
A Java-Based Distributed System Framework for
Real-Time Development

Jih-Ming Fu, Win-Bin See, Pao-Ann Hsiung*, Jen-Ming Chao, and Sao-Jie Chen

Department of Electrical Engineering, National Taiwan University, Taipei, TAIWAN, R.O.C.
*Institute of Information Science, Academia Sinica, Taipei, TAIWAN, R.O.C.

Abstract

In recent years, people are trying to make consumer
electronics more powerful and have started to embed chips in
these products to increase intelligence. Therefore, there should
be a powerful application program to control the consumer
electronics. For the above reasons, a distributed real-time
framework and development environment is proposed, which
can be used to produce distributed real-time applications for
easily controlling electronics distributed around the world.
Our framework consists of three modules: Standalone System,
Control Client, and Host Agent. Each standalone system can
be controlled by a control client and the host agents act as
bridges connecting the standalone systems. Compared to
conventional object-oriented application frameworks, our
environment is not only modeled in UML, but also
network-based, completely written in Java and hence highly
portable, remotely controllable, and able to produce
customized graphical user-interfaces for applications.
Applications developed using the environment show its
feasibility as a useful development aid.

Keywords: real-time system, distributed real-time framework,
Java, object-oriented application framework, network remote
control

1. Introduction

Complex systems, such as aircraft systems, require
several powerful application programs to control them. The
reason is that every calculation in an aircraft should be in time.
Thus, we must design applications having a real-time kernel
that can handle multi-task switching in time. This kind of
application is called a real-time system.

In the 1980’s, we did not have many electronic products.
But now, every family has at least one electronic facility,
namely a telephone set. In the process of improving human
material life, lots of consumer electronic products have been
and are being made for convenience. For example, every
family now has at least a television set, a refrigerator, a
washing-machine, and may be a car. In recent years, people
are trying to make consumer electronics more powerful and
have started to embed chips for increasing intelligence in these

products. This results in the need for a powerful application
program to control these consumer electronics. This
application is usually an embedded system, and most
embedded systems are real-time systems.

Object-oriented technology has been used in the
development of real-time systems for quite some time.
Research literature has shown that the concept of objects in
real-time systems is useful. Object-oriented real-time (OORT)
system models such MO2 [1], evaluation taxonomy such as in
[2], object-oriented real-time language design [3, 4],
concurrency exploitation in OORT systems using
metrics-driven approach [5], checking time constraints [6],
and verification of function and performance for OORT
systems [7] are some of the recent work on applying
object-oriented technology to real-time system design.
Although object-oriented technology has been applied to the
design of real-time systems in several proposed work, but
there has been little work on the development of an
object-oriented application framework for real-time system
application design, except for Object-Oriented Real-Time
System Framework (OORTSF) [8], Real-Time Framework
(RTFrame) [9], and SESAG [10].

Similar to OOAFs’ design principles, we develop our
distributed real-time framework using UML models and the
Java programming language. Our framework has three parts:
Standalone System (SS), Client Control (CC), and Host Agent
(HA). Each of the three parts contain several layers: from user
to physical network. Previous works mentioned above have
only described how their OOAFs work and their overall
architecture. In contrast, we give details of implementation in
Java, which is very useful for system engineers. Our
framework mainly differs from previous work in that we
propose a method for controlling and connecting distributed
standalone systems that otherwise are independent. Our
framework has other features also not found in previous
OOAFs, such as network connectivity, remote control,
graphical user interface customization, and high portability
due to the use of Java.

The rest of this paper is organized as follows. Section 2
introduces some background for the whole implementation,
such as concepts of real-time system and distributed
environment. Section 3 describes the architecture of our

system, where we use UML to model our system structure.
Section 4 details the system implementation. Section 5
presents an example on our framework environment. We show
the ease of using our framework and the emulation
environment to communicate between any two standalone
systems. Section 6 gives a final conclusion and discusses some
future work.

2. Background

2.1 Real-Time System

Typically, a real-time system consists of a controlling
system and a controlled system. For example, in an automated
factory the controlled system is the factory floor with its
robots, assembling stations, and the assembled parts. The
controlling system is the computer and human interfaces that
manage and coordinate the activities on the factory floor. Thus,
the controlled system can be viewed as the environment with
which the computer interacts. The activities of controlling
systems may cause a disaster if they are not consistent with the
actual state of the environment. Hence, periodic monitoring of
the environment is necessary. Because of the impact of the
controlling systems’ activities, the timing correctness
requirement is important .

Real-time systems span many application areas. In
addition to automated factories, applications can be found in
avionics, undersea exploration, process control, robot and
vision systems, as well as military application such as
command and control. The complexity of real-time systems
also spans the gamut from very simple control of laboratory
experiments for process control applications, to very
complicated projects such as the space station. In these
systems, we call the activity a real -time task.

A real-time system is generally specified as a collection
of tasks. The tasks are usually independent and periodic.
Execution time, period, deadline, type of priority, and resource
requirements are specified for each task. Hard real-time
systems do not allow the violation of any timing constraint,
that is, no task can violate its deadline. Soft real-time system
strive to minimize deadline violations. To statically guarantee
satisfaction of all timing constraints, the tasks must be
scheduled using priority-based scheduling algorithms such as
rate-monotonic (RM) [11], earliest-deadline first (EDF) [12],
mixed-priority (MP) [12], pin-wheel, etc. or using time-based
scheduling algorithms. Dynamic monitoring of timing
constraints in distributed real-time systems can be achieved by
taking into account the drift among processor clocks [13]. We
will be implementing Deadline-Monotonic Scheduling
Algorithm (DMSA) [14], Sporadic Server [15], and an
algorithm developed by the authors in [16].

2.2 Distributed Environment

With the advance of electronics , a uni-processor
computer may have its upper limit in performance. Thus,
people have started to design architectures for multiprocessor
computing. Since the technique of designing multiple
processors in one computer is difficult, the distributed system,
where nodes in a network can communicate with each other,

becomes more important in recent years. But in a distributed
real-time system, communications have to be re-designed for
providing a better service constrained by deadlines. To realize
this kind of real-time communication, we need high-speed
networks, an integration of low-level protocols with the
operation system kernel, I/O modules, and application
modules. Researchers are proposing various local area
network architectures for efficient communication in
distributed real-time systems. There has also been significant
work in developing reliable atomic broadcasts with varying
semantics and performance characteristics. For example, some
broadcast protocols support FIFO semantics, others a causal
ordering, and yet others are tailored to determine group
membership.

Besides, clock synchronization is also a problem in a
distributed real-time system. Each processor in a node may
maintain its own clock. Even if these clocks are initialized
with the same time, since physical clocks drift due to the
change in physical conditions like temperature, sooner or later,
individual clocks will indicate different times. There are two
types of clock synchronization problems. One is external
synchronization, wherein each clock in a system must be
synchronized with the real-world clock. The other problem is
internal synchronization, which relates synchronization
among the multiple clocks within a system so as to keep the
relative deviation between individual clock values small.

3. System Architecture

When programmers start to design an embedded system,
they should consider everything from the hardware level to the
application level. Besides, they may use an assembly language
to design the whole system, which is time consuming and hard
to understand for non-engineers and even engineers. Thus, we
want to use the Object-Oriented (OO) method to model and
implement our system.

Our system consists of three modules: (1) Standalone
System, (2) Control Client, and (3) Host Agent. In this section,
we present the architecture of each module. But first, the
whole system architecture is shown in Figure 1. Since these
three modules are connected by a network, each of the
modules must have a common Network Layer.

Figure 1. System architecture of the distributed
real -time framework

3.1 Standalone System (SS)

The SS is a multitasking real-time system, which can be

used to handle sensor, output device, and network
communication. A controller can be downloaded from our
distributed real-time framework by using a simple web
browser and then customized for a specific SS. Therefore,
programmers need not care about the GUI (Graphical User
Interface) design and the real-time kernel. They just need to
think about the design of domain-specific tasks. This module
is divided into four layers as discussed in the following:

(1) Task layer

In this layer, four kinds of tasks are defined in our system.
First is a task which has a periodic deadline for execution. It is
called a periodic task. Second is a task which has no periodic
deadline, but is executed after some event occurs. It is called
an aperiodic task. Third is called an interrupt task which is
executed when some event happens from time to time. Like in
a dangerous situation, we must have the ability to close a
malfunctioning machine in time. Fourth and the last one is a
native code task. As our system is written in Java, there might
be some special situations that require some functions to be
written in some native code, like C or assembly language. We
use this kind of tasks to handle the case.

(2) Schedule layer

There is at least one scheduling algorithm on every
real-time system. Some of them may have two or more
algorithms. In this layer, we can enforce any scheduling
algorithm including the one written by a user on the system.
Every task will register its information in this layer. All these
information will be used to schedule tasks. We can change the
scheduling algorithm at any time for damage or some other
reasons. But after changing a scheduling algorithm, we must
re-schedule all tasks again.

(3) Kernel layer

This layer is the major layer of an SS module. It handles
clock ticks, shared memory, and context switches. Because our
system is real-time , clocks must be correct at all times. With
the correct clock tick, we can handle context switches in time.
Shared memory is used by all the tasks created on this system.
To prevent incorrect data modification, the multitasking kernel
handles mutual exclusion among concurrent tasks.

(4) Network layer

As mentioned, all of the three modules of our system
have their own network layers. But, the network layer on each
module does not have the same functionality. The network
layer in SS module has two major tasks to be done. One is
handling incoming commands, and the other one is handling
incoming and outgoing data.

3.2 Control Client (CC)

A CC module is used to control a distributed SS module.
We use one CC to control one SS. Thus, it should have a user
friendly GUI and a control layer between the GUI layer and
the network layer.

(1) GUI layer

In order to design a self-created customized GUI, we
have to construct some necessary information, like the kind of
components, the value of variables, and the range of the
variables, to pass to this layer. Using these information, we
will construct the correct GUI by building relations between
commands and GUI actions.

(2) Control layer

When an action is started, this layer will transform the
action into commands and then pass the commands to the
network layer for further distribution.

(3) Network layer

This layer is used to receive the information needed by
the GUI layer and to send command to the SS module.

3.3 Host Agent (HA)

Host Agent (HA) is the most important module in our
system. This HA module serves as a bridge between different
standalone systems and as a central controller for all the
individual standalone systems. Similar to the home theater
system, each SS can send a registry to the HA. In this way, the
controller GUI of each SS can be displayed on the HA. With
the HA, we can control any consumer product or design a
suitable schedule to automatically manage activities in our
own home or office. In this module, we should have a layer to
handle all the message passing and a layer to control the
message passing layer and other layers in the entire
environment.

(1) Graphic Show layer

This layer is used to show a comprehensive view of the
entire distributed real-time system. When a registration
information arrives, this layer will get the information and
pass them to the programmer for handling.

(2) Message Box layer

A message box is a queue related to an SS module when
this SS starts to register. If there are data transferred to a
message box, the box will wake up and transfer the data to the
related SS as soon as possible.

(3) Bridge layer

Every transferred data should be received by this layer.
Data to be pushed into the correct message box or to be sent to
the graphic show layer are controlled by this layer.

(4) Network layer

This layer handles data receiving and pushes them into a
receiving queue. Another function is to send a command to a
specific SS module.

4. System Implementation

In this section, we start to present the implementation of
our system. As described in Section 3, we divide our
presentation into three parts. One is the standalone system
(SS), one is the control client (CC), and the third one is the

host agent (HA). All of these three parts are implemented with
JDK version 1.2.

4.1 Standalone System (SS)

SS is an embedded real-time system. As shown in Figure
1, there are four layers in this module.

(1) Task Layer

In our system, we treat every task as a thread so as to
reduce the overhead of context switching. Thread switching
changes only its own stack and register. This is one of the
reasons that we implement our system with Java.

Our framework can be used by programmers to create
tasks easily. In the system, there is a class, named TaskJob,
which is an abstract class and has one abstract function,
TaskFun. By extending the class and implementing the
function, a task can be created. Specifically, we derive this
class into another concrete class, which can be extended by
programmers to handle all these things. Before implementing
a class, the following task information must be provided:
period time, execution time, deadline, task states, task type,
and a unique ID and so on.

All of the above information are used in all the layers of
our system. To manipulate these information, we have some
useful functions to set all the information of a task.

Having all the above descriptions and information, now
we can design a class, TaskNode, to include all the above
information in this layer and to reduce the work of creating
tasks.

In our system, there are four kinds of tasks: periodic task,
aperiodic task, interrupt task, and native code task . One may
assign the type when creating a task. The state diagram
presenting task creation and task function running situation is
shown in Figure 2.

Figure 2. State diagram of task running

Since our system is designed in Java, for programmers
who must take advantage of platform-specific functionalities
beyond the Java Virtual Machine, if our system can only use
the pure Java language, it may not be flexible. To solve this

problem, we implement an interface for TaskNode. Using this
Java Native Interface every method written in a native
language (such as C/C++ or assembly) can be loaded by a
Java program. This kind of native code task also has three
types of conditions inherited from the TaskNode class with the
NativeInterface .

(2) Schedule Layer

A real-time scheduling algorithm is implemented in this
layer. We have declared a base class, Schedule that is a cyclic
scheduling class. With this base class, tasks can be scheduled
cyclically. The order of the sequence refers to the task’s ID.
The task with the smallest ID will be executed first.

In Schedule class have a ReSchedule method. If
ReSchedule method perform with time slice in a proper period,
then the scheduling algorithm is static algorithm. The dynamic
scheduling can perform the ReSchedule at any time when it is
necessary to change the time slice. The difference of state
transitions between the static and the dynamic scheduling as
shown in Figure 3.

In our environment, we also extend this base class to
implement three scheduling algorithms. One is the
Deadline-Monotonic Scheduling Algorithm (DMSA) [14],
another one is the Sporadic Server [15], and the third one is an
algorithm designed by us [16]. DMSA is used for scheduling
periodic tasks and Sporadic Server is used for scheduling
aperiodic tasks. The third algorithm is designed to handle both
periodic tasks and aperiodic tasks, but this algorithm is not
described here due to page-limit.

Figure 3. Difference between static scheduling and dynamic
scheduling

(3) Kernel Layer

The main components of this kernel layer are clock ticks,
task switching, and shared memory. Using clock ticks, we
implement the kernel as a class, Kernel, which has a Runnable
interface class. The attributes and behavior of this class are
defined as follows:

(4) Network Layer

This layer is controlled by a Communicate object with
Register and RemoteControl interface. If the programmers

want to implement a distributed real-time system, they must
use the Register interface to provide information to the HA.
RemoteControl interface is just a remote method invocation
(RMI) object for our system to use.

4.2 Control Client (CC)

This module serves as the remote controller of electronic
products. There are three layers in this module. Following are
the details of implementation.

(1) GUI Layer

The design of a graphic user interface is not hard but
tedious and takes a long time in implementation. To reduce the
programmers’ job of designing a real-time system and to get
the implementation result, we should support a GUI layer in
the control client module. To achieve this goal, there must be a
GUInfo information passing between SS and CC.

(2) Control Layer

This layer is used to implement the relation between a
GUI layer and an SS module. The GUI layer must send a
correct command to SS through the network layer, and SS
must send back all the GUInfo information to this layer. This
CC layer will record a map of taskID and commandID and
then will call the GUI layer to create a GUI according to the
information received.

When we use a remote procedure call (RPC) to execute a
command, the CC module will be in the waiting state. After
the RPC returns, the CC module will continue to run.

(3) Network Layer

This layer relates to the network layer of the SS. Because
we use the remote method invocation (RMI) in Java to
implement our network communication, we can just use the
class, RemoteControl (extended from the Remote class), to call
the method that we want.

4.3 Host Agent (HA)

A distributed environment can be constructed using this
HA module, where an agent is dedicated to handle graphic
user interface, message passing, and central management.
Following are the details of implementation.

(1) Graphic Show Layer

The goal of this layer is to design a comprehensive
interface for the end-users to view in a distributed
environment. A programmer has only to extend the
graphicShow class and use methods in the graphicShow to get
the correct information from SS.

Since the object created from this class must be
executable, it is extended from a Thread class. In
implementation, a programmer must assign a period to this
object and implement the method of handleMsg . Then,
handleMsg will be activated during this period.

(2) Message Box Layer

This layer plays an important role in the HA module. An

end-user can control message mapping by using user interface,
then the message mapping information will be transferred to
the bridge layer. Every message, which is dispatched from the
bridge layer, will be directly passed to the related SS.

(3) Bridge Layer

Getting and dispatching messages are the main tasks of
this layer. We use a runnable thread to implement it. This
thread looks like a watchdog. When there is an incoming
message, it will get it from the input queue and dispatch to the
related queues according to the mapTable in the message box
layer. We have also implemented this bridge layer as a class,
Bridge.

(4) Network Layer

The network layer in this HA module is different from
the one in SS or CC. We are using RMI to implement our
network communication. The RMI is a kind of remote
procedure call (RPC). This network layer serves both as a
caller and a callee. This is because an SS registers information
by using RPC, and an HA can also use RPC to control the SS.
We have implemented this Bridge class with two interfaces:
Communicate and AgentInterface.

4.4 System Integration

A computer network is the media for our system
integration. The most important thing of a network
communication is the interactions among the CC, SS, and HA
modules. In this section, we will present all the interactions
between these three modules by using state diagram and
sequence diagram.

We assume that there are two individual Standalone
Systems (SS). Before the environment begins to run, the
programmer must know how these two individual systems
work. Then, the mapping table is programmed according to
the work flow of these two systems.

The control and exchange messages between different
real-time systems are passed concurrently. Usually, these two
kinds of actions run independently. But they may be activated
at the same instant by an SS. Also, individual real-time
systems may send messages at the same time.

5. Examples of Application Development

In this section, we will show how to use our framework
to design an automatic home control system. We suppose that
all the electronic products in a family form a real-time system
and are connected by the LAN in a house. With the network
and the supported individual processors, we can port our
framework to this environment easily.

In this example, assume that we have a phone, a cooler,
and an oven. We want to use the phone to activate the cooler
and the oven. The phone, cooler, and oven in our system are
standalone real-time systems. We still need a host agent to
complete our distributed environment. We have defined all the
tasks of the systems in Table 1.

Table 1 Definition of the whole environment

System Task name Task features
Listener (1) hit the number key and activate

connection
(2) ring the bell if there is a

connection
(3) automatically answer the phone

call

Phone

AutoAnswer (1) receive the number from the
remote phone

(2) change the numbers to
mapping command

(3) send a command to host agent
and then bypass to other
systems

SetTemp Set the temperature of the cooler
SetStartTime Set the start time of the cooler
SetStopTime Set the stop time of the cooler

cooler

Receiver Receive the command from the
phone

SetBurn Set the value of burn on the oven
SetTimer Set the timer for the oven

oven

Receiver Receive the command from the
phone

6. Conclusion

We have designed a package which can help real-time
system designers to develop their real-time applications easily.
There are three real-time scheduling algorithms for a
programmer to use in this package: Deadline-Monotonic
Scheduling Algorithm, Sporadic Server, and another algorithm
designed by ourselves. We use threads to implement the
lightweight tasks in a real-time system. In this way, we can
reduce the overhead of task switching. Besides, this package
also includes a remote controller (control client module) that
the programmer can quickly use with minimal efforts. This
kind of remote controller can be downloaded with a browser.
So, the user can control the system anywhere. We have also
integrated and implemented the package to support a
distributed environment, where we use a host agent as a bridge
to transfer messages between individual real-time systems.
This host agent can limit the network transfer time during
communicating between individual systems if all the systems
and the host agent are in the same LAN. Our environment is
designed in 100% pure JAVA and we use UML to model it.
This makes our environment more portable, more flexible, and
more understandable.

References

[1] A. Attoui and M. Schneider, “An object oriented model
for parallel and reactive systems,” in Proc. Real-Time
Systems Symposium, pp. 84-93, Dec. 1991.

[2] D. Hammer, L. Welch, and O. van Roosmalen, “A
taxonomy for distributed object-oriented real-time
systems,” ACM OOPS Messenger, Special ISSUE on
Object-Oriented Real-Time Systems, Vol. 7, pp. 78-85,

Jan. 1996.
[3] Y. Ishikawa, H. Tokuda, and C. W. Mercer,

“Object-oriented real-time language design: constructs
for timing constraints”, ACM SIGPLAN Notices,
ECOOP/OOPSLA’90 Proceedings, Vol. 25, pp.289-298,
Oct. 1990.

[4] B. Achauer, “Objects in real-time systems: Issues for
language implementers,” ACM OOPS Messenger, Vol. 7,
pp. 21-27, Jan. 1996.

[5] L. R. Welch, “A metrics-driven approach for utilizing
concurrency in object-oriented real-time systems,” ACM
OOPS Messenger, Vol. 7, pp. 70-77, Jan. 1996.

[6] M. Gergeleit, J. Kaiser, and H. Streich, “Checking
timing constraints in distributed object-oriented
programs,” ACM OOPS Messenger, Special Issue on
Object-Oriented Real-Time Systems, Vol. 7, pp. 51-58,
Jan. 1996.

[7] J. Browne, “Object-oriented development of real-time
systems: Verification of functionality and performance,”
ACM OOPS Messenger, Special Issue on
Object-Oriented Real-Time Systems, Vo l. 7, pp. 59-62,
Jan. 1996.

[8] W.-B. See and S.-J. Chen, “High-level reuse in the
design of an object-oriented real-time system
framework,” in Proc. International Computer
Symposium, pp. 363-370, Dec. 1996.

[9] P.-A. Hsiung, ”RTFrame: An object-oriented application
framework for real-time applications,” in Proc. 27th
International Conference On Technology of
Object-Oriented Languages and Systems, p. 138-147,
IEEE Computer Society Press, Sep. 1998.

[10] P.-A. Hsiung, "Object-oriented application framework
design for real-time systems,” in Proc. 4th International
Symposium on Real-Time and Media Systems
(RAMS'98), pp. 221-227, Taipei, Taiwan, Sep. 1998.

[11] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate
Monotonic Scheduling Algorithm: Exact Characte-
rization and Average Case Behavior,” in Proc. Real-Time
Systems Symposium, pp. 166-171, 1989.

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real Time Environment,”
Journal of ACM, Vol. 20, No. 1, pp. 46-61, 1973.

[13] F. Jahanian, R. Rajkumar, and S. C. Raju, “Runtime
monitoring of timing constraints in distributed real-time
systems,” Journal of Real-Time Systems, Vol. 7, No. 3,
pp. 247-271, 1994.

[14] J. Y. T. Leung and J. Whitehead, “On the complexity of
fixed-priority scheduling of periodic, real-time tasks,”
Performance Evaluation, Vol. 2, No 1, pp. 237-250,
1982.

[15] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task
scheduling for hard real-time systems,” Journal of
Real-Time Systems, Vol. 1, No. 1, pp. 27-60, 1989.

[16] Jen-Ming Chao, “Design and implementation of a
support environment for distributed real-time system,”
Master Thesis, Graduate Institute of Electrical
Engineering, National Taiwan University, Taipei, Taiwan,
ROC, Jun. 1999.

