FVP: A Formal Verification Platform for SoC’
Wen-Shiu Liao and Pao-Ann Hsiung

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan, ROC
E-mail: hpa@computer.org

Abstract

How to verify a System-on-a-Chip (SoC) has been an
important issue in an SoC design process due to its complexity.
The capacity of traditional verification techniques such as
simulation or emulation is no longer suitable for SoC. However,
formal verification that provides 100% coverage and
counterexarmples is expected to be a complementary solution.
Several researches on formally verifying an SoC have
demonstrated its feasibility and benefits. Nevertheless, there is
no utility for platform based formal verification of SoC as yet.
A Formal Verification Platform (FVP) is proposed to formally
verify an Intellectual Property (IP) by providing a formal
platform te create its environment. We will illustrate our
modeling experiences using the model checker SGM.

Introduction

With the ever-increasing capacity of integrating gates into
chips, System-on-a-Chip (ScC) design is getting more and
more popular. However, verification has been a serious
problem in the SoC design. The traditional verification
methods suffer from huge numbers of test vectors and are
becoming inefficient. Formal verification, in contrast to
traditional verification methods, provides more confidences by
exhaustively traversing whole system state spaces. When a
system fails to satisfy a property, formal verification produces a
counterexample that is very attractive to system designers.
Several efforts on formally verifving hardware or SoC (1), (2),
(3). (), (5, (6), (7), (8) indicate that verifying a large system
by using formal methods is feasible although formal
verification has the state space explosion problem.

Often, in a platform-based SoC design, a system designer
integrates some pre-designed and verified intellectual
properties (IP) with one or more user designed IP. In order to
efficiently reuse 1Ps in an SoC, an on-chip bus architecture such
as AMBA or CoreConnect is essential. Fig. 1 illustrates a
typical architecture of an SoC. The architecture is composed by
two buses: the processor local bus (PLB) and the on-chip
peripheral bus (OPB). Each bus has some IPs attached and a
bus arbiter to control the bus. The bus bridge enables data
communication between the buses. For formally verifying a
user-designed 1P, a designer needs to also model the SoC
environment in which the IP will be embedded. Thus, it is
desirable that we have a platform on which formal verification

“This work was supported by project grant NSC 91-2215-E-194-008 from
the National Science Council, Taiwan, ROC,

0-7803-8182-3/03/$17.00 ©2003 IEEE

21

can be done.

To complement a system designer’s effort in formally
verifying an IP, a Formal Verification Platform (FVP) is
proposed. Our goals are as follows:

Configurability: Through a system configurator in
FVP, the user can create an SoC environment that
interacts with a user designed 1P of any scale and at
different abstraction levels.

Flexibility and Extendibility: Due to the
configurability of FVP, the user can decide how much
detail can be verified and to customize the SoC
environment in the verification process.

Verification Re-Use: When an [P model is formally
verified, it can be re-used in the future by including it
inte the database of [P formal models in FVP.

Cycle Accuracy: FVP supports hardware behavior
modeling techniques such that cycle accuracy is
guaranteed in the SoC model and counterexamples can
be generated by FVP,

The article organization is as follows. Section 2 describes
our formal verification platform. Section 3 will discuss in detail
how to model the components on the platform. Section 4 gives
the final conclusions with future work.

Bus
Agbiter

Bus Buos Bus
Master or Magter or Fridge (}: C:D Peripheral
Slave Shave
o
|l
j E &
&
P
Bus il
Arbiter Processor Local Bus] 4
]
5
1A

Peripheral

Fig. 1. A typical SoC Architecture
Formal Verification Platform

Due to the inefficiency of traditional hardware verification
methods and the increase in design complexity, formal
verification is getting more and more attention in recent years.
As summarized below, there are some issues unresearched in
the current state-of-art on formally verifying an SoC. (a) Some
model checkers like SMV has only one implicit clock, a
designer has to make some tricks when modeling an SoC with
two bus frequencies or gated clocks (1). (b) Currently, there is
no utility for platform-based formal verification of SoC. {(¢)

The state space explosion issue is still a major bottleneck in
formal verification.

To handle above issues, we choose Stare Graph
Manipuiators (SGM) (9} as the verification kernel for our FVP.
SGM is a high-level compositional medel checker with
multiple state-space reduction techniques for the verification of
real time systems. In SGM, a system is described by a set of
communication extended timed automata (TA) (9) and a
property is specified by Timed Computation Tree Logic (TCTL)
(9). We can model hardware behavior with multiple clocks ora
gated clock in the timed automata model. In SGM, the global
system state-space is computed iteratively by composing one
timed automaton at a time. Thus, it is natural to treat an IP as a
timed automnaton in SGM.

Properties 1o be verified

SGM kernzl

Verification
resulis

Fig. 2. Block diagram of FVP

Fig. 2 illustrates the block diagram of FVP. FVP consists of
three components: SoC environment configurator, SoC system
integrator, and SGM kernel. The given order is the sequence in
which they are used. A user sets up an SoC environment using
the SoC environment configurator. After the user finishes
modeling a user-designed IP, the SoC system integrator is
involved to integrate the user-design IP model with all the
formal IP meodels that were specified through the SoC
environment configurator. As soon as the whole SoC model is
integrated, the user can formally verify the SoC using the SGM
kernel against some user-specified properties.

The detailed functionalities of the SoC Environment
Configurator, SoC System Integrator, and the SGM Kernel are
described as follows.

SoC Environment Configuraror: Through the SoC
environment configurator, an IP designer can setup all the IPs
that constitute an SoC environment for the designer’s own IP
model. This configured environment information is stored for
later use during the actual SoC integration phase. For example,
a user may select two buses: PLB and OPB, two PLB masters,
one bridge, two PLB slaves, and three OPB slaves as an SoC
environment for an image-processing 1P to be attached on the

22

CoreConnect Bus Architecture.

SoC System Integrator: According to the information saved
by SoC environment configurator, the SoC system integrator
composes an SoC consisting of the user-designed IP model and
all the user-specified formal IP models. Because the TA model
is a closed one, an external environment model is reguired, for
which a formal bench (a-kind-of testbench) is generated by the
SoC system integrator.

SGM Kernel: The formal model of each IP in SoC is
expressed as a Timed Automaton. The SGM kernel reads these
automata sequentially and merges them one by one to generate
the global system behavior of the SoC. The user can use TCTL
to specify the properties that they are interested. SGM then uses
symbolic model checking technology to verify if the set of TA
satisfies a given TCTL property. If the TA does not satisfy a
TCTL, a counterexample is produced by SGM. The user can
analyze the counterexample to locate the problem.

Reconfigure
the SoC
envircnment

Configure the
SoC envi

Reconfigure
the Sol
cavirenment

Configuration Stage Not Passed

Configuration
Checking

Reference

Passed

Save

== =— — — Save coafiguration data

l

Canfiguration
data

|
|
|
|
1
|
|
|
S0C envi |
|
}
|
|
I
I

i Modify user Modify user
| design model | Mpdel user design with | design model
I imermction
Modeling and I
Integration Stage |
| Not passed
Ref
- - Progia i Lint checking
| ~
| Passed "N Reference
I ~
Reference | Generate whole formal 3
b o e e ! S0C mode] and formal e m— Formal
beach Reference L_Models
Modify
propertics Specify prapenties

to be verified

Verification Stage

Formal
Venfication

Apalyze
cuntcrexample;

Passed

Verification finished

Fig. 3. Verification flow of FVP

The verification flow of FVP is shown in Fig. 3. There are
three stages in the verification flow of FVP: configuration stage,
modeling and integration stage, and verification stage. In the
configuration stage, an FVP user begins by specifying his/her
SoC environment. After an SoC environment is specified, the
SoC environment configurator will check if there is any

conflict among the IPs in the assigned SoC. Before integrating
the SoC in the beginning of model and integrate stage, lint
checking is provided to avoid any syntax error in the
user-designed IP medel and to avoid any inappropriate
interactions of the user [P model with the formal models. If lint
checking fails because of syntax errors, the user must then
modify his/her model. The user may also re-configure the SoC
environment to correct any inappropriate use of the formal
models. After lint checking has passed, the SoC system
integrator will generate the final SoC models and a formal
bench according to the configuration data, existing formal
models, and the user design model. In the verification stage, the
user can start verifying the whole SoC meodel using the SGM
kernel. Either a wrong property specified in SGM, or a wrong
configuration, or some bugs in the user-designed IP model may
cause the forma! verifieation to fail in SGM. If verification fails,
the user must analyze counterexamples manually to decide how
to re-formulate properties, to re-configure the SoC environment,
or to modify the user-designed IP model.

Modeling Details

In configuring and integrating an SoC environment for the
formal verification of an IP in FVP, the timed automata model
which is closed one must be extended into an open model by
associating an interface with each automaton such as that in
timed modules (10), interface automata (11), and I/ automata
(12). Formal IP models in FVP can communicate with each
other through the interface that is provided by SGM. The
interface of SGM is composed of shared variables, and
synchronization labels. The shared wvariables represent
meaningful data in the global system. There are two types of
variables: register variables and clock variables. Register
variables provide numeric information in the global system and
clock variables provide timing information. The
synchronization labels model the synchronous behavior among
different TA, that is to say, two or more transitions must be
taken at the same time. When there exist two transitions that
share the same synchronization label in two different TA, SGM
will merge these two transitions into one transition in the
product state graph.

In the rest of this section, we illustrate how four
signal-related behavior are modeled in FVP using SGM,
namely, multi-rate clocks, gated clocks, wait-states and timeout
in an IBM CoreConnect bus arbiter, and a timed behavior of
signal.

Bus clock is the key issue in the formal modeling of IPs.
Many formal verification tools have limits in modeling
hardware system with multiple bus clocks or gated clock
because they only have one implicit clock, e.g. SMV (1). We
show how SGM can handle system models with multiple bus
clocks or a gated clock. Fig. 4 illustrates an example of
modeling two bus clocks. We use clock variables X and Y to
represent the progress of time in the two bus clocks, and
register variables CLK_4 and CLK_B to represent the signal
output of the two bus clocks. In the timed automata 4 and B, 40

23

(B0) and A7 (BI) represent the states of the bus clocks driven
low and high, respectively. The transitions from A0 (B0) to Al
(BI) represent the change of bus clock level from low to high,
which is the positive edge of the bus clock signal. Similarly, the
transitions from A7 (B1) to A0 (B0) represent the negative edge
of the bus clock. The different rates of multiple bus clocks in
SoC can be modeled by setting different values to the clock
variables X and Y on the transitions. For example, the rate of
clock CLK_B is twice that of clock CLK_4 in Fig. 4. The
initialization of bus clocks can be modeled by setting the initial
state of the automata, If transitions in some formal [P models
need to be triggered at the positive edge of CLK_A, the user can
synchronize these transitions with the clock transition from A0
to A7 in order to guarantee that these transitions will be
triggered at the same time.

CLK_A =0 CLK B =0
X:=0 Yi=0
Y=10 \
= h Y
x=5 x=s KB =0 Y Y=10
CLK_A =1 CLK_A =0 ' ! CLK B:=0
%= Xe=0 } Y =0
Bl
Timed Timed
Automaton A Automaton B

Fig. 4, Two bus clocks model

Fig. 5 is a gated clock model. Gated clock is a common
technique for low power design in hardware. Register variable
G is a control signal that enables/disables the clock. When G is
one the clock operates normally. When G becomes zero, the
timed automata will eventually stay in Low-power mode until
(¢ becomes one, which represents the gated condition of a
clock.

Fig. 5. Gated clock model

Fig. 6 illustrates transfer phase and termination phase in
non-address pipelining of an 1BM CoreConnect PLB (13} bus
arbiter. The PLB address cycle consists of three phases: request,
transfer, and termination. The termination conditions of
termination phase are either a bus slave asserts SI_addrAck, or
SI_rearbitrate, or a bus master asserts Mn_abort, or a bus
arbiter checking if the transaction has timed-out. We only
illustrate time-out and SI_addrAck of termination phase in Fig.

6. A PLB_PAValid signal will be asserted high when the
arbiter grants the bus to a master at the beginning of the transfer
phase. The maximum length of the transfer phase is controlled
by the slave’s SI_wait signal and by the PLB arbiter address
cycle time-out mechanism. The slave that a master wants to
access may assert SI_wait signal high to indicate that it is
unable to latch the address and all of transfer qualifiers at the
end of current cycles. If the SI_wait is asserted, the bus arbiter
will continue to drive PLB_PAValid as well as the address and
transfer qualifier signals until the slave asserts the SI_addrAck
signal. A register variable C counts the number of bus clock
cycles in Fig. 6. C will start counting as soon as the bus arbiter
grants the master’s request by asserting PLB_PAValid to high.
If the slave does not assert SI_wait and has not responded
within 15 bus clock cycles, then the arbiter will assert
PLB_mnAddrAck high to indicate time-out. Then the transfer
will be terminated at the 16™ bus clock cycle. If a slave
acknowledges the bus arbiter by asserting SI_addrAck, the
address cycle is terminated and C will be reset,

C=0
PLB_PAValid :=1
PLB_MnAddrAck :=0

Synchronize with PLB bus
clock positive edge
C=15and SI_wait=0
C:=C+l
PLB_PAValid =1
PLB_MnAddraAck =1

clock positive edge

C <14 and S1_wait =0
=C+l
PLB_PAValid ;=1

Synchronize with PLB bus clock

positive edge

SI_wait = 1 and SI_Addrack = 0

C=0

Synchronize with with PLB bus clock

positive edge

C =16 and PLB_MnAddrAck =1

PLB_PAValid =0

C:=0

Fig. 6. Transfer phase and termination phase in non-address pipelining of an
1BM CoreConnect PLB bus arbiter

Synchronize with with PLB bus
clock positive edge
SI_AddrAck =1
PLB_PAValid:=0
CcC=0

Synchronize with
with bus clock
positive edge
X=1

Synchronize with
with bus clock
positive edge
X=0
C=0¢

Synchronize with with
bus clock positive
edge

Synchronize with
with bus clock

. X=0&C=<2
positive edge C = CHl
C=2 T
C:=0

Fig. 7. Timed input signal behavior

Synchronize with PLB bus

24

To check if a signal X is asserted low for at least three clock
cycles such as a reset signal in most systems. We can model this
system behavior as in Fig. 7. If the system reaches state 83, then
the condition is satisfied.

Conclusion

A formal verification platform (FVP) is proposed for the
rapid prototyping and verification of a timed automata-based
SoC environment such that any user-designed and modeled IP
can be integrated into the environment and its behavior verified
against on-chip bus protocols such as AMBA, CoreConnect,
and Wishbone. Work on enhancing FVP is still undergoing.
Future directions include a more cycle-accurate model of the
components, transaction-based modeling and verification,
assertion-based formal bench development, and formal bus
wrapping technology.

References

I

2

3
O

(5)

()

Q)]

(8)

®

(10)

an

(12)

)

H. Choi, B. Yun, Y. Lee, and H. Roh, “Model checking of S3C2400X
industrial embedded SOC product,” Design Awtomation Conference, pp.
611 -616, 2001.

P. Chauhan, E. M. Clarke, Y. Lu, and D. Wang, “Verifying IP-core based
system-on-chip designs,” Proc. of the 12th IEEE International ASIC/SOC
Conference, pp. 27-31, 1999.

B. Wang and Z. Lin, “Formal verification of embedded SoC,” ASIC Proc.
of the 4th International Conference, pp. 769 —772, 2001.

A. Goel and W. R. Lee, “Formal verification of an IBM coreconnect
processor local bus arbiter core,” Design Automation Conference, pp.
196 -200. 2000.

K. Takayama, T. Satoh, T, Nakata, and F. Hirose, “An approach to verify
a large-scale system-on-a-chip using symbolic model checking ” Proc. af
the International Conference on Computer Design (1CCD), pp. 308-313,
1998.

P.-A. Hsiung, “Embedded sofiware verification in hardware-software
codesign,” Journal of Systems Architecture, Vol. 46, No. 13, pp.
1435-1450, Elsevier Science, December 2000.

P.-A. Hsiung, “Hardware-software timing coverification of concurrent
embedded reai-time systems,” JEE Proceedings — Computers and
Digital Technigues, Vol. 147, No. 2, pp. 81-90, March 2000,

P.-A. Hsiung and S.-Y. Cheng, “Automating formal modular verification
of asynchronous real-lime embedded systems,” Proc. of the 16th
International Conference on VLSI Design, IEEE CS Press, pp. 249-254,
Januvary 2003.

F. Wang and P.-A. Hsiung, “Efficient and user-friendly verification,”
IEEE Transactions on Computers, Vol. 531, No, 1, pp. 61-83, January
2002,

R. Alur and T.A. Henzinger, “Modularity for timed and hybrid systems,”
Proc. of the 9th International Conference on Concurrency Theory, LNCS
1243, pp. 74-88, 1997,

L. de Alfaro and T. A. Henzinger, “Interface automata,” Proc. of the 9th
Arnual ACM Symposium on Foundations of Software Engineering (FSE),
2001.

N. Lynch and M. Tuttle, “Hierarchical correctness proofs for distributed
algorithms,” Proc. of the 6th ACM Symposium on Principles of
Distributed Computing, pp. 137-151, 1987,

Processot Local Bus (32-bit),
http:/www-3.ibm.com/chipsiechlib/techlib.nsf/products/CoreConnect .
32-bit_Implementation.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

