
ICOS: An Intelligent Concurrent Object-
Oriented Synthesis Methodology for
Multiprocessor Systems

PAO-ANN HSIUNG
Academia Sinica
and
CHUNG-HWANG CHEN, TRONG-YEN LEE, and SAO-JIE CHEN
National Taiwan University

The design of multiprocessor architectures differs from uniprocessor systems in that the
number of processors and their interconnection must be considered. This leads to an enormous
increase in the design-space exploration time, which is exponential in the total number of
system components. The methodology proposed here, called Intelligent Concurrent Object-
Oriented Synthesis (ICOS) methodology, makes feasible the synthesis of complex multiproces-
sor systems through the application of several techniques that speed up the design process.
ICOS is based on Performance Synthesis Methodology (PSM), a recently proposed object-
oriented system-level design methodology. Four major techniques: object-oriented design,
fuzzy design-space exploration, concurrent design, and intelligent reuse of complete sub-
systems are integrated in ICOS. First, object-oriented modeling and design, through the use of
object-oriented relationships and operators, make the whole design process manageable and
maintainable in ICOS. Second, fuzzy comparison applied to the specializations or instances of
components reduces the exponential growth of design-space exploration in ICOS. Third,
independent components from different design alternatives are synthesized in parallel, this
design concurrency shortens the overall design time. Lastly, the resynthesis of complete
subsystems can be avoided through the application of learning, thus making the methodology
intelligent enough to reuse previous design configurations. Experiments show that all these
applied techniques contribute to the synthesis efficiency and the degree of automation in
ICOS.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engi-
neering—Computer-aided design (CA); I.2.6 [Artificial Intelligence]: Learning—Knowledge
acquisition; Analogies; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—
Deduction (e.g., natural, rule-base)

General Terms: Design

This research was supported by the National Science Council, Taipei, Taiwan, under Grant
NSC 85-2623-D002-015.
Authors’ addresses: P.-A. Hsiung, Institute of Information Science, Academia Sinica, Taipei,
Taiwan; C.-H. Chen, T.-Y. Lee, and S.-J. Chen, Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1084-4309/98/0400–0109 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998, Pages 109–135.

Additional Key Words and Phrases: Concurrent object-oriented system-level synthesis, fuzzy
design-space exploration, learning

1. INTRODUCTION
Synthesis is the process of automatic transformation from a set of logically
higher level design specifications into a logically lower level design archi-
tecture. Corresponding to the levels of design details, we have different
levels of synthesis, such as logic level, register-transfer level (RTL), algo-
rithmic or high level, and system level. At the logic level of synthesis, the
designer inputs gate-level design specifications and obtains physical-level
architecture. At the RTL, register-transfer specifications are given and
gate-level results obtained. At the algorithmic or high level, an algorithm
describing a particular behavior is synthesized into an RTL design archi-
tecture. Finally, at the system level of synthesis, a description of system
behavior or a set of system-level specifications is transformed into an
architectural description of the system such as the processor type, the
memory organization, and the system interconnection network.

With technology advances, the complexity of computer system architec-
ture has increased to the extent that synthesis tools that automate the
design process, if not indispensable, are becoming a necessity for meeting
the ever-shortening time-to-market requirement. Design methodologies for
uniprocessor systems are quite mature, but system-level synthesis tools
automating the design of such systems are still under research and
development. Compared to uniprocessor systems, multiprocessor (MP) sys-
tems present many more design trade-offs and challenges; hence, the
design automation of MP systems is more imperative. Recently, Perfor-
mance Synthesis Methodology (PSM) [Hsiung et al. 1996] was proposed as a
successful methodology for MP systems. The architectures considered in
this article are also parallel systems that include both tightly coupled
multiprocessors and loosely coupled multicomputers.

Multiprocessor system-level synthesis is a design automation process
where starting from a set of system descriptions, performance constraints,
and a cost bound, a multiprocessor architecture is synthesized by determin-
ing the number and type of processors used, the processing cluster organi-
zation, the type of system interconnection, and the amount of memory with
its logical and physical organization. A multiprocessor synthesis system is
different from currently available uniprocessor synthesis systems because
the design of the particular architecture now requires exploring many more
design alternatives and performance trade-offs. A uniprocessor system has
only one processing element, so currently available uniprocessor synthesis
systems need only consider the type of processor and determine the amount
of memory to use. However, a multiprocessor system architecture has more
than one processor, so we must decide how many processors to use and how
to interconnect the processors using some interconnection network; deter-

110 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

mine the way in which the main memory is organized; and classify cache
memory into local, primary, and secondary levels. All of these consider-
ations are critical to the feasibility and performance of the final synthe-
sized architecture, and they are not taken into consideration by uniproces-
sor synthesis systems. Furthermore, an important aspect of multiprocessor
system synthesis is how the workloads are distributed into each processor
and the balancing of the processor workloads in order to maximize the
system performance. This distribution and balancing of workloads mainly
depends on the type and number of processors available, on how the
processors are interconnected, and on the design of the global control unit
that distributes workloads to each cluster in a hierarchical MP system. All
of these factors make the MP system synthesis special and different from
the conventional system synthesis.

We define an object-oriented (OO) synthesis as the design process in
which system parts are modeled as object classes interlinked by relation-
ships in a hierarchy of classes and the desired system is synthesized by
traversing the hierarchy, selecting appropriate object classes, and instanti-
ating them. The rationale for using OO in synthesizing MP systems can be
summarized as follows: First, since a large number of variations of MP
systems is possible due to the numerous ways in which processors may be
clustered and interconnected and memories may be organized, the inherit-
ance mechanism in the OO technology significantly avoids the duplication
of design data to a much larger extent than in the conventional non-OO
synthesis. Second, MP systems are often modularized through processor
clustering for better performance and scalability; such modularizations are
very much in coherence with the OO design technology. Design reuse plays
an important role in modeling identical clusters or modules and in reducing
design time. Third, the design of complex MP systems requires a larger
design hierarchy than uniprocessor systems, thus the concept of hierarchi-
cal design process in the OO technology becomes more useful for design
management and representation. Overall, the use of OO technology is more
advantageous in designing MP systems than in designing uniprocessor
systems.

Conventionally, system parts are synthesized in a sequential fashion, for
example, in PSM. When more than two components are allowed to be
synthesized at the same time, the design process is termed concurrent
synthesis. In this article, we concentrate on concurrent synthesis and
discuss its advantages.

The design space in the synthesis of an architecture having n compo-
nents is a subspace of]2n, represented as D 5 $^~x1, y1!, ~x2, y2!, . . . ,
~xn, yn!& ? xi, yi {]%, where] is the set of nonnegative integers. Each
point in the 2n-dimensional integer design space represents a design
alternative such that for the ith component, xi is the integer label of a
physical instantiation of the component and yi is the number of xi used for
the final design. The design space size (?D?) is thus the total number of
design alternatives for a system under design. If the average design time

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 111

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

for a single design alternative is t, then the total time required for
design-space exploration of a design consisting of n components, each of
which has m specializations, is:

T~n! 5 t~m!n (1)

A survey of previous and related work is given in Section 2. Section 3
presents an overview of the concepts and techniques used in ICOS. The
article describes the design methodology in Section 4. Implementation,
design examples, and experimental observations are covered in Section 5.
The last section concludes the article and describes some future work.

2. PREVIOUS AND RELATED WORK

A performance-driven, object-oriented synthesis methodology for the sys-
tem-level design of multiprocessor systems called Performance Synthesis
Methodology (PSM) [Hsiung et al. 1996] was recently proposed. Prior to
PSM, there were some relevant works on automating the system-level
design of computer systems, but they have been developed with a restricted
scope of application, for example, the MICON system [Birmingham et al.
1989; Gupta 1993] and the Megallan system [Gadient and Thomas 1993]
did not explicitly take the MP features into consideration during system
synthesis; Mabbs and Forward [1994] analyzed the performance of MR-1, a
clustered shared memory MP, using a queuing model and a lost request
model; Chiang and Sohi [1992] evaluated the design choices for a shared-
bus MP in a throughput-oriented environment using customized mean-
value analysis. Distributed design-space exploration for high-level synthe-
sis systems was discussed by Dutta et al. [1992].

The incorporation of object-oriented concepts into computer-aided synthe-
sis has been discussed mainly in the literature [Lee and Park 1993; Kumar
et al. 1994] and implemented in a few hardware description-language-
oriented design tools [Chung and Kim 1990]. Reuse of specification through
refinement levels has been discussed by Antonellis and Pernice [1995]. An
example of learning used in the synthesis of VLSI systems is the Learning
Apprentice for VLSI Design (LEAP) [Mitchell et al. 1985]. Besides this
example, learning has been rarely used in synthesis. Fuzzy logic has been
widely used in VLSI design such as in VLSI placements [Rezaz and Gau
1990; Lin and Shragowitz 1992; Kang et al. 1994], but not in system-level
synthesis tools. This article illustrates how learning and fuzzy logic can be
used for efficient and intelligent synthesis.

From Section 1, we know that an exhaustive search of the exponential
design space cannot be completed in a reasonable or acceptable time period.
We thus need to investigate techniques that could increase our design-
space exploration efficiency without trading off design quality. PSM used a
cost-based heuristic to explore design space, but this produced designs that
were always the most expensive ones.

112 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

The four techniques used in our methodology to improve synthesis
efficiency without trading off design quality are summarized and the
reasons we use them are described as follows:

(T1) Object-Oriented Design. The elementary application of object-ori-
ented techniques in PSM is extended such that not only the system
modeling but the whole design process is also object-oriented, thus
making the synthesis methodology more consistent and complete.

(T2) Fuzzy Design-Space Exploration. In order to produce more balanced
designs (as compared to those produced by PSM), a fuzzy design-space
exploration algorithm that considers a global trade-off of cost and perfor-
mance factors is used, thus not only producing more balanced designs but
also performing a more optimal search of the design space.

(T3) Concurrent Design. A concurrent component design method is
adopted, rather than the sequential one used in PSM, mainly because
synthesis efficiency can be improved. A component is not necessarily a
physical one, it may represent high-level system parts or subsystems and
is often a design alternative with respect to other components concur-
rently under design. Due to the large number of design alternatives, it is
certainly desirable to synthesize them concurrently. This is similar to the
concurrent executions of two or more branch statements in software,
which leads to efficient software execution. For example, if both mesh
and cube interconnections satisfy the given specifications, then two
design alternatives using different interconnections can be designed
concurrently as their designs are independent of each other.

(T4) Intelligent Reuse of Complete Subsystems. A substantial amount of
design time is saved through intelligent learning and reuse of the
previously designed system parts that meet current specifications.

In summary, ICOS basically uses various techniques to enhance the
elementary PSM such that (1) the design process is completely object-
oriented, (2) more balanced and optimal designs are produced, (3) the
synthesis efficiency is improved, and (4) substantial design time is saved
through intelligent design reuse.

Referring to Equation 1, as far as the design-space exploration is con-
cerned, technique T1 reduces t, the average design time of a single
component, through efficient synthesis; T2 reduces m, the number of
specializations, by considering only a suitable number of instances for each
component; T3 also reduces t by parallelizing the sequential design in
PSM; and T4 reduces n, the total number of components to be synthesized,
as certain components reused by learning from previous experiences need
not be synthesized again.

3. CONCEPTS AND TECHNIQUES

This section presents the concepts and the background of our synthesis
methodology, Intelligent Concurrent Object-Oriented Synthesis (ICOS), in

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 113

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

which system parts are modeled as objects, the synthesis process is object
oriented, parts are concurrently synthesized, and previously synthesized
parts that meet current specifications are intelligently reused. The previ-
ous section discussed why these techniques are used in ICOS; the following
sections discuss how system-level synthesis can make use of these tech-
niques to improve design maintenance, increase synthesis efficiency, and
decrease overall design time.

3.1 System-Level Specifications and Synthesis

An ICOS designer describes the desired system through specifying require-
ments at the system level, which include architectural, performance, and
synthesis specifications.

Architectural specifications mainly allow a designer to restrict the do-
main space by specifically indicating how a system part should be con-
structed. For example, the designer may explicitly specify that the architec-
ture should be a hypercube-connected one with at least 1,024 processing
elements and a maximum cost of $12,000. If some architectural details are
left out by the designer, for instance, the amount of main and cache
memories, then the synthesis system decides how much memory to use and
what kind of design alternatives are feasible. For example, one design
alternative may be 16Mb of main memory and 1Mb of cache memory, and
another design alternative could be 8Mb of main memory and 2Mb of cache
memory.

Performance specifications include the minimum system power, which is
also the throughput-utilization ratio, the minimum system scalability,
reliability, and fault-tolerance, all of which are defined as in PSM [Hsiung
et al. 1996]. Synthesis specifications include the maximum number of
design alternatives to consider for further design and the choice of whether
to reuse previously learned designs or to design a system from scratch.

System-level synthesis is a process that uses the preceding architecture,
performance, and synthesis specifications as input and generates a set of
feasible design alternatives satisfying all specifications. This could be an
empty set if the specifications cannot be satisfied by any design alternative
or the specifications themselves are contradictory, for example, the total
number of system processors exceed the capacity of the interconnection
network chosen (say, a particular shared bus).

3.2 Object-Oriented Design

Object-oriented design includes object-oriented modeling and object-ori-
ented synthesis, which contribute towards easier design maintenance and
efficient synthesis, respectively. Hardware components or subsystems can
be naturally perceived as objects and classified into some class or classes.

A successful application of object-oriented concepts and techniques in
computer system design was demonstrated in PSM. Apart from the normal
features of an object-oriented system, such as class encapsulation, attribute
inheritance, polymorphism, and part reuse, PSM introduced the use of

114 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

object-oriented relationships (aggregation and generalization [Rumbaugh et
al. 1991]) and operators (iterator [Shaw et al. 1981] and generator) for the
system-level synthesis of multiprocessor systems. Our current work, ICOS
extends the use of object-oriented techniques in system-level synthesis by
introducing one more relationship, dependence, and one more operator,
updator.

Each component in a multiprocessor architecture is modeled by a class
that may have specifications stipulated by the designer, pre-design charac-
teristics that are known before design, and post-design characteristics that
are known only after design. The classes are classified into three types:
A-node (aggregate node), G-node (generalized node), and P-node (physical
node) depending on whether it represents an assembly of subclasses, a
superclass of some specialized classes, or a physical class that is available
for direct integration and use, respectively. Three types of relationships are
also defined, namely, aggregation, generalization, and dependence, of which
the former two are adopted from Rumbaugh’s Object-Modeling Technique
(OMT) [Rumbaugh et al. 1991] and dependence is a newly introduced one.
Dependence mainly models how a component may depend on another
component due to the hardware-links between them. Two types of depen-
dence are modeled: absolute dependence and relative dependence [Hsiung
1996].

Using the classes and relationships previously described, a hierarchy of
classes called Class Hierarchy (CH) is constructed, which can serve as
off-the-shelf building blocks for synthesis. Class Hierarchy is defined as a
multilevel, object-oriented, hierarchically classified repository storing parts
of a multiprocessor system. An example of CH is given in Figure 1.

ICOS uses OO operators, namely iterator, generator, and updator, for
synthesis. The iterator is used to synthesize an A-node in the design

Fig. 1. Class hierarchy.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 115

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

process of ICOS. It iterates through each child node of an A-node, deciding
whether to use it; this decision is based on the specification satisfaction of
the A-node. The generator operator is used to synthesize a G-node and
instantiate a P-node. It generates a number of acceptable specialized
subclasses for a G-node or instances for a P-node, by traversing CH and
checking which subclasses or instances best satisfy the specification of a
G-node or a P-node, respectively. Both the iterator and the generator
operators are used in the component synthesis step (Section 4.3.3). Updator
is used to update a specification of a node before the node begins synthesis,
as explained in the specification update step (Section 4.3.1).

3.3 Concurrent Synthesis

Encapsulating each system component as an individual class using OO
techniques induces a certain degree of local autonomy such that a class is
capable of actively synthesizing itself by traversing down the hierarchy of
CH until all leaf nodes are instantiated. This is called self-synthesis. When
two or more classes representing system parts or design alternatives
actively synthesize themselves at the same time, the design process is
called concurrent synthesis. Concurrent synthesis not only increases syn-
thesis efficiency, but also saves design time as illustrated in this article.

In the following, we describe how more than one component may undergo
synthesis at the same time in ICOS. Starting from a root class known as a
Computer System (CS), ICOS traverses CH and checks components for
synthesis. A component class is said to be ready for synthesis as soon as all
of its specification values are available and updated. The synchronization
between component design processes is maintained by the dependence
relationships in CH that control the design precedence order of component
classes. For example, if a class A is absolutely dependent on a class B, then
the synthesis of B must be completed before A can begin its synthesis, and
in the case of a relative dependence, A can begin synthesis as soon as its
dependent specification is updated by querying B.

For modeling and solving problems induced by concurrency in synthesis,
a high-level Petri net model was proposed and validated [Hsiung et al.
1997]. Due to space consideration, the details of this Multitoken Object-
Oriented Bi-direction net (MOBnet) cannot be included in this article,
interested readers are advised to refer to Hsiung et al. [1997] for a
complete discussion.

3.4 Intelligent Synthesis

By incorporating learning into the synthesis process, complete subsystems
or system parts that meet current design specifications can be reused from
previous design experiences, thus eliminating the repetition of similar
design steps and saving a substantial amount of design time.

As shown in Figure 2, machine learning is basically classified into
Similarity Based Learning (SBL) and Explanation Based Learning (EBL)
[Kodratoff 1988]. There are two kinds of SBLs: Empirical SBL and Ratio-

116 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

nal SBL; and EBL includes Inductive Learning and Deductive Learning.
Deductive Learning is further classified into Specification-Guided Learning
(SGL) and Example-Guided Learning (EGL).

ICOS applies SGL in its design process. In SGL, the specifications of
some previously learned designs are compared with the current user
specifications and, if acceptable, a previous design that best meets the
current specifications is selected. Since numerous specifications have to be
considered, ICOS fuzzifies the comparison between two component classes,

Fig. 2. Machine learning classification.

Fig. 3. ICOS design flow.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 117

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

this process is called Fuzzy Specification-Guided Learning (fuzzy SGL).
Details of using fuzzy SGL in ICOS is described in Section 4.3.2.

4. ICOS METHODOLOGY

Having gone through why and how, techniques can be applied in system-
level synthesis, an actual methodology, Intelligent Concurrent Object-Ori-
ented Synthesis (ICOS) methodology, implementing the preceding concepts
is presented in this section.

As shown in Figure 3, after a designer inputs system requirements using
a specification language provided by ICOS, the methodology enters its
three main phases: Specification Analysis, Concurrent Design, and System
Integration. Each of these phases is discussed in the following sections and
illustrated with a small running example.

4.1 Specification Language

The ICOS specification language is composed of three specifications: the
architecture, the performance, and the synthesis specifications, described as
follows:

In the preceding architecture specifications, AT, CT, MT, SI, PU, and CI
are the architecture type, control type, memory type, system interconnec-
tion, processing unit, and cluster interconnect, respectively. In the perfor-
mance specifications, MaxC, MinP, MinS, MinR, and MinF are the
maximum cost, minimum power, minimum scalability, minimum reliabil-
ity, and minimum fault-tolerance, respectively. Of particular mention are:
NS, the maximum number of specializations to be considered at the end of
Fuzzy Design-Space Exploration of a G-node or P-node, and ML, the option
whether any machine learning is to be used. Observe that NS is used by
the designer to control the size of the design-space explored at a G-node or

.

118 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

P-node. If this specification is not given by the user, the system default
value, MaxS (Equation (7)), will be used.

As shown in Figure 4, a small example is used to illustrate each of the
design phases. The designated system is a SIMD message-passing architec-
ture with a Multi-stage Interconnection Network (MIN) or a Hyper-
cube (HC) interconnection. The design specifications are as follows:

This small example with the preceding specifications will be synthesized in
the following sections. Note that not all specifications need to be input by
the designer. A check for completeness and compatibility has to be per-
formed first.

4.2 Phase I. Specification Analysis

User-given specifications may contain logical, technical, or typographical
errors, which must be detected and eliminated. ICOS begins with analyzing
the design specifications, which is mainly done using first-order logic rules
and is based on common architecture assumptions. Some of the main
assumptions are: a message-passing architecture is not supposed to share
any global main memory; a shared-memory architecture should not use the
direct-connection networks such as hypercube or mesh; the total number of
system processors should be equal to the number of clusters times the
number of processors per cluster; and the cost bound should be at least the
minimum cost of a uniprocessor system. Figure 5 shows how specification
errors such as contradictions between specifications (e.g., AT and MT have
incompatible values assigned), unsatisfiable specifications (e.g., SP Þ NC
3 CP), and incomplete specifications (e.g., CP, SP, and MaxC are all not
given) are detected. The analysis is done per specification category, as well
as, between the architecture and the performance specification categories.
The purpose of this phase is to uncover inconsistencies in the design
specifications at the very beginning of the design process so we can avoid
futile efforts in synthesizing an impossible system.

For example, continuing with our small example, some rules for analyz-
ing its specifications are described in Figure 5. Since the architecture type
desired is message passing (AT 5 MP), we make necessary assumption
that the memory type is distributed unshared (MT 5 DU). The analysis is
performed under assumptions that USC 5 $1,000, LPC 5 $500,

.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 119

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Fig. 5. Specification analysis.

Fig. 4. A small illustrative example.

120 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

LC~SI! 5 $150, LC~MT! 5 $150, where the meanings of USC, LPC,
LC~SI!, and LC~MT! have been given in the figure.

4.3 Phase II. Concurrent Design

Concurrent design is the main phase in which components are concurrently
synthesized or reused by learning. Here, a component modeled as a class, is
a system part that may be part of a design alternative. At this stage,
specifications are free of errors. A root node representing the Computer
System (CS) to be synthesized is given to start the Design Hierarchy (DH),
a subset of CH used to keep track of the system structure under design. A
Design Queue (DQ), being used to keep track of components ready for
synthesis, is also initialized similarly. After initialization, the design of a
component begins by removing the root node from the DQ. As shown in
Figure 6, there are basically four steps in component design: specification
update, component reuse by learning, component synthesis, and design
storing.

To handle the architectural dependence of a component on another
component in concurrent synthesis, we model this dependence in the Class
Hierarchy itself using the dependence relationships defined in Hsiung
[1996]. During the actual synthesis, a component updates its specifications;
if it is dependent on another component, it will have to wait till that
component is able to pass over the required information to it. When
performance constraints are violated at some stage of synthesis, a rollback
process occurs in the bottom-up direction of the hierarchy such that the
component-violating performance constraints sends rollback messages to
its parent class and dependent classes, both of which in turn either
resynthesize themselves or propagate rollback messages upwards in the

Fig. 6. Component d esign.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 121

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Class Hierarchy. The details of this rollback process can be found in Hsiung
et al. [1997].

Synthesizing the small example as specified earlier, the design steps are
given in Table I. The last column gives the resulting DQ obtained by
synthesizing the ready-for-synthesis object in that step (column 2). ICOS
methodology stops when DQ becomes empty, which occurs in a finite
number of steps as the number of components are finite in a system.

4.3.1 Specification Update. A component class may have characteristics
that depend on its parent class or dependent classes; hence, it must update
all of the related specifications before the synthesis begins. This is done
using the updator operator. A class queries its parent class, as well as, all
the classes having a dependence relationship with it, for any missing
specification values. After all the queries have been answered, if there are
still some specifications that do not have values assigned, the designer of
the system will be queried for the specific values. Once all specifications of
a class are updated, the class is considered to be ready for self-synthesis,
which is described in the following steps.

4.3.2 Component Reuse by Learning. Before the actual synthesis, a
component class checks whether learning from previous design experience
is possible. In this step, fuzzy SGL is applied to an A-node.

The rationale of applying Fuzzy Specification-Guided Learning (fuzzy
SGL) to an A-node is that if the design of a partial system, represented by
an A-node, can be substituted directly by some previously stored designs, the
whole subtree rooted at that A-node need not be synthesized again.

Consider a component class cls in CH, having a set of k specifications,
SPEC~cls! 5 $s1, s2, . . . , sk%. Suppose that the n design versions of cls,
Vcls 5 $cls1, cls2, . . . , clsn% obtained from previous design experiences
are stored in the Learning Hierarchy (see Section 4.3.4) and have the
following sets of specification values, respectively.

Xi 5 $xijxij is the value of sj w.r.t. clsi, j 5 1,2, . . . , k%, i 5 1,2, . . . , n (2)

Table I. Design Steps: The Small Illustrative Example

Step
Object
Ready

Class
Type Operator Design Method Design Queue

(a) CS A iterator synthesis {MSS,SI,Pss,GCU}
(b) MSS A iterator synthesis {SI,PSS,GCU,Cache,MM}
(c) SI G generator Fuzzy DSE {Pss,GCU,Cache,MM}
(d) PSS A iterator synthesis {GCU,Cache,MM,Cluster}
(e) GCU A iterator synthesis {Cache,MM,Cluster}
(f) Cache A iterator synthesis {MM,Cluster}
(g) MM G generator synthesis {Cluster}
(h) Cluster A iterator Fuzzy SGL {}

MM 5 Main Memory

122 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Assume that cls is currently to be synthesized again for the ~n 1 1!th
time, with the specification values,

Xn11 5 $x~n11!jx~n11!j is the value of sy w.r.t. clsi, j 5 1,2, . . . , k%.

A fuzzy comparison between the values of a current user specification and
those of each previous design is made using a fuzzy set (P) that represents
the functional proximity of previous design versions to the current one
under design. The membership function of (P) is defined as follows:

mP : Vcls x H @0,1#, if all specifications are satisfied
~2 `, 0!, if some si { SPEC~cls! is not satisfied

(3)

In Equation (3), when a design version does not satisfy the specifications
of the component under design, mP is assigned a negative value in (2`,0) so
that it is not considered as an acceptable design version for reuse. Depend-
ing on the type of specification, the proximity of clsi, mP~clsi! is calculated
as a sum over all the specification values,

mP~clsi! 5 O
j51

k

mP̂~xij! (4)

where m P̂~xij!, the partial proximity of clsi corresponding to specification
sj, is defined in Table II for each type of specification.

Based on the type of specification, there are different ways to compare
how two components differ with respect to a certain specification. A weight
~wj! is assigned to each specification ~sj! representing the importance of
the specification in the final design. The weights may be all equal; that is,
wj 5 1 / n, if all the specifications are equally important. The specifica-
tions are classified into four types: (1) exact value or set enumeration (e.g.,

Table II. Types of Specifications and Partial Proximity Values

Type of
Specification

Example
Specifications Partial Proximity m P̂~xij!

Exact value or set
enumeration

AT, CT, MT, SI 2 1 if x ~n11!j {/ ENUM$xij%
wj if x ~n11!j { ENUM$xij%

Minimum value
(lower bound)

MinP, MinS,
MinR, MinF

2 1 if xij , x ~n11!j

wj~xij 2 x ~n11!j! / M if xij $ x ~n11!j & M . 0.
0 if M 5 0

Maximum value
(upper bound)

MaxC, NS 2 1 if xij . x ~n11!j

wj~x ~n11!j 2 xij! / M if xij # wjx ~n11!j & M . 0.
0 if M 5 0

Approximate value buffer size wj~?x ~n11!j 2 xij?!
21 / M if x ~n11!j Þ xij

wj if x ~n11!j 5 xij

M 5 Max1#i#n?x ~n11!j 2 xij?, wj is the weight associated with sj and O
j51
k wj 5 1

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 123

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

the CPU must be a RISC CPU); (2) minimum value or lower bound (e.g.,
the reliability should be at least 98.5%); (3) maximum value or upper bound
(e.g., the cost should be at most $ 100,000); and (4) approximate value (e.g.,
the buffer size should be approximately 1Kb). In Table II, the value of a
specification sj of a design version clsi in Vcls is denoted as xij and the
currently desired specification value is x ~n11!j. When a specification sj is
satisfiable by a design version clsi, the comparison is made between the
two values xij and x ~n11!j by a weighted normalized difference, such as
wj~xij 2 x ~n11!j! / M, where M is the maximum difference over all the design
versions in Vcls. When a specification is not satisfiable, a negative value of
21 is assigned so as to eliminate the consideration of that design version.

The set of design versions considered to be similar to the current one
under design is called the similarity set, Dcls 5 $clsiclsi { Vcls, mP~clsi!
$ d%, where d is a threshold value known as the degree of similarity. The
higher the value of d, the smaller is the cardinality of the similarity set,
and hence, the greater is the degree of similarity required between the
design versions. If the similarity set is not empty, the design version
having the maximum mP~clsi! is selected as the partial-design to be reused
for the object in the current synthesis.

For example, step (h) in Table I involves a fuzzy SGL process at the
Cluster class, suppose the specifications of Cluster are: CP / NC 5 2,
MinP 5 1 MFlop per 100% utilization, PU 5 RISC , CI 5 Bus , and
MaxC 5 $1,200. Notations are given in Section 4.1. Table III shows how
fuzzy SGL is performed at the Cluster class. Assuming d 5 0.62, it is
observed from Table III, that the similarity set DCluster 5 $D, E%, and E is
the design with maximum mP; hence, the design E is reused for the current
Cluster synthesis.

4.3.3 Component Synthesis. Any system part modeled as an individual
class in CH is called a “component.”Component synthesis is the core part of
component design. When no reuse by learning is possible or ML is set to

Table III. Fuzzy Specification-Guided Learning at Cluster Class

Design CP / NC MinP~MFlops! PU CI MaxC~$! mp

A 4 2.0 SuperSPARC Bus 4,200 2 1.400
B 3 1.8 PA-7100 MIN 3,000 2 2.840
C 2 1.0 MIPS-R4400SC Bus 2,500 2 0.400
D 2 1.1 PowerPC-601 Bus 1,200 0.620
E 2 1.2 Alpha-21064 Bus 1,100 0.647
F 2 1.1 PowerPC-601 MIN 1,500 2 1.580
G 2 1.0 Alpha-21064 Bus 1,000 0.613
Current 2 11 RISC Bus 1,200 1.000

mp is calculated using Equation (4) and Table II.

124 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

“No” in the specifications, the component is synthesized in this step. A
P-node can be viewed as a G-node at the leaf of the class hierarchy. Hence,
the instantiation process of a P-node is similar to the synthesis process of a
G-node because the instances of a P-node can be viewed as the specializa-
tions of a G-node.

(a) Synthesis of an A-node. Recalling that an A-node has the aggregation
type of relationship with its child nodes, an object-oriented operator known
as the iterator is used to synthesize an A-node. The iterator iterates
through each child node deciding whether to use it; this decision is based
on the specification satisfaction of the A-node. Child nodes to be used for
synthesis are added to DH. If the child node is a P-node, it is instantiated;
otherwise, it is appended to DQ for further synthesis. For example, steps
(a), (b), (d), (e), and (f) in Table I, all synthesize an A-node using the
iterator.

(b) Synthesis of a G-node and Instantiation of a P-node. A Fuzzy Design-
Space Exploration. The fuzzy DSE method is used to select a suitable
number of acceptable design components that are among the best special-
izations of a G-node (G-specialization) or instances of a P-node (P-instance).
The object-oriented operator used in fuzzy DSE is known as the generator,
since it “generates” a suitable number of acceptable specializations or
instances.

As shown in Equation (1), we know that the synthesis of computer
systems often requires the exploration of a very large design-space contain-
ing several G-specializations or P-instances. Although the specializations
or the instances of a component class have common functionality, the order
of preference among them might be quite difficult to determine. Often the
comparison between two specializations or two instances is not crisp or
clear as one has to compare several different specifications that have
trade-off relationships when certain goals or constraints are considered.
For example, a higher fault-tolerance would require a higher total system
cost.

Modeling how a component affects each performance factor of the whole
system by a fuzzy membership function (Equation (5)) and composing these
functions by a linear combination into a composite fuzzy membership
function (Equation (6)), we can actually compare two components and
determine the order of preference when a selection is required.

Each G-specialization or P-instance is assigned a penalty factor f that
determines its membership grade in a fuzzy decision set D. Let Scls be a set
of acceptable specializations or instances for some class cls, $C1, C2, ...,
Cn% be a set of constraints, and $G1, G2, ..., Gm% be a set of goals, we define
the following membership functions as mappings from Scls to a real number
between 0 and 1.

mCi : Scls x @0,1#, i 5 1,2, . . . , n

mGj : Scls x @0,1#, j 5 1,2, . . . , m (5)

mD : Scls x @0,1#, where D 5 Ci Qi, j Gj

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 125

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

where the penalty factor, which is the fuzzy membership function of the
decision set D, is defined as the linear combination (! i, j) of all mCi and mGj.

f~s! 5 mD~s! 5 O
i51

n

uimCi~s! 1 O
j51

m

vjmGj~s!, O
i51

n

ui 1 O
j51

m

vj 5 1, @s { Scls (6)

where ui and vj are the weights associated with Ci and Gj, respectively. An
implementation example of Equation (6) is given later in Equation (8).

Using Equation (6), we can assign a partial order of preference to any set
of specializations or instances by assigning each specialization or instance
with a penalty factor f and ordering them ascendingly by f. The specializa-
tion or instance with the least penalty Mins{Scls$f~s!% is locally the best
choice. To obtain more than one final design alternative, a larger design-
space consisting of more than one specialization or instance is explored.
The greater the number of specializations or instances considered, the
larger will be the design-space, and thus the less efficient will be the
synthesis process. This trade-off between synthesis quality and synthesis
efficiency has been experimentally explored and the result of this experi-
mentation indicates the following number of specializations (MaxS) to be
an appropriate choice.

MaxS 5 UHs U s { Sg, mD~s! #
Os{Sg

mD~s!

?Sg?
JU (7)

where S~g! is the set of acceptable G-specializations for g in DH. Similarly,
Equation (7) also holds for the case of P-instances.

In fact, Equation (7) indicates that we should only consider the special-
izations that have their penalty factors not greater than the average
penalty factor.

For example, step (c) in Table I involves fuzzy DSE at System Inter-

connect (SI). Let si be a specialization of SI; implementing Equation (6),
we define the partial fuzzy penalty factors corresponding to the constraint
of Cost (C1) and the goals of Power (G1), Reliability (G2), Fault Tolerance
(G3), and Scalability (G4) as follows:

mC1~si! 5
C ~si!

MaxC
, mG1~si! 5

MinP

P ~si!
, mG2~si! 5

MinR

R ~si!
, mG3~si!

5
MinF

F ~si!
, mG4~si! 5

MinS

S ~si!
. (8)

where MaxC, MinP, MinR, MinF, and MinS are the respective con-
straints and C, P, R, F, and S give the cost, power, reliability, fault-

126 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

tolerance, and scalability of the specializations. These terms are defined in
PSM [Hsiung et al. 1996]. Some cost and performance assumptions are
given in Table IV.

Assuming MaxC~SI! 5 $120, MinP~SI! 5 400 bytes/s, and
MinR~SI!SI) 5 0.9, Table V shows the penalty factors calculated for each
SI specialization using Equations (6) and (8).

Since s1 does not satisfy the power requirement, SSI 5 $s2, s3, s4, s5%,
using Equation (6) we get, O

i52
5

mD~si! / 4 5 2.293 / 4 5 0.57325. Thus,
MaxS 5 ?$s4, s5%? 5 2. Therefore, only two acceptable specializations $s4,
s5% are considered for further synthesis.

4.3.4 Step 4. Design Storing and Retrieval. ICOS uses a Learning
Hierarchy (LH) for design storing. LH is a structure similar to CH, but has
the capability of storing multiple design versions of the same component
class. If a component has been synthesized in a component synthesis step
instead of having been reused by learning from past experiences, then all
its design information including the component name, the specification
values, and the design details are stored in LH for future reference and
possible reuse. For example, Cache synthesized in step (f) of Table I will be
stored in LH for future reuse.

4.4 Phase III. System Integration Phase

In this phase, the full system under design is integrated, simulated, and its
performance evaluated. Since ICOS uses a concurrent synthesis approach,
a final checking for design completion is necessary; this is accomplished
using the recently proposed Multi-token Object-oriented Bi-directional net
(MOBnet) model [Hsiung et al. 1997]. If the design cannot be completed,
synthesis rollback occurs with the aid of the MOBnet model to find other
possible design alternatives. Due to space consideration, design completion

Table V. Penalty Factors for Fuzzy DSE at SI Class

Penalty Factors Bus (s1) MIN1~s2! MIN1~s3! MIN1~s4! 3-Cube(s5)

mC1~si! 0.005 0.01 0.011 0.011 0.012
mG1~si! 1 1 1 1 0.5
mG2~si! 0 1 0.667 0.571 1
mD~si! 0.335 0.67 0.592 0.527 0.504

Table IV. Cost and Performance Assumptions for Small Illustrative Example

Characteristics Bus MIN1 MIN2 MIN3 3-cube
capacity 8 8x8 8x8 8x8 8

Cost ($) 50 100 110 110 120
Power (bytes/s) 100 400 600 700 800
Reliability 0.9 0.9 0.9 0.9 0.9
Fault-Tolerance 0 0 0 0 0
Scalability 0 0.5 0.5 0.5 0.4

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 127

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

check and synthesis rollback are not described here. Interested readers are
requested to refer to Hsiung et al. [1997].

Simulation and performance evaluation of the design alternatives are
basically the same as those in PSM [Hsiung et al. 1996]. As in PSM,
executable component models were created using the SES/Workbench*

simulation tool [Scientific and Engineering Software 1992]. This final
evaluation of the design alternatives has been extensively covered in PSM;
hence, it is not elaborated upon in this article. A design with the best
performance is the final architecture output.

5. IMPLEMENTATION AND DESIGN EXAMPLES

As shown in Figure 7, the implementation of ICOS consists of four parts: a
CH Constructor, a Synthesizer, a System Simulator, and an LH Main-
tainer. We implemented this methodology on a Sun SPARC Station-20
machine. The two hierarchies, CH and LH, were implemented as object-
oriented databases. Ease of object access and quick relationship traversal
were chief concerns during the implementation of the hierarchies. A
generic component class is specified above.

Some of the functions are shown in Figure 8. The System Simulator
constitutes executable SES/Workbench models. The performance of the

*SES/Workbench is a registered trademark of Scientific and Engineering Software, Inc.

.

128 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

design alternatives were evaluated using the PSM Performance Estimation
Formula, D 5 ~P 3 S 3 R 3 F! / C, where D is the distance metric, P
the power, S the scalability, R the reliability, F the fault-tolerance, and C
the total cost [Hsiung et al. 1996].

The Synthesizer is the main synthesis part of ICOS. It consists of a User
Interface, a Specification Analyzer, and a Synthesis Kernel. The User
Interface provides a means for the input of user specifications and the
performance constraints and the output of the final architecture. The
Specification Analyzer tries to detect all contradictions among user specifi-
cations and infeasible or false statements. The Synthesis Kernel is respon-
sible for DH and DQ maintenance, the creation of Component Synthesis
Processes (CSP), the concurrent process management, and the system

Fig. 8. Some generic class functions in ICOS.

Fig. 7. ICOS implementation.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 129

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

integration, which includes design completion checking and synthesis roll-
back. The synthesis kernel was implemented using object-oriented lan-
guage C11 and the concurrency of component synthesis processes were
realized using processes in a multitasking environment such as the UNIX
Operating System. The process of activation of a component class after
removal from DQ is implemented in the synthesis kernel as the creation of
a CSP that is an individual process for the synthesis of a component.
Passing of synthesis parameters such as dependent specifications, imple-
mentation of tokens, and the traversal of relationships are all implemented
as Interprocess Communications. A CSP is killed as soon as the self-
synthesis of that component is complete.

The first illustrative example using the ICOS methodology has just been
depicted along with the presentation of ICOS in Section 4 and is concluded
Section 5.1. Another synthesis example is given in Section 5.2. A list of
other application examples is given in Section 5.3. Some observations are
presented in the final section.

5.1 Example 1. Synthesis of the Small Illustrative Example

The small illustrative example has been successfully synthesized through
the three phases of ICOS as shown in Section 4. Table VI shows how the
use of machine learning in ICOS reduces the total number of nodes to be
synthesized and how the use of concurrent design techniques reduces the
total synthesis time to half of what they would be if machine learning and
concurrent design were not used.

5.2 Example 2. Synthesis of an MIMD Architecture

This example shows how the total effect of machine learning at different
nodes can increase synthesis efficiency and performance. The designated
system is an asynchronous MIMD hybrid (shared-memory and message-
passing) architecture with globally shared memory and Shared Bus as the
System Interconnection. All abbreviated symbols in this example were
explained in the specification language (Section 4.1) and the specification
analysis phase (Figure 5).

Design Specification:
Architecture:

System: AT 5 Hybrid, CT 5 a-MIMD, MT 5 GS, SI 5 Bus,
SP 5 1024, NC 5 64

Table VI. Synthesizing the Small Illustrative Example with and without Learning

#A #G #P
Total
Nodes

Design
Space Size

Synthesis
Time (s)

With Learning 6 2 8 16 384 558
Without Learning 9 5 16 30 1052 1200

#A, #G, #P are the number of A-nodes, G-nodes, and P-nodes, respectively.

130 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Cluster: PU 5 RISC, CI 5 MIN, CP 5 16

Performance: MaxC 5 $700,000, MinP5 500Mflops, MinR50.9, MinF
5 0.5, MinS50.5.

Synthesis: ML 5Yes

Design Synthesis:
Specification Analysis:

Analysis: SP 5 NC 3 CP, C . USC, MaxC . SP 3 LPC 1
LC~SI! 1 LC~MT! 5 512,300.

Assumptions: USC 5 $1,000, LPC 5 $500, LC~SI! 5 $150,
LC~MT! 5 $150, C~RAM! 5 $140/4MB, C~Cache!
5 $100/1MB.

Analysis Result: No error

Design Reuse by
Learning: Only partial synthesis is shown in order to emphasize

the reuse by learning capabilities of ICOS.

Fuzzy SGL at the Processing Subsystem(PSS):

PSS Specification: PU 5 RISC, LI 5 MIN, CP $ 16, C(PSS) # $10,000,
P(PSS) $ 8Mflops, LM RAM Size $ 1MB, LM Cache
Size $ 0.5MB, LM RAM Access Time # 8ns, CCU
Buffer Size ' 1MB.

Assumptions: Cost(8 ns RAM) 5 $30/MB, Cost(7 ns RAM) 5 $35/MB,
Cost (6 ns RAM) 5 $38/MB.

As shown in Table VII, using Equation (4) and Table II, the proximity
values of the six previously stored designs are calculated as 0.3889,
20.3889, 0.6667, 0.6556, 20.5556, and 21.3333, respectively, where
the associated weights are all equal (wj 5 wi, @i Þ j). The similarity set,
DPSS, is $A, C, D% with d 5 0.38. Hence, the best choice is design C. If the
LM RAM size, RAM access time, and LM Cache size are given greater
importance than the cost of PSS (i.e., wj 5 1/9 for j 5 1,2,3,5,9, w4 5
1/18, and wi 5 7/54 for i 5 6,7,8), then the proximity values are recalcu-
lated for A, C, and D as 0.3889, 0.6389, and 0.6704, respectively. In this
case, D becomes the best design choice.

Similarly, fuzzy SGL is performed at the MSS class. The savings of
design time and cost are as shown in Table VIII.

5.3 Other Examples

The sample designs synthesized by PSM in Hsiung et al. [1996] were
resynthesized using ICOS. Table IX compares the performance of PSM and
ICOS in synthesizing similar designs.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 131

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

From Table IX, we observe that intelligent reuse by learning in ICOS has
helped to considerably reduce the total number of nodes synthesized, thus
reducing the overall design time by an appreciable amount. The number of
nodes synthesized by PSM was two to three times larger than that required
by ICOS. Due to concurrent design and intelligent reuse, the time required
by ICOS to synthesize a complete multiprocessor system is approximately
one-half to one-third of that required by PSM. This shows the efficiency of
ICOS over PSM in designing MP systems, when intelligent reuse by
learning and concurrent synthesis is used along with object-oriented de-
sign.

5.4 Observations

Some observations are made from the examples given in this section.

Learning consistency: The similarity set Dcls does not depend on the
weights (wj) associated with each specification of cls. This shows that
irrespective of the degree of importance given to the different specifica-
tions, the acceptable previous designs to be considered for reuse by
learning always remain the same.

Table VII. Fuzzy Specification: Guided Learning at PSS Class

PU CI CP
PSS

Cost ($)

PSS
Power

(MFlops)

LM
RAM
Size
(MB)

LM
Cache
Size
(MB)

LM
MAT
(ns)

CCU
Buffer
Size
(MB) mP

A SPARC MIN 16 10,000 9 1.0 0.5 8 2 0.3889
B MIPS-

R4400SC
MIN 18 13,500 10 1.0 0.5 7 2 2 0.3889

C ALPHA-
21064

MIN 16 9,500 9 1.0 0.6 7 2 0.6667

D Power
PC-
601

MIN 16 9,800 9 1.2 0.5 6 2 0.6556

E Intel
Pentium

MIN 18 10,000 8 1.0 0.5 6 2 2 0.5556

F PA-
7100

Mesh 18 13,000 10 1.2 0.5 6 2 2 1.3330

* {RISC} MIN 161 10,000- 81 11 0.51 8- 1 6 1 1.0000

* 5 Current Design, LM 5 Local Memory, MAT 5 Memory Access Time

Table VIII. Synthesizing Example 2 With and Without Learning

#A #G #P
Total
Nodes

Design
Space Size

Synthesis
Time (s)

With learning 4 1 4 9 128 392
Without learning 9 4 15 28 512 1150

#A, #G, #P are the number of A-nodes, G-nodes, and P-nodes

132 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

Specification trade-off: By varying the weights associated with each
specification, the fitness of a final previous design to be reused for the
current application may vary. This shows the flexibility of ICOS learning
which allows the designer to trade-off among various specifications.

Fuzzy ordering: Given numerous specifications of a design to be synthe-
sized, it becomes very difficult to associate an ordering among the
designs in the Learning Hierarchy. This ordering is necessary for select-
ing the most similar designs to be reused. Learning in ICOS accomplishes
this by using a fuzzy proximity set.

Saving in design time: The number of nodes of each type (A, G, and P) to
be synthesized with and without learning varies greatly. As shown in the
Small Illustrative Example and Example 2, learning during synthesis
reduces the total number of nodes to be synthesized to approximately
one-half (Table VI) or even one-third (Table VIII) of that which would be
required if no learning was used, respectively. Considerable time and
effort are thus saved.

6. CONCLUSION AND FUTURE WORK

The design methodology, Intelligent Concurrent Object-Oriented Synthesis
(ICOS) was presented and implemented. OO-based design representation
and fuzzy searching were used in ICOS to successfully synthesize multipro-
cessor systems by considering all the features of MP systems. Several
representative design examples were synthesized using ICOS and com-
pared with those synthesized by PSM [Hsiung et al. 1996]. The experimen-
tal results were in adherence to our initial motives.

Table IX. Comparison between PSM and ICOS

Design AT CT MT SI SP NC MaxC(104 $) MinP

A Hybrid SIMD GD HC 10,240 2,560 1,150 10.5
B Hybrid SIMD GD MIN 1,024 256 110 5.4
C SM MIMD GS Bus 1,024 256 175 128
D MP MIMD DU HC 512 218 60 2

AT, CT, . . . are symbols from the specification language of ICOS

Design CPSM CICOS SPSM SICOS TPSM TICOS

A 32 15 480 120 605 300
B 26 11 440 102 519 242
C 29 11 400 100 580 250
D 20 8 388 64 472 168

CPSM, CICOS are the no. of components synthesized by PSM and ICOS, respectively; SPSM,
SICOS are the design space sizes explored by PSM and ICOS, respectively; TPSM, TICOS are
the design time in seconds for PSM and ICOS, respectively.

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 133

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

We have shown how a complete design methodology integrated the
techniques of OO, fuzzy logic, concurrent design, and machine learning in
modeling and design, design-space exploration, synthesis process, and
intelligent reuse, respectively. Each of the four techniques contributes
towards synthesis efficiency. Consider the total design time T~n! 5 t~m!n

as given in Equation (1). Object-oriented and concurrent design reduces the
average design time t of a single component by a factor of approximately 3.
Fuzzy DSE, without trading off the design quality, reduces the number of
specializations (m) needed to be considered for further synthesis to MaxS,
which is only half of the total number of specializations. Intelligent
learning drastically reduces the total number of nodes (n) synthesized to
approximately n/ 2 or even n/3 since reusing an A-node means the whole
subtree rooted at the A-node need not be synthesized again. Each of the
four techniques helps to reduce some part of the total design time. The
upper bound of the total design time is now TICOS~n! # tOO2CS~MaxS!nL,
where tOO2CS is the average design time of a single component when the
system is designed using OO and concurrent synthesis, MaxS is the
number of specializations considered for fuzzy DSE (Equation (7)), and nL

is the total number of nodes needed to be synthesized when learning is
used. TICOS~n! is significantly smaller then T~n! even for a small system,
with a small n.

The excellent blend or integration of object-oriented techniques, concur-
rent synthesis, fuzzy logic, and machine learning has resulted in an
efficient and intelligent synthesis approach to multiprocessor system de-
sign. Future research directions in this field of multiprocessor system
design automation will involve the exploration of the possibility of a
hardware-software cosynthesis approach and the formulation of a formal
theoretical base for system-level synthesis.

References

DE ANTONELLIS, V. AND PERNICI, B. 1995. Reusing specifications through refinement
levels. Data Knowl. Eng. 15, 2 (Apr.), 109–133.

BIRMINGHAM, W. P., GUPTA, A. P., AND SIEWIOREK, D. P. 1989. The MICON system for
computer design. In Proceedings of the 26th ACM/IEEE Conference on Design Automation
(DAC ’89, Las Vegas, NV, June 25–29, 1989). ACM Press, New York, NY, 135–140.

CHIANG, M.-C. AND SOHI, G. S. 1992. Evaluating design choices for shared bus multiprocessors
in a throughput-oriented environment. IEEE Trans. Comput. 41, 3 (Mar.), 297–317.

CHUNG, M. J. AND KIM, S. 1990. An object-oriented VHDL design environment. In
Proceedings of the ACM/IEEE Conference on Design Automation (DAC ’90, Orlando, FL,
June 24-28). ACM Press, New York, NY, 431–436.

DUTTA, R., ROY, J., AND VEMURI, R. 1992. Distributed design-space exploration for high-level
synthesis systems. In Proceedings of the 29th ACM/IEEE Conference on Design Automa-
tion (DAC ’92, Anaheim, CA, June 8-12). IEEE Computer Society Press, Los Alamitos, CA,
644–650.

GADIENT, A. J. AND THOMAS, D. E. 1993. A dynamic approach to controlling high-level
synthesis CAD tools. IEEE Trans. Very Large Scale Integr. Syst. 1, 3 (Sept.), 328–341.

GUPTA, A. P., BIRMINGHAM, W. P., AND SIEWIOREK, D. P. 1993. Automating the design of
computer systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits 12, 4 (Apr.), 473–487.

134 • P.-A. Hsiung et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

HSIUNG, P.-A. 1996. System level synthesis for parallel computers. Ph.D.
Dissertation. Graduate Institute of Electrical Engineering, National Taiwan University,
Taipei, Taiwan.

HSIUNG, P.-A., CHEN S.-J., , HU, T.-C., AND WANG, S.-C. 1996. PSM: An object-oriented
synthesis approach to multiprocessor system design. IEEE Trans. Very Large Scale Integr.
Syst. 4, 1 (Mar.), 83–97.

HSIUNG, P.-A., LEE, T.-Y., AND CHEN, S.-J. 1997. MOBnet: An extended Petri net model for the
concurrent object-oriented system-level synthesis of multiprocessor systems. IEICE Trans.
Inf. Syst. E80-D, 2 (Feb.), 232–242.

KANG, E. Q., LIN, R.-B., AND SHRAGOWITZ, E. 1994. Fuzzy logic approach to VLSI
placement. IEEE Trans. Very Large Scale Integr. Syst. 2, 4 (Dec.), 489–501.

KODRATOFF, Y. 1988. Introduction to Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

KUMAR, S., AYLOR, J. H., JOHNSON, B. W., AND WULF, WM. A. 1994. Object-oriented techniques
in hardware design. Computer 27, 6 (June), 64–70.

LEE, Y. K. AND PARK, S. J. 1993. OPNets: an object-oriented high-level Petri net model for
real-time system modeling. J. Syst. Softw. 20, 1 (Jan.), 69–86.

LIN, R.-B. AND SHRAGOWITZ, E. 1992. Fuzzy logic approach to placement problem. In
Proceedings of the 29th ACM/IEEE Conference on Design Automation (DAC ’92, Anaheim,
CA, June 8-12). IEEE Computer Society Press, Los Alamitos, CA, 153–158.

MABBS, S. A. AND FORWARD, K. E. 1994. Performance analysis of MR-1, a clustered
shared-memory multiprocessor. J. Parallel Distrib. Comput. 20, 2 (Feb.), 158–175.

MITCHELL, T. M., MAHADEVAN, S., AND STEINBERG, L. I. 1985. LEAP: A learning apprentice for
VLSI design. In Proceedings of the 9th Conference on IJCAI (IJCAI), 573–580.

REZAZ, M. AND GAU, J. 1990. Fuzzy set based initial placement for ic layouts. In Proceedings
of the European Conference on Design Automation, 655–659.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN, W. 1991. Object-Oriented
modeling and design. Prentice-Hall, Inc., Upper Saddle River, NJ.

SCIENTIFIC AND ENGINEERING SOFTWARE, INC, 1992. SES/Workbench User’s Manual Release
2.1.

SHAW, M., WULF, W., AND LONDON, R., Eds. 1981. Abstraction and Verification in Alphard:
Iteration and Generators. Springer-Verlag, New York, NY.

Received: February 1997; revised: April 1997; accepted: August 1997

ICOS: An Intelligent Concurrent Object-Oriented Synthesis Methodology • 135

ACM Transactions on Design Automation of Electronic Systems, Vol. 3, No. 2, April 1998.

