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Abstract

Producing correct software is a premier goal for ap-
plication frameworks that are targeted at Embedded Real-
Time Systems because incorrect software are not only of no
use but might also cause severe system damage. It is shown
how formal verification can be elegantly, seamlessly, and
scalably integrated into a component-based object-oriented
application framework for embedded real-time systems.
Two issues in such a technology integration are addressed:
(1) the choice of a common system model, and (2) the inte-
gration of formal synthesis and model checking. Solutions
are provided, respectively, in the form of: (1) proposing a
new Formal Object-Oriented Model (FOOM), and (2) the
execution of model checkers within synthesis algorithms.
Technically, we propose a compositional sofitware verifi-
cation framework, in which model checking is employed,
with state-space reduction techniques adapted for embed-
ded real-time software. A separate Verifier component is
proposed for modular integration as illustrated by its imple-
mentation in the VERTAF application framework. An exam-
ple illustrates the success of our approach and the benefits
gained through integrating formal verification.

1 Introduction

According to recent statistical studies, software accounts
for as much as 80% of the functionalities in embedded real-
time systems such as home appliances, information appli-
ances, personal assistants, telecommunication gadgets, and
transportation facilities. Software is also much more com-
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plex than hardware due to its inherent flexibilities and the
infinite number of valuations possible for a variable. It
is often found that an on-market real-time embedded sys-
tem fails due to some simple software glitches, which could
have been avoided if the software was thoroughly verified.
All these facts show that verifying the correctness of soft-
ware is a demanding and important issue in the design phase
of an embedded real-time system.

To guarantee the correctness of embedded real-time soft-
ware, instead of a case-by-case verification, the work pre-
sented in this article takes a pioneer step in introducing
Sformal verification (FV) into a component-based object-
oriented application framework (COAF). A systematic in-
tegration of FV technology with COAF technology will be
our prime concern and our goal will be to make this integra-
tion not only seamless, but also scalable.

There are two issues to be addressed for the integration
of FV and COAF technologies.

e System Model: On one hand, COAF perceives a sys-
tem as a collection of interacting components or ob-
jects with possibly complex behaviors, while on the
other hand, FV observes a system as a set of concur-
rent real-time tasks with formal syntax and precise se-
mantics. If COAF and FV are to be integrated, which
model do we use or do we invent a new mode]?
Design Methodology v/s Verification Framework:
COAF generates software by going through a com-
plete design methodology, while FV analyzes soft-
ware by going through a verification framework.
How can the methodology and framework work to-
gether with mutual benefits and a common goal of
generating correct executable software?

We propose the following solutions to the above issues.

e Formal Object-Oriented Model (FOOM): A trade-
off between component-based object-oriented model



and formal model is proposed as a combination of
the two into a new Formal Object-Oriented Model
(FOOM), which stratifies granularity into a coarser,
user-apprehensible, object-based design abstraction
level and a finer, technology-operable, process-based
verification abstraction level. The execution seman-
tics of an object is defined by one or more processes.
This model will be described in details in Section 3.

e Formal Synthesis and Model Checking (FSMC): For-
mal methods have been applied to the synthesis
[1, 4, 14] as well as the verification [2, 7,9, 12, 13, 16]
of embedded real-time systems. Using the same for-
mal model such as Timed Automata [3] or Time Free-
Choice Petri Nets [14], model checking procedures
can be called from within synthesis algorithms. The
basic framework will be compositional verification
with modular packaging of verification techniques.
Further details will be given in Section 4.

The proposed solutions to COAF-FV technology in-
tegration issues are currently being implemented in a
component-based object-oriented application framework
called VERTAF [16]. VERTAF generates code for embed-
ded real-time systems using formal modeling and synthesis
techniques. A separate software component called Verifier
is being developed in VERTAF for encapsulating the pro-
posed solutions. _

This article is organized as follows. Section 2 will give
a brief account of some previous work on COAF,.FV, and
their integration. Section 3 will describe the Formal Object-
Oriented Model (FOOM), which can be used for both de-
sign and verification. Section 4 will discuss how the For-
mal Synthesis and Model Checking processes work hand-
in-hand for a common goal. Section 5 will illustrate the fea-
sibility and success of the proposed technology integration
framework through its implementation as a Verifier com-
ponent in the VERTAF application framework and through
some application examples. Section 6 will conclude the ar-
ticle with some research directions for future work.

2 Previous Work

Currently, there are very few component-based object-
oriented frameworks developed specifically to generate
code for embedded real-time systems. In the following, we
first summarize three of such frameworks.

Two recently proposed COAF are Object-Oriented Real-
Time System Framework (OORTSF) [20, 23, 24] and
SESAG [10]. OORTSF and SESAG are simple frameworks
that have been applied to avionics software development.
Some design patterns were proposed related to real-time
application design. Code can be automatically generated.
Some scheduling and real-time synchronization issues left

72

not handled such as asynchronous event handling, and pro-
tocol hooking. The flexibility of specifying real-time ob-
jects, the ease of using the frameworks, the benefits of ap-
plying them, and other issues related to OOAFs were not
described in the above two works. Another more recent
framework called VERTAF [16] is an enhanced version of
SESAG, incorporating software component technology, for-
mal verification technology, industry standards such as Uni-
Jied Modeling Language (UML) and Java.

As far as formal software synthesis is concerned, it was
mainly performed for communication protocols [22], plant
controllers [4], and real-time schedulers [1] because they
generally exhibited regular behaviors. Recently, there has
been some work on automatically generating code for em-
bedded systems [5, 21, 25]. Lin [21] proposed an algo-
rithm that generates a software program from a concurrent
process specification through an intermediate safe Petri-Net
representation by applying quasi-static scheduling. Sgroi et
al. [25] proposed a software synthesis method for a more
general Petri-Net framework, called Free-Choice Petri Nets
(FCPN). A necessary and sufficient condition was given
for a FCPN to be schedulable. Schedulability was first
tested for a FCPN and then a valid schedule generated by
decomposing a FCPN into a set of Conflict-Free compo-
nents. Code was finally generated from the valid schedule.
Balarin et al. [S] proposed a software synthesis procedure
for reactive embedded systems in the Codesign Finite State
Machine (CFSM) [6] framework with the POLIS hardware-
software codesign tool [6]. This work cannot be easily ex-
tended to other more general frameworks.

As far as formal software verification is concerned, Hsi-
ung [12] gave solutions to the questions of when, where,
and how software verification is to be performed for an
embedded real-time system. In answer to the when ques-
tion, the Schedule-Verify-Map method was proposed, which
states that verification should be performed after schedul-
ing. In answer to the where question, verification under sys-
tem concurrency, instead of under process concurrency, was
proposed, which is justified by the fact that system concur-
rency is generally much smaller than process concurrency.
In answer to the how question, symbolic model checking
was integrated with the other two solutions to provide a
complete solution to the verification of embedded real-time
software. Other work include the linear hybrid automata
(LHA) model based hardware-software timing coverifica-
tion techniques [11, 13], and the coverification strategy for
automatic mapping to LHA [7].

3 Formal Object-Oriented Model

As a compromise between the object-oriented model
used by engineers and the formal model used by scientists,
a Formal Object-Oriented Model (FOOM) is proposed for
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Figure 1. Autonomous Timed Object

introducing formal verification into an application frame-
work. Syntactically, FOOM consists of a uniform repre-
sentation called Autonomous Timed Object (ATO) for task
specification by a software designer. Semantically, FOOM
consists of a uniform representation called Autonomous
Timed Process (ATP) for modeling the behavior of all tasks,
which can be used for verification after transforming into
other formal models.

3.1 Autonomous Timed Object

Autonomous Timed Object (ATO) incorporates advanta-
geous features of two object models, namely Port-Based
Object (PBO) [26] and Time-triggered Message-triggered
Object (TMO) [19]. The basic structure of our newly pro-
posed ATO is illustrated in Figure 1. There are four types
of ports lcading to and from an ATO, namely configuration,
in, out, and resource ports. An ATO is initialized through
the configuration ports. Instantiation is required because
an ATO may be a generic class or a generic component.
For example, a protocol stack component specified as an
ATO may contain some parameters (counters, timers, ac-
cess rates, ...) which need to be assigned constant values
before the protocol stack is deployed for use. After instan-
tiation, an ATO may be configured either as a periodic or
an aperiodic task. For aperiodic task configuration, it may
be activated through resource ports that are connected to
sensors or through events implemented in shared memory.
For periodic task configuration, ATO is activated by a timer.
Upon activation, ATO reads data from in ports, executes
corresponding methods, computes results, and writes data
on out ports. ATO interface is suitable for modeling em-
bedded objects due to its generic format.

Within ATO, there are two types of methods, namely
Event-Triggered Methods (ETM) and Time-Triggered Meth-
ods (TTM). ETM are conventional object methods that ex-
ecute only when called by another object. ETM is used
for modeling aperiodic task execution, since aperiodic tasks
are also triggered by some in-coming event. TTM are ob-
ject methods that were created due to the requirement of
timely and predictable behavior from real-time systems.
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Execution of TTM does not require any in-coming event;
TTM merely starts execution upon reaching a pre-specified
time point. As far as inter-ATO interactions are concerned,
ETM is one way of interacting, and another way is through
global and local state variable tables as defined in the PBO
model. State variable tables have lesser overhead when im-
plemented in shared memory than message passing mecha-
nisms, hence are more appropriate for embedded systems.

3.2 Autonomous Timed Process

Corresponding to the ATO model, we next define its dy-
namic behavior using an Autonomous Timed Process (ATP)
model. Each instance of an ATO has one or more corre-
sponding ATP, which means there may be more than one
ATP associated with a generic ATO in a system under de-
sign. The number of ATPs associated with a generic ATO
usually depends on the number of use cases the ATO has.

Upon an ATO declaration, one or more new ATPs are
created, which are then configured into instantiated object
processes. A newly created process, being unaware of the
current system state, is updated through its in ports. This
updated state is a stable state in which a process resides un-
til it receives an interrupt. There are two types of interrupts
that an ATP can receive: event and timer. An event interrupt
indicates an aperiodic or sporadic task, and a corresponding
event-triggered method is executed. A timer interrupt in-
dicates a periodic task, and a corresponding time-triggered
method is executed. After each method execution, all re-
lated temporal constraints are checked for violation or sat-
isfaction. If a constraint is violated, then the ATP enters an
Error state. ATP is reset by an error handling routine and
then enters Updated state. A kill signal may be received
before or after method execution, terminating the process.

A standard uniform process model, in the form of ATP,
increases the predictability of an embedded real-time ap-
plication and also its ease of analysis and its verification
scalability. In contrast to the framework process defined for
PBO, ATP is not independent. When an ATP receives an
event, it knows which ATP is the generating source of the
event. All such events passed among ATPs are recorded in
an Event Table, such that a record consists of the source
ATP, the destination ATP, the event type, and the associated
variable values. The event table can also be represented as
a Call-Graph, which is a directed graph G = (V, E), where
nodes in V represent ATPs and arcs in E represent the call
relationships (event propagation) between two ATPs. This
graph is useful for schedulability test, resource allocation,
scheduling, and conflict resolution. Besides the event table,
another table called the Process Table records all the ATPs
in a system. A record in the process table consists of the
ATP index, the associated ATO methods, and the execution
time, period, deadline, type of priority (fixed or dynamic),



and resource requirements for each method.

4 Formal Synthesis and Model Checking

Formal synthesis is an analytic method by which a for-
mally modeled system is made to satisfy a given logic spec-
ification. For example, a soft embedded real-time system,
modeled by a set of Time Free-Choice Petri Nets (TFCPN),
is made to satisfy a system property specification given in
Timed Reachability Specification (TRS) logic [15].

Model checking is defined as an algorithmic procedure
by which a system can be formally and automatically ver-
ified to check if it satisfies a given logic specification. For
example, a concurrent real-time system modeled by a set of
Timed Automata can be model checked for satisfaction of a
Timed Computation Tree Logic (TCTL) specification [9].

Before going into the details of technology integration,
some definitions are required and are described as follows.
The sets of integers and non-negative real numbers are de-
noted by M and R >0, respectively.

A timed automaton (TA) is composed of various modes
interconnected by transitions. Variables are segregated into
categories of clock and discrete. Clock variables increment
at a uniform rate and can be reset on a transition, whereas
discrete variables change values only when assigned a new
value on a transition. A TA may remain in a particular
mode as long as the values of all its variables satisfy a mode
predicate, which is a conjunction of clock constraints and
boolean propositions.

Definition 1 : Mode Predicate
Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate n over C and D is
definedas: n:=false |z ~c|z—y~c|d~c|mAn]
—-n, where z,y € C, ~€ {<,<,=,>,>},ce N,d € D,
and 7, e are mode predicates. I
Let B(C, D) be the set of all mode predicates over C
and D.

Definition 2 : Timed Automaton

A Timed Automaton (TA) is a tuple A; = (M;,m?,C;, D;,
Xi» Bi, Ti, p;) such that: M; is a finite set of modes, m? €
M is the initial mode, C; is a set of clock variables, D;
is a set of discrete variables, x; : M; — B(C;, D;) is an
invariance function that labels each mode with a condition
true in that mode, E; C M; x M; is a set of transitions,
7; : E; » B(C;, D;) defines the transition triggering con-
ditions, and p; : E; — 2CiU(DixN) s an assignment func-
tion that maps each transition to a set of assignments such
as resetting some clock variables and setting some discrete
variables to specific integer values. I
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4.1 Technology Integration Framework
Our target problem is formulated as follows:

Definition 3 : COAF-FV Technology Integration
Given an embedded real-time system described in a
Component-Based Object-Oriented Application Frame-
work (COAF) using the Formal Object-Oriented Model
(FOOM) along with a set of temporal constraints, gener-
ated software code is to be formally verified to satisfy all
given constraints. I
As a solution to the above problem, we propose the fol-
lowing technology integration framework. Given an em-
bedded real-time system described using a set of ATOs
{Q1,Q2,...,Qn} and a set of constraints, the behav-
ior of each ATO @; is modeled using one or more ATP
{Pq, P2,...,Pi,;} and a TCTL specification ¢ (c.f. Defi-
nition 4) is generated from the set of constraints.

Definition 4 : Timed Computation Tree Logic Formula
A timed computation tree logic formula has the following
syntax: ¢ == n | 30¢' | IP'U~c0" | 7¢' | ¢' V ¢".
Here, 7 is a mode predicate in B(UL, C;, UL, D;), ¢, ¢”
are TCTL formulae, ~ € {<,<,=,>,>},and ¢ € N.
Jd0¢' means there exists a computation, from the current
state, along which ¢’ is always true. A¢'U ..¢"” means there
exists a computation, from the current state, along which ¢’
is true until ¢” becomes true, within the time constraint of
~ ¢. Traditional shorthands like 30, VO, VO, VU, A, and
— can all be defined as in [9]. 1

As detailed in Table 1, we propose a compositional inte-
gration framework, which provides an clegant interaction
between software components and verification manipula-
tors. Here, a verification manipulator is a modular packag-
ing of verification techniques such as state-space reduction
and concurrent process merging.

First, a TCTL specification formula ¢ is gener-
ated by Gen_TCTL() procedure in Step (1) of Ta-
ble 1. In Step (2), given a set of ATPs AT P_Set
{Pi1,Piz,. .., Piky, Paty ooy Pakas e oo Pty Pag, ).
Gen_TA() generates a set of timed automata AT A_Set =
{A11,A12,. .., Atk Aa1y o Aok ooy Aty - Ang 1
where A;; corresponds to P;;. In Step (3), ATA Set
is then scheduled using some scheduling algorithm
Sched_Alg by the procedure Schedule() into another
set of TA, STA Set = {Aj,,Als,..., Al A%,y
ASp- oy A%y, -, A% 1. Only after scheduling do we
start performing verification.  Within our framework,
Sched_Alg is taken as quasi-static scheduling [14, 25].
In Step (4), there is a while loop which iterates until the
set ST A_Set becomes a singleton (i.e., cardinality = 1),
which implies that the global state-space of the set has been
constructed. Within each iteration, MROF() in Step (5)




Table 1. Compositional Verification for COAF

Compositionally_Verify( AT P _Set, Constraint_Set)
ATP Set = {Py1,...,Pig;, Po1,...,Pni1, ..., Pak, };
Constraint_Set; // Set of constraints
{
¢ = Gen TCTL(Constraint_Set), 1
AT A_Set = Gen TA(ATP _Set); (¥
ST A Set = Schedule( AT A_Set, Sched_Alg); 3
while (|STA_Set| > 1) { (€3}
MROF(ST A Set); )
= FBRS(ST A_Set); )
Reduce(ST A_Set, 7, M
}
if(Model Check(ST A_Set, ¢)) return Verified; (8)
else return Constraints_Violated, 9)
}

merges two most-related TA from ST A_Set into one TA
by representing their concurrent behavior (see Section 4.2.
FBRS() in Step (6) searches for the best sequence 7 of re-
duction manipulators which reduces the current state-space
the most. In Step (7), the actual reduction of state-space is
performed. After the global state-space is constructed, it is
model-checked by procedure Model _Check() in Step (8).

Since the proposed technology integration framework is
compositional, the global state-space of a given set of TA
is constructed iteratively such that in each iteration two
TA are selected for merging into one TA, which represents
the state-space of their concurrent behavior. After merg-
ing in each iteration, the intermediate state-spaces are then
reduced using a sequence of reduction techniques. Thus,
there are two decisions which affect verification scalability,
namely merge sequence and reduction sequence

4.2 Merge Related Objects First

As solution for the first decision issue on merge se-
quence, we give details of the MROF() procedure in Step
(5) of Table 1. Selecting a different pair of TA for merging
in an iteration affects how large the intermediate state-space
(also a TA) can grow.

Suppose we are given a set of ATOs {Q1,Q2,...,@n}.
whose behaviors are represented by the set
of ATPs {Pll,Plg,...,Plkl,le,. ..,ng,‘,,. ..,Pnl,...,
P,k }, where the behavior of @Q; is represented by
{Pa,...,Pi;}. Let the set of TA that model the set
of ATPs be {A11,...,A1kyy--->An1,..., Ank, }. After
scheduling with some algorithm, let the scheduled set of
TA be {A};, A}y, ..., Al A3, ..., AS,, . AL,
Az }. We adopt a hierarchical merge strategy which in-
cludes both syntax-based and semantics-based methods as
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described in the following steps.

1. Same Family: This is a syntax-based method. Since
the ATPs that represent the behavior of the same
ATO are more related to each other than to the
ATPs of other ATOs, we first merge all the ATPs of
the same family (i.e., the same ATO). Notationally,
{4%,..., A}, } are merged into AP, Thus, after this
step, instead of 3, ., ,, ki TA, there are only n TA
now.

2. Near Relatives: This is a semantics-based method.
Degrees of proximity are calculated for each pair of
ATOs based on the number of shared discrete vari-
ables, clock variables, synchronization labels, and the
number of communication channels. Higher the num-
ber of shared variables and communication channels,
higher is the proximity degree. The pair with the
highest proximity is said to be near relatives and is
merged first. Notationally, the following proximity
function is defined for each pair of TA:

w(Ai, A;) = Num Shared_Variables(A4;, 4;)+
Num_Channels(A;, A;)
m
After the first step of merging same family TA,
AT and A™ are merged first if w(AT', ATY)
max; <i<j<n{m (AT, A7)}

4.3 Find Best Reduction Sequence

A reduction technique is a procedure, which takes as in-
put a state-space and reduces its size in terms of the number
of modes and transitions. A state-space can be represented
by a TA and a reduction technique can be implemented as
a modularly packaged manipulator. We consider the fol-
lowing manipulators, which were implemented in the State-
Graph Manipulators (SGM) tool [17, 18, 28, 27]). SGM
is a comprehensive, high-level, real-time system verifica-
tion tool. We briefly describe how the manipulators may be
used in our technology integration framework. Details on
each manipulator can be found in [17, 18, 28]. Experimen-
tal results will be given in Section 5.

We only consider four reduction manipulators for our
experiments. (1) Symmetry reduction is very useful for
our framework because our underlying FOOM is symmet-
ric. (2) Clock shielding is useful because our target sys-
tems consists of concurrent, real-time software components
with several clocks. (3) Read-Write reduction is useful be-
cause besides time-triggered methods, an ATO also has one
or more event-triggered methods, which depend on some
communication variables or channels. (4) Internal tran-
sition bypass is a useful reduction manipulator due to the
composition nature of our framework.

The following is how we obtained a héuristically optimal
reduction sequence for our framework.
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(ATO)

o If there is no clock variable, skip the shield clock re-
duction, If there is no discrete variable, skip the read-
write reduction technique.

o Always perform symmetry reduction after read-write
reduction because the information obtained from
read-write reduction is useful for symmetry reduc-
tion.

o Perform internal transition bypass after read-write re-
duction and clock shielding because the information
obtained by the other two techniques are useful for
deciding if a transition is internal.

e Permute the reduction sequence by deciding when to
perform symmetry reduction (after read-write).

e Generate the best sequence from the above experi-
ments and heuristics.

We have compared the above heuristic method of obtain-
ing the best reduction sequence with the theoretical method
from [28]. The results are almost the same when the targets
are fixed as embedded real-time systems in a framework.

S Application Example

Autonomous Intelligent Cruise Controller (AICC) sys-
tem application [8] had been developed and installed in a
Saab automobile by Hansson et al. The AICC system can
receive information from road signs and adapt the speed of
the vehicle to automatically follow speed limits. Also, with
a vehicle in front and cruising at lower speed, the AICC
adapts the speed and maintains safe distance. The AICC can
also receive information from the roadside (e.g. from traffic
lights) to calculate a speed profile which will reduce emis-
sion by avoiding stop and go at traffic lights. The system
architecture consisting of both hardware (HW) and soft-
ware (SW) is as shown in Fig. 2. The software development
methodology used in [8] is based on sets of interconnected
so-called software circuits (SC). Each SC has a set of input
connectors where data are received and a set of output con-
nectors where data are produced. We model the software
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Figure 3. AICC Example: Call-Graph (ATP)

Table 2. AICC Example: Process Table

[# [ ATP [ ATO [ P [T ] D]
1 Traffic Light SRC 200 10 | 400
2 Speed Limit SRC 200 | 10 | 400
3 Proc Vehicle Est ICCReg 100 8 | 100
4 Speed Sensor ICCReg 100 5 | 100
5 Distance Ctrl ICCReg 100 | 15 | 100
6 | Green Wave Ctrl ICCReg 100 | 15 | 100
7 Speed Limit Ctrl ICCReg 100 15 | 100
8 | Coordination Final Control’ | 50 [ 20 | 50
9 Cruise Switches Supervisor 100 | 15 | 100
10 | Main Control Supervisor 100 | 20 | 100
11 | Cruise Info Supervisor 100 | 20 | 100
12 | Speed Actuator EST 50 5 50

SRC: Short Range Communication, ICCReg: ICC Regulator, EST:
Electronic Servo Throttle, * All times in milliseconds, P period, T'
execution time, D deadline, t Implemented in hardware.

circuits in [8] as autonomous timed objects in FOOM.

As shown in Fig. 3, there are five ATOs specified by
the designer of AICC for implementing a BASEMENT sys-
tem, namely Short Range Communication (SRC), Intel-
ligent Cruise Controller (ICC) Regulator, Final Control,
Supervisor, and Electronic Servo Throttle (EST). BASE-
MENT is a vehicle’s internal real-time architecture devel-
oped in the Vehicle Internal Architecture project [8], within
the Swedish Road Transport Informatics Programme. As
observed in Fig. 3. each ATO may map to on¢ or more ATP.
Call-Graph and Process Table for AICC are shown in Fig. 3
and Table 2, respectively. There are 12 functions performed
in 5 objects, out of which 11 functions are implemented in
software. Thus, there are 11 ATPs in this system.

The 11 ATPs were scheduled by Scheduler component of
VERTAF and transformed into 11 TA by the Verifier com-
ponent of VERTAF based on the ATO description (Fig. 2),
Call-Graph (Fig. 3), and Process Table (Table 2).

Based on the characteristics of ATP models in the AICC
example, TA models are generated for each ATP. The
proposed approaches to increasing verification scalabil-



ity through different merge sequences and reduction se-
quences, as given in Section 4, were applied to the set of
TA modeling the ATPs of AICC example. Table 3 gives
results, which corroborate our claims.

Our experiments were performed on a Sun UltraSPARC-
11450 MHz machine with a single processor and 1 GB phys-
ical memory. We experimented with several different ver-
sions of the set of TA models. With respect to the number
of TA, a full version consists of 11 TA, while a simplified
version consists of 6 TA. Simplification was performed by
removing some of the sensor tasks such as Speed Limit Info.
System model consistency was preserved after the simplifi-
cation by ensuring that the removed local execution paths do
not affect any global verification results. Two types of com-
munication models were considered: shared memory (SM)
and message passing (MP). In the shared memory model,
shared variables were used as primitives for data/control
transfer. In the message passing model, send-receive events
were used as primitives.

From Table 3, we make the following observations.

e The full version of 11 TA (Rows 1 and 2) required

more CPU time and memory space compared to the

~ simplified version of 6 TA (Rows 3—17). This fits our

knowledge of larger state-spaces for highly concur-
rent systems.

e Message passing required more time and memory
compared to shared memory (compare rows 3 with
6). This is because message passing uses events and
broadcasting is expensive with event-based commu-
nication, while shared memory uses variables and
broadcasting is automatic through concurrent mem-
ory reads.

e Fitting with our intuition, application of reduction
techniques resulted in smaller state-spaces and lesser
time and memory use (compare rows 3 with 5 and 6
with 7).

e mg, is a sequential merge according to the TA in-
dices and mgs is a near-relatives merge as defined by
Equation 1. Comparing rows 3 and 4, the second se-
quence gives a better result in terms of shorter CPU
time and memory space utilizations compared to the
first sequence. This corroborates our claims in Sec-
tion 4.2,

o Comparing rows 7 to 17, the reduction sequence
(mg1, rw, sm, sc, bit) in row 14 gives the best results
in terms of the smallest state-space size (i.e., number
of modes and transitions). The CPU time and mem-
ory space usage are not the least (compare with row
10), because smaller state-spaces are sometimes ob-
tained by spending a little extra time and space.

o The first case of 11 TA (Row 1) and without reduction
could not execute to completion, which gives a gen-
eral idea of how extremely large sized is the global
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system state-space.

All the above observations illustrate and corroborate
our proposed techniques as described in Section 4. Thus,
through this example we have shown how formal verifi-
cation can be integrated into a complex component-based
object-oriented application framework and applied to a real-
world industrial example.

6 Conclusion

Using the proposed framework for technology inte-
gration of Component-based Object-oriented Application
Framework (COAF) and Formal Verification (FV), a soft-
ware engineer can be guaranteed a verified correct code for
his/her application. Issues related to such a technology inte-
gration include deciding on a common system model and in-
tegrating formal synthesis and verification algorithms. So-
Iutions were proposed in this work for each of the above
issues, which include the proposal of a Formal Object-
Oriented Model (FOOM) for system modeling and the com-
positional framework for technology integration. A soft-
ware component called Verifier was implemented in the
VERTAF application framework for formal verification of
generated software. A real-world industrial example on
cruise controller was given to illustrate the feasibility and
success of our approach for integrating formal verification
into an application framework. Future research directions
related to this work include developing an API for users to
implement his or her own reduction and verification tech-
niques and exploring new reduction techniques based on
design patterns.
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