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Abstract 

Object-oriented design has made possible the 
reuse of individual components during computer 
system synthesis. We demonstrate how the degree 
of reuse can be increased to a larger extent 
through a high level reuse of complete subsystems 
by the application of machine learning techniques 
and fuzzy logic in an object-oriented system-level 
synthesis environment. The fuzzy learning 
techniques were implemented in the ICOS 
methodology. It is shown by experiments that 
efficiency of synthesis improved by a factor of two 
to three after fuzzy learning was applied. 
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1. Introduction 

Object-oriented (OO) synthesis allows the reuse of 
individual design component [4], but this is not 
sufficient. Often a system designer may change a 
few design specifications and must resynthesize 
the whole system. Unnecessary repetitions of 
identical synthesis steps are inevitable if 
previously designed subsystems are not stored or 
learnt. Motivated by this fact, machine learning 
techniques are directly incorporated into the 
synthesis scheme, thus improving synthesis 
efficiency by reusing complete subsystems learnt 
from previous experiences. 

In object-oriented synthesis, design 
components are modeled as object classes and 
stored in a Class Hierarchy as illustrated in Fig. 1. 
The classes are classified into aggregate node 
(A-node), generalized node (G-node), and physical 
node (P-node) [3] depending on their respective 
relationships with their child classes, if any. 
Object-oriented synthesis is defined as a traversal 
of a Class Hierarchy starting from a root node 

(representing a desired computer system) 
downwards until the leaf-nodes (representing 
physical components). During traversal, synthesis 
related actions are taken corresponding to different 
object-oriented relationships. For example, 
iterator is used at an A-node, generator is used at a 
G-node, and instantiator is used at a P-node. 
Interested readers are advised to refer to 
Performance Synthesis Methodology (PSM) [4] 
and Intelligent Concurrent Object-Oriented 
Synthesis (ICOS) methodology [3] for further 
details. 

Machine learning is basically classified into 
Similarity Based Learning (SBL) and Explanation 
Based Learning (EBL) [7]. There are two kinds of 
SBLs: Empirical SBL and Rational SBL; and EBL 
includes Inductive Learning and Deductive 
Learning. Deductive Learning is further classified 
into Specification-Guided Learning (SGL) and 
Example-Guided Learning (EGL). An example of 
machine learning used in the synthesis of VLSI 
systems is the Learning Apprentice for VLSI 
Design (LEAP) [8]. Besides, machine learning has 
been rarely used in synthesis. Fuzzy logic [9] has 
been used in the VLSI design such as in VLSI 
placements [6], but not in system-level synthesis. 

Here, we mainly use SGL and EGL. In SGL, 
the synthesis system compares previous design 
specifications with the current user specification to 
derive an acceptable, previously learnt, partial 
system for current use. For EGL, we select from a 
set of example components the design that best 
meets the current user specification. Due to 
numerous specifications, comparisons among 
versions of component classes are fuzzified. This 
process is called Fuzzy Specification-Guided 
Learning, whereas EGL deals with physical parts, 
thus the comparison is more crisp; a 
“most-often-used” scheme is used. 

Section 2 describes how fuzzy learning is 
applied in object-oriented synthesis. Section 3 



illustrates benefits of fuzzy learning through an 
example. Section 4 concludes with future work. 

2. Learning in OO Synthesis 

Figure 2 illustrates fuzzy SGL and EGL, which are 
explained in the following two subsections. 

2.1. Fuzzy Specification-Guided Learning 
Consider a component class cls in a Class 
Hierarchy, having a set of k specifications, {s1, 
s2, ..., sk}. Suppose that n design results of cls, V = 
{cls1, cls2, ..., clsn}, obtained from previous design 
experiences have the following sets of 
specification values: Xi = {xij | xij is the value of sj 
corresponding to clsi,  j = 1, 2, ..., k}, i = 1, 2, ..., n. 
Assume that the component class, cls, is currently 
to be synthesized again for the (n+1)th time, with 
the specification values, Xn+1 = {x(n+1)j | x(n+1)j is the 
value of sj corresponding to clsi,  j = 1, 2, ..., k}. A 
fuzzy comparison between the values of a current 
user specification and those of each previous 
design is made using a fuzzy set (P), which 
represents the functional proximity of previous 
design results to the current one under design. The 
fuzzy membership function of P is defined as 
follows: 
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µP takes a negative value of –1 when the design 
result under consideration does not satisfy the 
specification of the component under design.  
Depending on the type of specification, the 
proximity of clsi, µP(clsi), is calculated as a 
sum over all the specification values, 
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where µP(xij), the partial proximity of clsi 
corresponding to specification sj, is defined in 
Table 1 for each type of specification, and wj is the 
weight associated with sj such that ∑
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The set of design results considered to be 
“similar” to the current one under design is called 
the similarity set, S = {clsi | µP(clsi) ≥ δ}, where δ is 
a threshold value known as the degree of 
similarity. The higher the value of δ, the greater is 
the degree of similarity required between design 
results. If S is not empty, the design result having 
maximum µP(clsi) is selected as the partial-design 
for reuse. 

2.2. Example-Guided Learning 
EGL uses a simple “most-often-used” scheme. 
Whenever a P-node is to be instantiated, the most 
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often used acceptable instance will be given a 
more favorable consideration. This scheme is 
implemented by associating a weight with each 
instance, which is increased whenever it is used for 
a system design. Instances with higher weights are 
the most often used and hence are considered more 
favorably during instance selection at a P-node. 

Consider all instances Ij that meet the 
specifications of the P-node, P0. The set of such 
instances is called the acceptable set ( AP0

) of that 
P-node. An instance with the maximum associated 
weight wI j

 is chosen from AP0
. If Ik is used in the 

current design, then its weight wIk
 is incremented. 

3. Learning Example 

The target system is an asynchronous MIMD 
hybrid (shared-memory and message-passing) 
architecture with globally shared memory, shared 
bus as System Interconnection, 1024 RISC 
processors distributed in 64 clusters 
interconnected with a multi-stage interconnection 
network, and the performance specifications are 
$700,000 maximum cost and 500 MFlops 
throughput. This example was synthesized using 
ICOS [3]. Only partial synthesis is shown in Fig. 3 
and described below to illustrate how learning 
saves design time and cost. 

3.1. Fuzzy SGL at Processing Subsystem 
Processing Subsystem (PSS) specifications are as 
follows: 16 RISC CPUs interconnected by a 
multistage interconnection network, local memory 
of size at least 1 MB and access time at most 8 ns, 
cache size at least 0.5 MB, and buffer size 
approximately 1 MB. Performance specifications 
include $10,000 maximum cost and 8MFlops 
minimum throughput. Other assumptions are: 8ns 
RAM cost=$30/MB, 7ns RAM cost=$35/MB, and 
6ns RAM cost=$38/MB. 

As shown in Table 2, using Equation (2) and 
Table 1, the proximity values of the designs are 
calculated as 0.3889, -0.3889, 0.6667, 0.6556, 
-0.5556, and -1.3333 with equal weights (wj = wi 
for all i ≠ j), respectively. The similarity set, S, is 
{A, C, D} with δ = 0.38. The best choice is design 
C. 

As shown in Table 3, learning helped save 
considerable design time and cost. Only one-third 
of the nodes need to be synthesized when learning 
is used and the design time decreased to nearly 
one-third of that required without learning. 

4. Conclusion 

Machine learning techniques have been 
successfully applied to object-oriented 

Table 1 Types of Specification and Proximity Calculations 

# Type of specification µ P(xij) 
1 Exact value or  

set enumeration 
-1 if x(n+1)j ∉ ENUM{xij}, 
 wj if x(n+1)j ∈ ENUM{xij} 

2 Minimum value -1 if xij < x(n+1)j; 
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system-level synthesis saving design time and cost 
and improving its efficiency by a factor of two to 
three as shown by experiments. Fuzzy logic helped 
solve the complexity of comparing design 
specifications. Future work will include 
application of our concepts to hardware-software 
codesign as in CMAPS [1]. Another future work is 
the incorporation of learning techniques into the 
formal model of synthesis called MOBnets [5], 
[2]. 
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Fig. 3 A Fuzzy Learning Example 

Table 2 Fuzzy Specification-Guided Learning at the PSS Component Class 

Designs CPU-Model LI CP PSS cost 
 
 

($) 

PSS 
Power 

 
 (MFlops)

LM 
RAM 
size  

(MB) 

LM 
Cache 

size 
(MB) 

LM  
access 
time 
(ns) 

CCU 
Buffer 

 
(MB) 

Proximity 
µP 

A SPARC MIN 16 10,000 9 1 0.5 8 2 0.3889
B MIPS-R44

00SC 
MIN 18 13,500 10 1 0.5 7 2 -0.3889

C Alpha-210
64 

MIN 16 9,500 9 1 0.6 7 2 0.6667

D PowerPC-6
01 

MIN 16 9,800 9 1.2 0.5 6 2 0.6556

E Intel 
Pentium 

MIN 18 10,000 8 1 0.5 6 2 -0.5556

F PA-7100 Mesh 18 13,000 10 1.2 0.5 6 2 -1.3333
Current {RISC} MIN 16+ 10,000- 8+ 1+ 0.5+ 8- 1± 1

LI = Local Interconnection, CP = Cluster Processors, LM = Local Memory, CCU= Cluster Control Unit  

Table 3 Saving of Design Time and Cost in Example 2 

 # of 
A-no
des 

# of 
G-no
des 

# of 
P-nod

es 

Total # 
of 

Nodes 

Synthesis 
Time (s)

learning 4 1 4 9 392
No 

learning 
9 4 15 28 1150


