
High Level Design Reuse through Fuzzy Learning

Pao-Ann Hsiung
Institute of Information Science, Academia Sinica Taipei 115, Taiwan,

R.O.C.

Abstract

Object-oriented design has made possible the
reuse of individual components during computer
system synthesis. We demonstrate how the degree
of reuse can be increased to a larger extent
through a high level reuse of complete subsystems
by the application of machine learning techniques
and fuzzy logic in an object-oriented system-level
synthesis environment. The fuzzy learning
techniques were implemented in the ICOS
methodology. It is shown by experiments that
efficiency of synthesis improved by a factor of two
to three after fuzzy learning was applied.

Keywords: design reuse, fuzzy logic, machine
learning, object-oriented system-level synthesis

1. Introduction

Object-oriented (OO) synthesis allows the reuse of
individual design component [4], but this is not
sufficient. Often a system designer may change a
few design specifications and must resynthesize
the whole system. Unnecessary repetitions of
identical synthesis steps are inevitable if
previously designed subsystems are not stored or
learnt. Motivated by this fact, machine learning
techniques are directly incorporated into the
synthesis scheme, thus improving synthesis
efficiency by reusing complete subsystems learnt
from previous experiences.

In object-oriented synthesis, design
components are modeled as object classes and
stored in a Class Hierarchy as illustrated in Fig. 1.
The classes are classified into aggregate node
(A-node), generalized node (G-node), and physical
node (P-node) [3] depending on their respective
relationships with their child classes, if any.
Object-oriented synthesis is defined as a traversal
of a Class Hierarchy starting from a root node

(representing a desired computer system)
downwards until the leaf-nodes (representing
physical components). During traversal, synthesis
related actions are taken corresponding to different
object-oriented relationships. For example,
iterator is used at an A-node, generator is used at a
G-node, and instantiator is used at a P-node.
Interested readers are advised to refer to
Performance Synthesis Methodology (PSM) [4]
and Intelligent Concurrent Object-Oriented
Synthesis (ICOS) methodology [3] for further
details.

Machine learning is basically classified into
Similarity Based Learning (SBL) and Explanation
Based Learning (EBL) [7]. There are two kinds of
SBLs: Empirical SBL and Rational SBL; and EBL
includes Inductive Learning and Deductive
Learning. Deductive Learning is further classified
into Specification-Guided Learning (SGL) and
Example-Guided Learning (EGL). An example of
machine learning used in the synthesis of VLSI
systems is the Learning Apprentice for VLSI
Design (LEAP) [8]. Besides, machine learning has
been rarely used in synthesis. Fuzzy logic [9] has
been used in the VLSI design such as in VLSI
placements [6], but not in system-level synthesis.

Here, we mainly use SGL and EGL. In SGL,
the synthesis system compares previous design
specifications with the current user specification to
derive an acceptable, previously learnt, partial
system for current use. For EGL, we select from a
set of example components the design that best
meets the current user specification. Due to
numerous specifications, comparisons among
versions of component classes are fuzzified. This
process is called Fuzzy Specification-Guided
Learning, whereas EGL deals with physical parts,
thus the comparison is more crisp; a
“most-often-used” scheme is used.

Section 2 describes how fuzzy learning is
applied in object-oriented synthesis. Section 3

illustrates benefits of fuzzy learning through an
example. Section 4 concludes with future work.

2. Learning in OO Synthesis

Figure 2 illustrates fuzzy SGL and EGL, which are
explained in the following two subsections.

2.1. Fuzzy Specification-Guided Learning
Consider a component class cls in a Class
Hierarchy, having a set of k specifications, {s1,
s2, ..., sk}. Suppose that n design results of cls, V =
{cls1, cls2, ..., clsn}, obtained from previous design
experiences have the following sets of
specification values: Xi = {xij | xij is the value of sj
corresponding to clsi, j = 1, 2, ..., k}, i = 1, 2, ..., n.
Assume that the component class, cls, is currently
to be synthesized again for the (n+1)th time, with
the specification values, Xn+1 = {x(n+1)j | x(n+1)j is the
value of sj corresponding to clsi, j = 1, 2, ..., k}. A
fuzzy comparison between the values of a current
user specification and those of each previous
design is made using a fuzzy set (P), which
represents the functional proximity of previous
design results to the current one under design. The
fuzzy membership function of P is defined as
follows:

−

→=
otherwise }1{

specs satisfies design if]1 ,0[
VPµ

µP takes a negative value of –1 when the design
result under consideration does not satisfy the
specification of the component under design.
Depending on the type of specification, the
proximity of clsi, µP(clsi), is calculated as a
sum over all the specification values,

µP(clsi) = ∑
=

k

j

ijP x
1

)(µ

where µP(xij), the partial proximity of clsi
corresponding to specification sj, is defined in
Table 1 for each type of specification, and wj is the
weight associated with sj such that ∑

=

=
k

j
jw

1

1 .

The set of design results considered to be
“similar” to the current one under design is called
the similarity set, S = {clsi | µP(clsi) ≥ δ}, where δ is
a threshold value known as the degree of
similarity. The higher the value of δ, the greater is
the degree of similarity required between design
results. If S is not empty, the design result having
maximum µP(clsi) is selected as the partial-design
for reuse.

2.2. Example-Guided Learning
EGL uses a simple “most-often-used” scheme.
Whenever a P-node is to be instantiated, the most

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Main
Memory

Cache
Memory

Primary

Secondary

Globallly
Shared

Distributed
Shared

Globally
Distributed

Distributed
Unshared

Shared
Bus MIN Cube Processor

Cluster

CCU LI SI InterfacePE

Scheduler I/O Intf. Buffer

Shared Bus MIN RISC CISCCube

Processor Local Memory

Cache RAM

I/O
Processor

I/O
Interface

CCU
Interface

A-node

G-node

P-node

Memory
Controller

Priority Time
Fig. 1 Class Hierarchy

Component
Learning

node_type

end

Increase associated weight
of chosen instance

Choose the instance with
max weight

Select Acceptable
Instances

P-node

EGL

Re-use “most similar”
learnt version

A-node

synthesized
before?

similar
specification?

Yes

Yes

No

No

Fuzzy SGL

end
Fig. 2 Component Learning in OO Synthesis

(1)

(2)

often used acceptable instance will be given a
more favorable consideration. This scheme is
implemented by associating a weight with each
instance, which is increased whenever it is used for
a system design. Instances with higher weights are
the most often used and hence are considered more
favorably during instance selection at a P-node.

Consider all instances Ij that meet the
specifications of the P-node, P0. The set of such
instances is called the acceptable set (AP0

) of that
P-node. An instance with the maximum associated
weight wI j

 is chosen from AP0
. If Ik is used in the

current design, then its weight wIk
 is incremented.

3. Learning Example

The target system is an asynchronous MIMD
hybrid (shared-memory and message-passing)
architecture with globally shared memory, shared
bus as System Interconnection, 1024 RISC
processors distributed in 64 clusters
interconnected with a multi-stage interconnection
network, and the performance specifications are
$700,000 maximum cost and 500 MFlops
throughput. This example was synthesized using
ICOS [3]. Only partial synthesis is shown in Fig. 3
and described below to illustrate how learning
saves design time and cost.

3.1. Fuzzy SGL at Processing Subsystem
Processing Subsystem (PSS) specifications are as
follows: 16 RISC CPUs interconnected by a
multistage interconnection network, local memory
of size at least 1 MB and access time at most 8 ns,
cache size at least 0.5 MB, and buffer size
approximately 1 MB. Performance specifications
include $10,000 maximum cost and 8MFlops
minimum throughput. Other assumptions are: 8ns
RAM cost=$30/MB, 7ns RAM cost=$35/MB, and
6ns RAM cost=$38/MB.

As shown in Table 2, using Equation (2) and
Table 1, the proximity values of the designs are
calculated as 0.3889, -0.3889, 0.6667, 0.6556,
-0.5556, and -1.3333 with equal weights (wj = wi
for all i ≠ j), respectively. The similarity set, S, is
{A, C, D} with δ = 0.38. The best choice is design
C.

As shown in Table 3, learning helped save
considerable design time and cost. Only one-third
of the nodes need to be synthesized when learning
is used and the design time decreased to nearly
one-third of that required without learning.

4. Conclusion

Machine learning techniques have been
successfully applied to object-oriented

Table 1 Types of Specification and Proximity Calculations

Type of specification µ P(xij)
1 Exact value or

set enumeration
-1 if x(n+1)j ∉ ENUM{xij},
 wj if x(n+1)j ∈ ENUM{xij}

2 Minimum value -1 if xij < x(n+1)j;

0 and if
1
Max)1(

)1(

)1(>≥
−

≤≤

−
+

+

+ Mxx
xx

ni

xx
w jnij

jnij

jnij
j ;

0 if M = 0, where jnij xx
ni

M)1(1
Max +−
≤≤

=

3 Maximum value -1 if xij > x(n+1)j;

0 and if
1
Max)1(

)1(

)1(>≥
−

≤≤

−
+

+

+ Mxx
xx

ni

xx
w jnij

jnij

jnij
j ;

0 if M = 0, where ijjn xx
ni

M −
≤≤

= +)1(1
Max

4 Approximate value ()
ijjn

ijjn

ijjn
j xx

xx
ni

xx
w ≠

−
≤≤

−
+

+

−
+

)1(
)1(

1
)1(if

1
Max

;

wj if x(n+1)j = xij

system-level synthesis saving design time and cost
and improving its efficiency by a factor of two to
three as shown by experiments. Fuzzy logic helped
solve the complexity of comparing design
specifications. Future work will include
application of our concepts to hardware-software
codesign as in CMAPS [1]. Another future work is
the incorporation of learning techniques into the
formal model of synthesis called MOBnets [5],
[2].

References

[1] P.-A. Hsiung, “CMAPS: A Cosynthesis
Methodology for Application-Oriented Parallel
Systems,” To appear in ACM Transactions on
Design Automation of Electronic Systems, Vol. 5,
No. 2, April 2000.

[2] P.-A. Hsiung, “Parallel Design Automation of
Computer Systems,” Proc. International
Conference on Parallel and Distributed
Processing Techniques and Applications

(PDPTA'98), Vol. 1, pp. 183-190, July 1998.
[3] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and S.-J.

Chen, “ICOS: An Intelligent Concurrent
Object-Oriented Synthesis Methodology for
Multiprocessor Systems,” ACM Transactions on
Design Automation of Electronic Systems, Vol. 3,
No. 2, pp. 109-135, April 1998.

[4] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-C.
Wang, “PSM: An object-oriented synthesis
approach to multiprocessor system design,” IEEE
Transactions on VLSI Systems, Vol. 4, No. 1, pp.
83-97, March 1996.

[5] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen,
“MOBnet: An Extended Petri Net Model for the
Distributed Object-oriented System-level
Synthesis of Multiprocessor Systems,” IEICE
Transactions on Information and Systems, Vol.
E80-D, No. 2, pp. 232-242, February 1997.

[6] E. Q. Kang, R.-B. Lin, and E. Shragowitz, “Fuzzy
logic approach to VLSI placement,” IEEE Trans.
on VLSI Systems, Vol. 2, No. 4, pp. 489-501,
December 1994.

[7] Y. Kodratoff, Introduction to Machine Learning,
Morgan-Kauffmann, 1988.

[8] T. M. Mitchell, S. Mahadevan, and L. I. Steinberg,
“LEAP: A learning apprentice for VLSI design,”
Proc. 9th IJCAI, Los Angeles, 1985, pp. 573-580.

[9] L. A. Zadeh, “Similarity relations and fuzzy
orderings,” Information Sciences, Vol. 3, pp.
177-200, 1971.

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Shared Bus

Processor I/O
Intf

Cluster
Control
Unit Intf

Fuzzy SGLFuzzy SGL

GCU

PSS

SI

MSS

Fig. 3 A Fuzzy Learning Example

Table 2 Fuzzy Specification-Guided Learning at the PSS Component Class

Designs CPU-Model LI CP PSS cost

($)

PSS
Power

 (MFlops)

LM
RAM
size

(MB)

LM
Cache

size
(MB)

LM
access
time
(ns)

CCU
Buffer

(MB)

Proximity
µP

A SPARC MIN 16 10,000 9 1 0.5 8 2 0.3889
B MIPS-R44

00SC
MIN 18 13,500 10 1 0.5 7 2 -0.3889

C Alpha-210
64

MIN 16 9,500 9 1 0.6 7 2 0.6667

D PowerPC-6
01

MIN 16 9,800 9 1.2 0.5 6 2 0.6556

E Intel
Pentium

MIN 18 10,000 8 1 0.5 6 2 -0.5556

F PA-7100 Mesh 18 13,000 10 1.2 0.5 6 2 -1.3333
Current {RISC} MIN 16+ 10,000- 8+ 1+ 0.5+ 8- 1± 1

LI = Local Interconnection, CP = Cluster Processors, LM = Local Memory, CCU= Cluster Control Unit

Table 3 Saving of Design Time and Cost in Example 2

 # of
A-no
des

of
G-no
des

of
P-nod

es

Total #
of

Nodes

Synthesis
Time (s)

learning 4 1 4 9 392
No

learning
9 4 15 28 1150

