulators) [27-29], and others do not explicitly distin-
guish between hardwarc verification and softwarce verifica-
tion. Since the model is based on hybrid automata, the
HyTech tool [6] devcloped by FHenzinger, et al. is
employed. HyTech is a popular tool for verifying hybrid
systems and is described in greater detail in Section 3.4,

3 Hybrid automata model

The hardware-software timing coverification approach
proposed in thig article is based mainly on the Apbrid
automata model. The various reasons for using such a
model were given in Scction 1. In this Section, hybrid
systems are defined and illustrated with examples, the
hybrid automata model is formally defined, and two differ-
cnt system models for hardware-soltwarce coverification arce
proposed. Parametric analysis and the ITyTech tool is also
introduced.

The hybrid automata model was initially proposed for
hybrid systems. A hybrid system consists of a discrete
program with an analogue environment [4]. For example as
shown in Fig. I, a thermostat which controls the tempera-
ture of a room by sensing the temperature and controlling a
heater is a hybrid system because when the heater is off the
temperature (x) decreases with a rate of — Kx and when the
heater is on, the temperature changes with a rate of
K(h — x), where K is a constant related to the room and
h 1s a constant related to the power of the heater. The
specification for the thermostat is that the temperature
should be maintained between m and M degrees
(0 <m < M). Other examples of hybrid systems include a
water-level monitor, timed mutual-exclusion protocol,
leaking gas burner, and a game of billiards [30, 6].
Hybrid systems can also be composed in parallel.

A hybrid automaton can be formally defined as follows:

Definition 1 ITvhrid automaton
A hybrid automaton (HA) isatuple H={L, VB, E, o, n)
such that

e L is a sct of locations

e Vs a set of variables

e B is a set of synchronisation labels

e £ is a set of cdges called transitions, = {ele=(/, b, u,
N, L el beB, ncV?}, where V is the set of all
valuations of the variables in ¥

e ¢ is a labelling function that assigns to each location a
sct of activities which are time-invariant, and

e i is a labelling function that assigns to each location
le L an invariant condition #() S V.

Linear hybrid systems are hybrid systems that have their
activities, invariants, and transition relations all expressed
as lincar expressions on the system variables [4]. A state of
a hybrid automaton £/ is a pair (/, v), wherc fe L and vis a

lo X=m 4y
x=M

Fig. 1 #ybrid automaion for a thermostat

IEL Proc.-Comput. Digit. Tech, Vol 147, No. 2, March 2000

valuation of the variables in ¥/ A run of 1 is a finite or
infinite sequence

p:rro—>;“.:(rl—>}:... (1

where o, = (1,,v;), t; € RZ°, fi € a(l)), f(0) =v,, fi(1) € (¥,
0<r<y, and o, i3 a transition successor of ;=(/,
S0,

An embedded system with hardware and sofiware is
modelled as a network of linear hybrid automata (LITA).
Two models are proposed: a simple model and a network
model. In a simple model, one hybrid aulomaton represents
the hardware and onc reprosents the software, The hard-
ware and software interfaces are modeled into the hardwarc
hybrid aatomaton (HHA) and the software hybrid auto-
maton (SHA), respectively. In a nctwork model the hard-
ware part is mapped into several LHA, each representing
some physical hardware component, and the software part
is also mapped into several LHA, each representing a
software process.

In the following, the simple and network models arc
proposed for the two types of embedded system architec-
tures found today, namely, 1-ASIC/1-CPU and multi-
ASIC/muiti~CPU, respectively. How the two models can
also be interchangeably used is also explained.

3.1 Simple model

This model consists of only two LHA, one representing the
hardware and one the software. This model is suitable for
1-ASIC/1-CPU ¢mbedded systems because there are only
iwo clock rates: one for the ASIC and one for the CPU
exceuting the software. IF the interaction of the embedded
system with its environment is to be verified then one more
LHA is specified for modelling the environment. Synchro-
nisation between the hardware and the software is achieved
by declaring synchronisation labels on transitions of the
LHA. A more complex system consisting of n-ASIC/m-
CPU (n, m>0) can also be modelled using the simple
maodel, but the verification accuracy have to be traded-off
for model simplicity and verification scalability because
the clock rates arc now declared as ranges instead of a
single value. The rate range for hardwarc must cover all the
s ASTC’s clock rates and the rate range for the softwarc
must cover all the m CPU’s clock rates. In this case, the
simple model can only guarantce that if the hardware and
the software clock rates arc within that range, the system is
correct or feasible, but it does not guarantee correctness or
safeness for specific rate valucs. The network model as
presented in the following is a more accurate one for such
systems,

An example of a simple model is given in Fig. 2, which
models a generic hardware-sofiware system where the
hardware waits for a specific period of time (k,,,.) for a
response from the softwarc. The hardware times out if the
software does not respond within the time limit.

xg=0 g€ 374, 4/8]

xp=0., dxp, €[5/6, /6]

¥y 51
start done start done
xg:=0 X5 % Smax
XsSSmox
hardware software

Fig. 2 Maximum response-time sypnchronisation

IEE Proc.-Compt. Digit. Tech, Vol 147, No. 2, March 2000

3.2 Network mode!

This model consisis of more than two LIIA, where either
the hardware or the software or both are represented by
collections of LHA, This model is suitable for an n-ASIC/
m-CPU system, where cach ASIC and each CPU can be
represented by one LHA. In this case, there would be n + m
LHA in the network model. If the number of LHA is too
large and thus affects verification, a more compact model
can be obtained by modelling each type of ASIC and cach
type of CPU by a single LHA. Assuming that therc is a
small number of different types of ASICs and CPUs, the
network model would be more manageable and verifiable.
Although synchronisations among the hardware and soft-
ware components can again be achieved by synchron-
isation labels as in the simple model, yet owing to the
complex behaviour of the system, communication proto-
cols arc used instead. A communication protocol is
madelled by an individual LHA, so as to maintain modu-
larity and casc of verification. If two or more codesign
alternatives, produced as a resultl of some codesign meth-
odology, were similar in all respects, except for the
communication protocol used in the hardware-software
interface, then the network model can be easily reused by
just replacing the LHA representing the communication
protocol by a new one.

3.3 Parametric analysis and coverification

The design of embedded systems oflen involyes para-
meters such as software cxecution time that depends on
the processor executing it, hardwarc response time that
depends on the technology and cost expended, softwarce
and hardware components costs that depend on the total
system budget, and other system trade-offs. An intelligent
choice of parameter values is a key decision in system
design. Parametric analysis allows a system description
(such as LHA or TA) to contain parameters and it finds a
general solution in the form of a condition on parameter
valuations for the system to satisfy given constraints or
propertics. For example, given a hardware-software system
that must obey the Fischers mutual exclusion protocol
(FMEP) [4] and assuming the hardware process is execut-
tng at an exceution rate 3.4 times fhster than the software,
parametric analysis finds the values for two parameters in
the system. One parameler ¢ represents the time required
for lock-write, and another parametet » represents the time
required for lock-read, where @, b are paramcters, lock is a
mutual cxclusion variable, lock-write assigns a process
index to lock, and lock-read checks if the value of lock
is a process index. The conditions found by paramctric
analysis for this example are 56 < 17¢ and a = 0.

The following Section illustrates how through para-
metric analysis hardware-soflware systems can be cover-
ificd. Theoretically speaking, the coverification of the
simple model and of the network model, presented in
Scctions 3.1 and 3.2, respectively, are both decidable.
This is because both models arc simple multirate timed
systems. A simple multirate timed system is one that does
not have any LHA comparing two or more skewed clock
values, that is, clocks with different rates. It was proved in
[4] {theorem 3.1) that the reachability problem for simple
multirate timed systems is decidable. Since only reach-
ability problems are considered in this article, timing
coverification of the simple and network models is thus
decidable.

85

3.4 HyTech tool
HyTech is a popular tool for verifying hybrid systems.
Parallel composition of coordinating LHA is the basic
system model. Parametric analysis can be performed by
HyTech. Regions are data-structures used to represent a set
of states symbolically through a sct of linear constraints.
HyTech uses polyhedra to represent convex zones and
regions are composed of convex zones. There are two
internal representations for polyhedra: set of linear
consiraints, and a frame consisting of points, rays, and
lines acting as polyhedron generators. Time-step and
transition-step successors are also computed symbolically
in HyTech through manipulations of the polyhedra,
HyTech computes the forward reachable region post*(7)
by finding the limit of the infinite sequence 1, post(J), ... of
regions, where post({) is defined as the sct of states that are
reachable, either by time-siep or transition-step, from some
state in /. Analogously, backward reachability can also be
performed by finding the limit of predecessor regions.
Urgent and synchrenised transitions can also be expli-
citly specified in the HyTech input language. In Section 4
synchronisation labels are used to synchronise transitions
between hardware and sofiware LHA,

4 Timing coverification techniques

Using the hybrid automata model for an embedded system,
solution techniques are proposed for some commonly-
found timing coverification problems. The five
commonly-found elementary timing coverification
problems presented here include: maximum vesponse-time
(MaxRT) synchronisation, minimum reponse-fime
(MinRT) synchronisation, software concurrency verifica-
tion (SCV), hardware concurrency verification (TICV), and
integrated codesign-alternative verification (ICAV). A
systematic simplification technique called SHIV (soft-
ware-hardware-interfice verification) is also presented
for verifying complex systems. SHIV decomposes the
LHA models into three parts, namely the software, the
hardware, and the interface, and cnsures that the system is
safe by performing verification of cach part.

4.1 Maximum response-time synchronisation

In most embedded systems the software accomplishes
some tasks that are costly for the hardware. Often, the
hardware makes a request to the software for performing a
task and waits for the software to respond. Blocking
synchronisation ig assumed throughout this article because
embedded systems are generally synchronous. Asynchrony
increases complexity and cmbedded systems usually
cannot afford it. The hardware after making a request
waits for a prespecified period of time, as determined by
the system specification or the codesign methodology, If
the time Hmit is reached and the software has not yet
responded, the hardwarc enters a dangerous ambiguous
state and the system is unsafe. Coverification must cnsure
that all such maximum response-time synchronisations arc
successful for the given different time scales of the hard-
ware and the software. In the following, the simple model
is assumed (sec Section 3.1) for easc of illustration and
explanation.

4.1.1 MaxRT synchronisation problem: Given a
hardware LHA I =(Ly,, Vi, B, Ep, 04y, 147) and a software
LITA S=(Lg, Vg B, Eg, ag, ny), the problem of verifying
maximum response-time (MaxRT) synchronisation is

86

defined as finding all conditions on the parameter variables
in ¥,;U¥F¢ such that all hardware requests are responded
by the sofiware within the maximum wait-time of the
hardware. A maximum wait-time is the largest period of
time allowed for waiting.

4.1.2 Example: Fig. 2 shows an examplc of a simple
LHA model for illustrating maximum response-time
synchronisation. The hardwarc has a rclative clock rate
of [5/6, 7/6] and the software [3/4, 4/5]. The notation [a. b]
implies a closed interval, where « is the minimum rate and
b is the maximum rate, Verifying the model using the
IlyTech tool, it was found that MaxRT synchronisation is
guarantecd only if 94, > 145, ...

4.1.3 General solution: Analysis shows that if [4,,
h,] and [s,, s,] were the hardware and software clock rates,
respectively, the condition for MaxRT synchronisation can
be given as a parametric expression

/\ S!hmzrr E hrr‘gnzm (2)

k 5

e >V

where #,,,, 18 8 maximum time the hardware, after making
a request, will wait for the software response and s, s 4
maximum time the software takes for computation of the
requested task.

4.2 Minimum response-time synchronisation

In contrast to MaxRT synchronisation, minimum response-
time (MinRT) synchronisation involves a minimutm time
that the hardwarc must wait after making a request to the
software. Thig situation occurs in the exceution of periodic
tasks, where the start time of two instances of the same
tasks must be separated by a minimum time interval. For
example, when the software is responsible for digital signal
processing, if two instances of the same tasks overlap
randomly, the computation of the first task will be affected
by the second one, thus causing a delay in all future
outputs. The situation becomes worse when more than
two instances of the same task all overlap causing a
heavy workload on the processor executing the software.
Coverification in this case must ensure that the hardware
docs not violate the minimum wait time constraints.

4.2.1 MinRT Synchronisation problem: Given a
hardware LHA H={(7;;,F;;, B, Ey, o4y, 1;7) and a software
LHA S=(l¢,Fg B, Es, 25, Ks), the problem of verifying
minimum response-time (MinRT) synchronisation is
defined as finding al! conditions on the parameter variables
in ¥y U Vg such that all minimum wait-time constrainis are
satisfied by the hardware after making a request to the
software. A minimum wait-time constraint is a restriction
of waiting for a minimum period of time, 1

4.2.2 Example: Fig. 3 shows an example of a simple
LHA automata model for illustrating MinRT synchronisa-

xg20, cx E[3/4,4/51

xp=l. oxp € [6/6,7/6)
Xps1
start @ storldcne
::;:] xh Zhmin :

done

*p<hmin

software

hordwore

Fig. 3 Minimum response-time synclvonisation

IEE Proc.-Comput. Digit ‘lech, Vol. 147, No. 2, March 2000

tion. The hardwarc and soflware relative clock-rate ranges
were [5/6, 7/6] and [3/4, 4/5], respectively. The model
specification was cxecuted using IlyTech and the results
obtained: MinRT synchronisation is guaranteed when the
parametric condition 23s,,,, > 245, is satisfied. Ol
4.2.3 General solution: Analytical study shows that
if the hardware and software clock-rate ranges were [h;, /1,]
and [s;, s,], respectively, MinRT synchronisation is guar-
anteed only if the following condition is satisfied:

/\ hx'smin B Srrhmil! (3)

Sy Frie
where 5,,;, 18 a minimum computation time of the software
and A,,;, is 4 minimum wait-time of the hardwarc. O

i

4.3 Software concurrency

If a multiprocessor system is within cost constraints for
executing the software, a natural question that ariscs is how
many computation processors must be used to speed up
software cxccution to cope with hardware requirements
and thus guarantee a safe and feasible system. This ques-
tion can be answered through seftware concurrency cover-
ification (SCC). Software concurrency coverification
mainly derives parametric conditions that must be satisfied
by an m-processor system (m > 1) for cnsuring system
safety. The clock rates for cach system configuration of
the [-processor, 2-processor, . . ., m-processor (# > 1) must
be estimated a-priori. The hardware waits for some maxi-
mum period of time after making a request for some
software computation. By increasing the number ol proces-
sors, the software performance could be improved and thus
the software computation results could be produced within
the hardware maximum wait-time.

4.3.1 Software concurrency coverification
problem: Given a hardware LITA H=(L;;, V. B, £y,
oy, fy) and a software LHA S=(L¢, Vg, B, Eg, g, 115), the
problem of sofiware concurrency coverification (SCC) is
defined as finding an optimal software configuration,
where § contains all the different configurations possible
under the current cost limits.]

4.3.2 Example: Fig. 4 shows a hybrid automata model
for a system with one hardwarce (/) and three possible
software configurations: 1-processor (S;), 2-processor (5;)
and 3-processor (S3) systems. The hardware relative clock
rale is assumed to be [3/5, 2/3] and that of the softwarce
configurations [£/4, 3/7], [1/2, 2/3], and [3/4, 4/5], respec-
tively. A sublinear increase in computing power of the

dxp€ [3/5,2/3)
Xps

done1,done 2,done 3

Xp:=0 restart 1
¥s7Smax,

dxg,€01/2,2/3}
restart1 - restart2 restart 2

xp:=0 Xpi=0
Xh>0max Xh>Pmax

hardware
Fig. 4 Sofiware concurrency verification

HEE Proc.-Comput. Digit. Tech, Vol. 147, No. 2, March 2000

dug € [1/4,3/7)

dxg3€13/4,4/8)

softwarc configurations is assumed. If &, is the maxi-
mum hardware wait-time and s,,,, is the maximum time
required for software computation on an i-proccssor
system, i< {l,2,3}, on running through HyTech the
following hold:

> By

e (/4, §,) is safe if 34, > e
. (I]’ SZ) is safe if 3hma\‘ = 4‘s'm(4x2

o (f1, 54) is safc if 9, > 8,

In general, ane can assume Sy,
form the lollowing conclusions:

and

> 8 and hence

> 8 Mmaxy

nixy

s all the three configurations are safe if 37, = 85,

A —

¢ only the l-processor system is not safe if 34, > 45,
and

e only the 3-processor system is safe it 9k, > 8s

NIGX — el

Depending on the particular task at hand, 4, and s,
could be estimated and the degree of software concurrency
(i.e. software configuration) obtained through softwarc
concurrency verification.

4.3.3 General solution: Given a hardware LHA H
and a sct of software LHAs {S5,,5;,...,5;}, a configura-
tion (7, S}) is optimal if

h h Ny R
Thax = pheld A Migx - 7”!

‘s‘mu,\',- Syt S] 5 il

for all j < i (4

where the clock rate for hardware H is [y, &,] and the clock
rate for sofiware S, is [s;,s;,], forall §>0, O

4.4 Hardware concurrency

In contrast to soflware concurrency coverification, which
increases softwarc performance to meet hardware require-
ments, hardware concurrency coverification (HCC)
decreases the hardware cost to meet both the cost and
software requirements. Often a cheaper, slower hardware
could satisfy all timing requirements in an embedded
system. Opting for such a hardwate could decrease overall
system cost, thus leaving more budget for other embedded
systems, Hardware concurrency coverification derives
parametric conditions for cach hardware-soltware config-
uration and the verification engineer could then decide on
one particular configuration that meets the timing require-
ments,

4.4.1 Hardware concurrency coverification
problem: Given a hardware LHA I1=(Ly, V., B, £y,
oy, Myp) and a software LITA 8= (Lg, Vg, B, Eg, o, Hg), the
problem of fardware concurrency coverification (HCC) is
defined as finding an optimal hardware configuration,

start
X 5 .=

Xs*Smaxy

software

87

where H contains all the different configurations possible
under the current cost limits. 0

4.4.2 Example: Fig. 5 shows the LITA model of hard-
ware concurrency coverification with three hardware
configurations H, H,, and H, and onc sofiware config-
uration (). The hardwarc clock rales are respectively [3/4,
4/5], [1/2,2/3], and [1/4, 3/7], and that of the softwarc is [3/
5, 2/3]. Suppose that &,,;, . #,,. . and A, arc the respec-
tive minimum time that the hardware con figurations must
wait (see MinRT synchronisation coverification in Section
4.2) and s, be the minimum computation time of sofi-
ware. Running this model through HyTech, the system
conligurations are safe only if the following conditions are
satisfied:

A (HI’ S)’(Hza S), and (Hjss S) are safe if 9.5'"“-” = 8kmin|

o (H,, §) and (Hy, S) are safc if 3s,,, = 44
o Only ({3, 8) is safe if 3s5,,, = 8hy,,,

Mitg

Hence, if in the slowest and cheapest hardware configura-
tion () the condition 3, = 84,,, is met one can usc H;
instead of the costlier H| and #, hardware configurations.

4.4.3 General solution: Given a software LHA S and
a set of hardware LHAs {H,, H,,...,II,}, a configuration
(H,, S) is optimal if

Sy S min »SJ

»
B

i =

— forall j <i 3
hmim B hi{ h orais =t ()

IJHHJ‘

where the clock rate for hardware H, is [Ay,], for all
1> 0, and the clock rate for soltware S is [sy, 5,].

In Secctions 4.1-4.4, HyTech is a necessary tool for
verification because, in general, an cmbedded system can
be quite complex and must be modelled using the network
modcl (Scction 3.2). Simple analytic methods may be too
tedious and error-pronc.

4.5 Integrated codesign-alternative verification

ICAV handles the case of complex embedded systems with
more than one hardware architectures and a multiprocessor
system for executing the software. Several codesign alter-
natives may be produced and validated by a codesign
methedology, Normally the selection critetion may
depend on either the cost (minimum cost) or the perfor-
mance {maximum throughput) or both (minimum cost-
petrformance ratio). LCAV proposes a new criterion based
on MaxRT and MinRT synchronisations, called wunsafe

hardware

Fig. 5 Hardware concuriency verification

88

software-hardware rate-ratios (USHeR). A ratio of soft-
ware and hardware clock rates is called sqfe with respect to
a particular system when all synchronisations (MaxRT and
MinRT) in that system arc satisfied. Two specific safe ratios
arc distinguished as minimum safest and maximum safest,
corresponding to MaxRT synchronisations and MinRT
synchronisations, respectively. The closed interval of mini-
mum and maximum salest ratios is the unsafe software-
hardware rate-ratios (USHeR), which will be the new
criterion proposed for selecting an optimal codesign alter-
native in a design space cxploration process of [CAV,

USHeR is called an wasafe interval because any soft-
ware-hardware ratio values falling within this interval, not
including the boundarics, will cause a violalion of at least
one synchronisation in the system. As special cases, when
there are only MaxRT synchronigations, the upper bound
of USHeR (i.c. maximum safest ratio) is taken as co
(infinity). Similarly, when therc are only MinRT synchro-
nisations, the lower bound of USHeR (i.e. minimum safest
ralio) is taken as 0 (zero). When there are no synchronisa-
tions, the interval is undefined, which semantically indi-
cates that any softwarc-hardware ratio is allowed for a safe
system,

Notationally, given a system with hardwarc clock-rate
range [#;, #,] and software clock-rate range [s,, s,], USHeR
is defined as the interval [A/s,, h,/s;], where it is assumed
that both MaxRT and MinRT synchronisations exist in the
system. For any MaxRT sychronisation, #A,,,./5,ac <#H/5,,
where h,,,, and s,,,, are as defined in Section 4.1, For any
MinRT synchronisation, 4,,;./s,.., = h,/s;,, where k. and
Sin arc as defined in Section 4.2. This metric achieves a
better trade-off between the hardwarc and the softwate than
the conventional cost—performance ratic because the latter
can be deceiving at times when the cost is especially low or
the perlformance has peak bursts.

USHcR is best illustrated by an example as shown in
Fig, 6, Therc arc two hardwarce alternatives with ciock rates
[3/2, 15/8] and [5/6, 7/6] and two software alternalives
with clock rates [3/4, 4/5] and [1/2, 5/8]. This cxample is a
case of multiple MaxRT synchronisations. Table 1 shows
the four different configurations (C,, C;, €3, Cy) achiey-
able by the two hardware and the two software allernatives
along with their costs, performance values, and cost--
performance ratios. Obscrve that under different metrics
the best design configuration is different
o {, has the least cost but has very poor performance
o | has the best performance but has very high cost
o (; has the best cost performance ratio, but on applying
ICAV to this example it was found to have the largest

xg:0+ dxg€[3/5,2/3]

stort dona1,done 2,done 3
%5i=0 ¥s>Smin

rastart1 restort 2

X5 25min Xg=Smin

xg:=0 Xg 0
softwore

Il Proc.-Compat, Digit. Teeh, Vol 147, No. 2, Mareh 2000

dxp,,€[3/2,15/8] *s= Smax s % Smaxp
M > hmax, *h>hmax, dxg €L374,475] dx,E[1/2,5/8]
hardware software
Fig. 6 infegiated codesign alternative verification

Table 1: ICAV example

Conf HW Clock SW Clock Cost Perf Cost/Perf USHeR Safety Condition
C [3/2, 15/8] [3/4, 4/5] 1000 100 10.00 2.5 2rax, = B8max,
foA [3/2, 15/8] [1/2, 5/8] 750 80 9.38 375 Hipar, = 1580,
Gy [5/8, 7/6] [3/4, 4/5] 650 80 10.83 1.56 M, = 148pax,
C, [5/8, 78] [1/2, 5/8] 500 50 10.00 2.33 3hmax, 2 7 Smax,

software-hardware incompatibility, that is the highest
USHeR, which means synchronisation and other commu-
nications could require a large effort, and

e (; hag the least USHeR, which means that the hardware
and the softwarc are thc lcast incompatible and thus
achieves a bhetter hardware-software trade-off than the
others,

4.6 Software-hardware-interface verification

A new modularised verification strategy called sofiware-
hardware-interface verification (STITV) is proposcd for
hardwarc-software embedded systems. Generally, the sott-
ware and the hardware of an embedded system commu-
nicate cither through an interface using communication
protocols or through shared memory using synchronisation
variables. The interface is often explicit and important in an
embedded system. The SHEY strategy verifies an embedded
system by verilying each part individually, namely the
hardware, the software, and the interface. The assume-
guaraniee principle of formal modular verification [31] is
employed in SHIV. In verifying (guaranteeing) the inter-
face, it is assumed that both the hardware and the sofiware
thermselves are correet. Similarly, the principle is applicd to
the other two parts; the hardware and the software.

In the context of the lincar hybrid automata model,
SHIV works as follows, SHIV must perform each of the
following steps to verify a system:

o Software verification: The triggering conditions on the
transitions interconnecting the interface and the softwarc
arc assumed 1o be TRUE. All clock variables are cither
reset or advanced a period of time depending on the
triggering conditions on the transitions.

o Hardware verification: The triggering conditions on the
transitions interconnecting the interface and the hardware
are assumed to be TRUE. All clock variables are etther
reset or advanced a period of time depending on the
triggering conditions on the transitions.

e [nierface verification: The triggering conditions on the
transitions interconnecting the interface and the hardware
and on the transitions interconnceting the interface and the
software are assumed to be TRUE, All clock variables are
either reset or advanced a period of time depending on the

IEE Proc-Coppul. Digin. Tech, Vol, 147, No. 2, Mareh 2000

triggering conditions on the transitions.

Bricfly, the SHIV strategy is valid because if the global
system is unsafe (some dangerous state is reachable), either
the hardware or the software or the interface is faulty, but
this leads to a contradiction because all three paris arc
verified safe by SHIV.

5 Ethernet bridge case study

Besides the five clementary problems presented in the
previous Section, the approach has been applied to several
real-world systems. An Ethernet bridge example is
prescnted for illustration. Fig, 7 shows the process graph
of an Ethernet bridge [10]. Bridges extend LANs by
providing increased length, number of stations, perfor-
mance, and reliability. They operatc below the MAC
service boundary, and is transparent to protocols operating
above the boundary, in the logical link control (LLC). It is
assumed as in [10] that the Ethernct LANs operate under
the CSMA/CD access method. The basic function
performed by bridges are: frame forwarding, lcarning
station addresses, and resolving topology loops with the
spanning tree algorithm. The communication cstimates

in1 out1 inZ out? in3 out3
port1 port 2 port 3
input 1 tnput2 input3
output 1 multiplexor output 3
output 2 request-in
control
request answer
table access
doto-in data-out
memory

Fig. 7 Erhernet bridge: process graph

89

data =0
init
%20 x:=0
x:=0
input 1 input2 input 3
x=4 xzb (A
xiz0 x:=0 %:=0
29 create req
dato =1 x=1]
data:=0% x:=0
x=9 cantrol X =9
datg =1 = data=1
deta:=0 :;F x: 13 dota:=0
dota=0 duta =1
table access
x=5 X 2122
data=0 data:=1

retrieve dota

Fig. 8 Fthernet bridge: linear hybrid automate model

given in [10] were transformed into the linear hybrid
autornata model, which is illustrated in Fig. 8.

It was found that if the LHA model in Fig. 8 was dircctly
verified using HyTech, it could not terminate cven after
modifying the system meodel as indicated in the HyTech
user puide [6]. Here, the network model was adopted as
described in Section 3.2 and finally, the SHIV strategy was
applied. The decomposed hardware LHA and software LHA
are shown in Fig. 9 and the interface LHA in Fig. 10. The

software
!5=0
data =0
init

xg:=0 xgi=0

%g:=0
port 1 port 2

Xg=h
l;:ﬂ

create req
X =1
x5 =8
control
%211

Xgiz{)
data=Q

port 3
Xgolh Xgzh
xg:z0

¥5=9
data=1
date: =0
Xg= 9
data =1
datg::=0

xg=10
xg: =0
doto =1

wait

Xg=10
doto=0

Fig. 9 Ethernet bridge: hardwarefsofiware models

data:=1

softwaore

xg=0
dota=0

init

Xg =h

xg:=0 data =1

control

K5:22
req dota=0
xgi=0

Xs=Smax
data =1

wait
Xs>Smax
dato =1
answer

Fig. 10 Erhernet bridge: interface models

90

Xslaﬂ

xg=9

data

dota:

errov

interface verification is the most important for a codesign
problem. The bridge processing rate was taken as 3000 pps
(packets per second) and the hardware area constraint was
assumed to be 4000 as in [10]. The hytech input code for
interface verification is given in the Appendix (Section 8).

Observe that the Ethernet bridge examplc contains a
typical MaxRT synchronisation problem. The software
requires data from the memory and the hardware is
responsible for accessing the memory and providing data
to the software. The softwarc waits for a maximum of s,,,,
time units and the hardware returns data within a maximum
of £, time units.

Given a hardwarce clock range of [51/10, 6] and a
software clock range of [1/5, 2/5], this example was
modelled as 3 MaxRT synchronisation problem and input
into the HyTech tool. The safely condition obtained was

ah,,.. < 5ls

nix — [lilcky (6)
For the estimates found in [10], #,,,, is 127 and s, 1s 10,
hence the equation is satisfied. This verifies that the bridge
example is safc for the specific hardware and software
clock ranges. Since eqn. 6 depends on the clock rates, an
analytical study shows that if [4,4,] and [s;,5,] were the
respective hardware and software clock ranges, then the
condition would be as [ollows:

h

8

Ly

Suhmax <4 1S max (7)

max

hardwaore

Ap=122
data=0 data:=1

retrieve dato

I’

=1
=9

hardware

{2l Prog,-Comput. Digit. Tech, Vol 147, No. 2, March 2000

6

Conclusion

A linear hybrid automata model based timing coverification

approach

has been proposed for hardwarc-soflware

embedded systems. Tt was shown how different time
scales of the hardware and the softwarc and the environ-
ment could be handled by the model. Five commonly-found
clementary coverification problems were presented and
solved using the proposed approach. A new criterion for
design selection based on coverilication was also proposed,
The new criterion called USHeR achicved a better tradeoff
between hardware and software than convenlional cost or
performance-based metrics. A simplilication strategy called
SHIV was also proposcd for complex systems. Finally, an
Ethernct bridge case study was presented which showed
how SHIV could be used to verify a system when the
traditional approach failed. Future work will include devel-
oping more strategics using the linear hybrid antomata
model to solve other coverification problems.

6

References

ALUR, R., COURCOUBETIS, C., HALBWACIIS, N,, and DILL, D.:
‘Model checking for real-time systems’, Proceedings of TRER Confer-
ence on Lagics fn computer science, Philadelphia, USA, 1990, pp. 414 -

[IENZINGHR, T.A., NICOLLIN, X., SIFAKIS, ., and YOVINE, §.:
‘Symbolic model checking for real-time systems’, Proceeding of IRRTE
Conference on Logies in compiter science, Sanla Cruz, USA, 1992, pp.
394-406

ALUR, R., and DILL, T).: ‘Automata lfor medceling real-tine systems”,
Theor. Compnit. Sci, 1994, 126, (2), pp. 183-236

ALUR, R., COURCOUBETIS, C., HALBWACHS, N., [IENZINGLER,
T.A,, HO, B-H., NICOLLIN, X,, OLIVERQ, A., SIFAKIS, [, and
YOVINE, §.; ‘The algorithmic analysis of hybrid systems’, Theon
Comput. Sci., 1995, 138, (13, pp. 3 34

HOPCROFT, ILE., and ULLMAN, LD.; ‘iniroduciion to automata
theory, languages, and computation® (Addison Wesley, 1979)
HIENZINGER, T.A., HO, P-[T, and WONG-TOL, H.: *A user guide o
FiyTech’. Proccedings of the LNCS conlerence on Tools and algo-
Fithis for the construction and anadysis of systems (TACAS), 1995,
Springer Verlag, 1019, pp. 41-71

DAVEAU, JM., MARCHIORO, GF, BEN-ISMAIL, I, and
JERRAYA, AA.: ‘COSMOS: An SDL based hardware/soliware code-
sign cnvironment’, i BLRGI, L-M., LEVIA, 0., and ROUILLARD,
I, (Hds.), ‘Nardwarc/software co-design and co-verification’ (Kluwwer,
1997)

ANTONIAZZL 8., BALBONI, A,, FORNACIARI, W., and SCIUTO,
D ‘The role of VHDL within TOSCA co-design framework’,
Presented at Furo-VIIDL, Grenoble, France, September 1994, pp.
612-617

AIGUIER, M., BENZAKKI, I, BERNOT, G, BEROFE, 8., DUPONT,
., FREUND, L., ISRACL, M., and ROUSSEAL E: ‘BCOS: A generic
codesign cnvironment for the prototyping of real-time applications’, in
BLRGT, L-M,, LEVIA, O, and ROUILLARD, I. (lds.}, ‘Hardwae/
software co-design and co-verification” (Kjuwer, 1997)

SANCHIZ, L., LOPEZ, M.1.., MARTINEZ, N.,, CARRERAS, C.,
LOPTZ, LC,, DELGADO-KLOOS, C., ROYO, A, and BREUER, P
‘Co-design at work: The etheret bridge case study’, in BERGL, J.-M.,
LEVIA, ., and ROUILLARD, J. (Fids.) *Hardware/software co-design
and co-verificalion” (Kluwer, 1997)

HSIUNG, B-A.: ‘CMADS: A cosynthesis methodology for application-
oriented parallel systems®, ACM Trans. Des. Awtom. Flectron. Sysl.,
2000, 5, (1), pp. 51-81

GAISKIL, D, VAHID, F, and NARAYAN, S ‘A system-design
methodology: cxecutable specification vefinement’. Presented at

188 Proc-Compur. Digit. Tech, Vol 147, No. 2, March 2000

20

21

22

23

24

26

27

28

29

30

31

European Desipn aniomaiion and test conference, February 1994,
pp. 458-463

BALARIN, £, CHIODO, M., GIUSTO, B, TISIEH, H., JURECSKA,
A, LAVAGNG, L., PASSERONE, C., SANGIOVANNI-VINCEN-
TELLI, A, SENTOVICII, 1., SUZUKE, K., and TABBARA, B.:
Hardware-software co-design - of cmbedded systems: the Polis
approach’ (Kluwer, 1997)

GUPTA, R.K,, and D MICIIELL G Tlardwate-soliware cosynthesis
fordigital systoms’, (FFF Design Test Compur., 1993, 10, (3), pp. 29-41
ERNST, R., TIENKEL,), and BENNER, T: ‘Hardwarc-sofiware
cosynthesis (or micro-controllers’, IFEE Design Test Comput., 1993,
10, (4, pp. 64 75

BUCTIENRIENDER, K., and VEITH, C.: *CODES: A practical concur-
rent design environment’. Presented al the international workshop on
Hardware—Softwarc Co-Design, 1992, pp, 12-13

CHOU, P, ORTLGA, R.B., and BORRILLLO, G.: ‘“The CHINOOIK
hardware-software co-synthesis system’. Proceeding of interational
symposium on Sysiesi syathesis, September 1995, Cannes, France, pp.
ISIUNG, P-A., LEE, T.-Y., and CITIEN, §.-1.: *“MOBnet: An extended
Petri net maodel for the concurrent object-ariented system-level synth-
csis of multiprocessor systems®, (E1CE Trans. Inf Syst., 1997, ER0-D,
(2), pp. 232-242

HSIUNG, P-AL, CHEN, S.-1, TIU, T.-C., and WANG, S.-C.: ‘PSM: An
object-oriented synthesis approach to multiprocessor system design’,
TEEE Trans. VLS Syst., 1996, 4, (1), pp. 83 97

HSIUNG, I'-A., CHEN, C-T1, LEL, T-Y., and CHEN, 8.-1: ‘[COS:
An intelligent concurrent objeet-oriented synthesis methadology for
multiprocessor systems’, ACM Trans. Des. Autom. Electson. Syst.,
1998, 3, (2), pp. 109 135

HSIUNG, B-A: ‘POSE: A parallel object-oriented synthesis environ-
ment’, ACM Trans, Des. Awtom. Electron. Syst, 6, (1), to appear
January 2001

CHIODO, M., GIUSTO, P, HSIEI, [[, JURECSKA, A., LAVAGNO,
L., and SANGIOVANNI-VINCENTTA.LL, A.: ‘Synthesis of software
programs fiom CFSM specifications,” Technical report UCB/IRI.
MO94/87, U.C. Berkeley, CA, 1994

CHIODO, M., GIUSTO, P, HISIIH, [, JURECSKA, A., LAVAGNO,
L., and SANGIOVANNI-VINCENTELLI, A.; ‘Synthesis of softwarc
programs [rom CESM specifications”. Proceedings of Design automa-
Hon conlerence, June 1995, San Francisco, USA, pp. 587-502
BALARIN, I, HSITIL, 1L, JURLCSKA, A, LAVAGNO, L., and
SANGIOVANNI-VINCENTELLI, A.: ‘Vormal verification of
embedded systems based on CFSM networles”. Procoedings of
Design aufomation conference, 1990, Las Vegas, USA, pp.
568-571

CHRISTOPHER, VIAL, and BRUNO, ROUZEYRE: ‘Hardware-soft~
wire co-synthesis; Modelling and synthiesis of interfaces using inter-
nreted petri neis’, s BERGE, 1-M., LEVIA, O, and ROUILLARD, J,
(lids.), Uardware/software co-design and co-verification’ (Khuwer,
1997}

BENGTSSON, I, LARSEN, K., LARBSON, K, PETTERSON, B,
WANG, Y., and WEISE, C.: ‘New generation of UPPAALL Presented at
the international workshop on Saftwaie tools for technology transfer
(STTT*98), July (998, Aalborg, Denmark, pp. 43-51

HSIUNG, P-A., and WANG, 1%: ‘A state-praph manipulator tool for
reul-time system specification and verification®. Presented at the 51k,
IEE international conference on Real-fime computing systems and
applications (RTCSA98), October 1998, Hirashima, Japan, pp. 181-
188

WANG, K, and HSIUNG, I-A.: “Automatic verification on the large’.
Proceedings of 3rd [BEE symposium on [igh-assurance systents
engincering (1HASLE™98), November 1998, Washington DC, USA, pp.
134 -141

TISIUNG, P-A,, and WANG, F.: ‘User friendly verification’. Procced-
ings of the 1999 [11* TC6/WGG.1 joint international conference on
Formal description techaigues for distribured sysiems and comminica-
tion protocals & pratocol specification, testing, and verification
(FORTE/PSTV?99), October 1999, Beijing, China

HENZINGTER, T.A., 110, B-11, and WONG-TOI, H.: ‘HyTech: The
next generation”, Proccedings of the 16th IERT symposium on Real-
Hme systems, 1995, [REE Computer Socicty Press, pp. 56-65
KUPFERMAN, O, and VARDI, M.Y.; ‘On the complexity of branch-
ing madular model checking’. Proceedings of 6th 1NCS international
conference on Concurrency theory, 962, August 1995

01

