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DESC: A Hardware-Software Codesign Methodology for

Distributed Embedded Systems

Trong-Yen LEE†, Regular Member, Pao-Ann HSIUNG††, and Sao-Jie CHEN†, Nonmembers

SUMMARY The hardware-software codesign of distributed
embedded systems is a more challenging task, because each phase
of codesign, such as copartitioning, cosynthesis, cosimulation,
and coverification must consider the physical restrictions im-
posed by the distributed characteristics of such systems. Dis-
tributed systems often contain several similar parts for which de-
sign reuse techniques can be applied. Object-oriented (OO) code-
sign approach, which allows physical restriction and object de-
sign reuse, is adopted in our newly proposed Distributed Embed-
ded System Codesign (DESC) methodology. DESC methodology
uses three types of models: Object Modeling Technique (OMT)
models for system description and input, Linear Hybrid Au-
tomata (LHA) models for internal modeling and verification, and
SES/workbench simulationmodels for performance evaluation. A
two-level partitioning algorithm is proposed specifically for dis-
tributed systems. Software is synthesized by task scheduling and
hardware is synthesized by system-level and object-oriented tech-
niques. Design alternatives for synthesized hardware-software
systems are then checked for design feasibility through rapid
prototyping using hardware-software emulators. Through a case
study on a Vehicle Parking Management System (VPMS), we
depict each design phase of the DESC methodology to show ben-
efits of OO codesign and the necessity of a two-level partitioning
algorithm.
key words: distributed embedded systems, emulation, two-level
partitioning, object-oriented codesign, software scheduling

1. Introduction

Distributed systems such as distance teaching facilities,
vehicle parking systems, auditorium air-conditioning,
coal-mine signal systems, and others abound in our
everyday life and are almost all embedded with some
sort of integrated chips and/or processors for running
software. These systems are difficult to design due
to their physical restrictions and distributed behav-
ior. Different from the hardware-software codesign
techniques for centralized systems, symmetricities in
distributed structure, hierarchical system architecture,
and physical restrictions have all to be considered in our
newly proposed Distributed Embedded System Code-
sign (DESC) methodology. DESC offers design reuse
through its object-oriented synthesis, considers physical
constraints through its hierarchical system partitioning,
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and generates rapid prototyping through co-emulation.
When a system consists of parts that must be lo-

cated at in different physical locations, it is called a dis-
tributed system. The design of distributed systems has
always been a challenging task. Codesign of distributed
systems must solve not only hardware-software com-
munication issues within a single embedded unit, but
also the communication issues between different parts
of a distributed system (which may consist of either
hardware, or software, or both). Hardware-software
copartitioning must take into consideration the phys-
ical restrictions of a distributed system. Besides timing
and cost constraints, part modularity and physical re-
strictions are also important factors that must be taken
into account in the codesign of distributed systems. In-
terface must be synthesized not only for the hardware
and the software within a system part, but also for the
different parts of a distributed system.

In this paper, we propose a complete code-
sign methodology for distributed embedded systems
called Distributed Embedded System Codesign (DESC)
methodology. To allow maximum exposure to all the
design phases in DESC, we have omitted some tech-
nical details so that the reader can obtain a more
overall picture of how distributed systems are code-
signed. DESC uses three types of semantic models
for different purposes, namely Object Modeling Tech-
nique (OMT) models for system description and in-
put, Linear Hybrid Automata (LHA) models for in-
ternal modeling and verification, and SES/workbench
simulation models for performance evaluation. The
two-level partitioning technique used in DESC includes:
(1) Design space exploration to determine the num-
ber of processors for software execution and the hard-
ware cost in a distributed embedded system, and (2)
Hardware-software copartitioning to produce a final
system partition result. SES/workbench simulation
tool [1] is used to evaluate the performance of the copar-
tition results. Then, hardware is synthesized using a re-
cently proposed system-level object-oriented (OO) de-
sign methodology called Intelligent Concurrent Object-
Oriented Synthesis (ICOS) methodology [2]. And soft-
ware is synthesized by task scheduling on system pro-
cessor(s). The synthesized results are further validated
for feasibility by rapid prototyping through hardware-
software emulators. Finally, a network of LHA models
for a synthesized system is used to formally verify the
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user-given system constraints.
The contributions of our proposed DESC method-

ology are described as follows. From the given system
specification, DESC detects real physical restrictions
of distributed embedded systems to achieve a final best
design, while these physical restrictions are not consid-
ered explicitly by existing methods [3]–[6]. As for sys-
tem modeling, the applications of three existing mod-
els in the codesign of distributed systems are newly
proposed by DESC for the following reasons. (1) The
formal LHA model is suited for partitioning and anal-
ysis, and (2) the modeling capability of most existing
methods based on task graphs [7]–[12] are quite limited,
compared to the OMT models used in DESC. Last but
not the least, a new partitioning method is proposed
in DESC, which has many desirable features, such as
simplicity, efficiency, and hierarchy.

The article is organized as follows. Section 2 de-
scribes some previous and related work. Section 3
describes our hardware-software codesign methodology
for distributed embedded systems and design phases of
cosynthesis and emulation. A case study, Vehicle Park-
ing Management System (VPMS), is given in Sect. 4.
Finally a conclusion is drawn in Sect. 5.

2. Related Work

A distributed system has more than one physical lo-
cation, each of which may have different characteris-
tics. Previous works related to hardware-software code-
sign [7], [13] have not distinguished between the differ-
ent physical locations of a distributed system and their
characteristics. For example, a processor for software
execution, when placed at different locations, could af-
fect the overall system performance. Further, previous
work have also not considered how design parts may be
reused in a distributed system.

As far as hardware design is concerned, method-
ologies for the system-level synthesis of general-
purpose multi-processor systems have been proposed
recently, for example, Performance Synthesis Methodol-
ogy (PSM) [16], Intelligent Concurrent Object-Oriented
Synthesis (ICOS) methodology [2], and Parallel Object-
Oriented Synthesis Enviroment (POSE) [17] are three
of the most recently proposed methodologies. A new
cosynthesis methodology for parallel systems called
Cosynthesis Methodology for Application-Oriented
Parallel Systems (CMAPS) [18] has also been recently
proposed. Some other successful methodologies for
hardware design include the MICON system [19], [20]
and the Megallan System [21].

As far as distributed system codesign is con-
cerned, several related works can be found. Prakash
and Parker [14] formulated heterogeneous multiproces-
sor system synthesis as a mixed integer linear pro-
gram in SOS, a formal synthesis approach developed at
University of Southern California. Further, based on

Prakash and Parker’s formulation, Wolf [6] developed
a heuristic algorithm for architectural co-synthesis of
distributed embedded computing systems. Haworth et
al. [22] proposed an algorithm that chooses parts from
a part library (or catalog) to implement a set of func-
tions meeting cost bounds. D’Ambrosio and Hu [23]
presented a hardware-software co-synthesis approach at
the configuration level.

Recently, the design of an n-CPU/m-ASIC topol-
ogy is of major concern. Yen and Wolf [13] proposed a
sensitivity-driven method for the co-synthesis of real-
time distributed embedded systems. The cosynthe-
sis algorithm selects the number of processing ele-
ments (PEs), the type of each PE, as well as allo-
cating functions to PEs and scheduling their execu-
tions. Dick and Jha [9] proposed an algorithm for
hardware-software cosynthesis of distributed embedded
systems, namely MOGAC which partitions and sched-
ules embedded system specifications consisting of mul-
tiple periodic task graphs. Recently, Dave, Lakshmi-
narayana, and Jha [10] proposed a heuristic-based con-
structive cosynthesis technique call COSYN, which in-
cludes allocation, scheduling, and performance estima-
tion steps. Another constructive cosynthesis system,
called COFTA, was proposed in [11], which targets
fault-tolerant distributed architectures and address re-
liability and availability of the embedded system during
cosynthesis. In [12], a heuristic-based cosynthesis tech-
nique, called COHRA, was proposed, which takes as
input an embedded system specification in terms of hi-
erarchical acyclic task graphs and generates an efficient
hierarchical hardware-software architecture that meets
the real-time constraints. In [24], Dick and Jha pro-
posed a system synthesis algorithm, called MOCSYN,
which synthesizes real-time heterogeneous single-chip
hardware-software architectures using an adaptive mul-
tiobjective genetic algorithm. A cosynthesis system,
called CORDS, which synthesizes multi-rate, real-time,
periodic distributed embedded systems containing dy-
namically re-configurable FPGAs was proposed in [25].

In comparison to previous work on hardware-
software cosynthesis, which was based on task graphs as
system model, our cosynthesis method uses object ori-
ented (OO) hierarchy, LHA, and SES as system mod-
els. The task graph model basically assumes an arbi-
trary system architecture, without considering any re-
strictions on subsystem locations. In contrast, our OO
model takes realistic physical restrictions into consider-
ation for the target system architecture. This is more
appropriate for distributed systems because of inher-
ent architectural restrictions. Our proposed DESC is a
more complete design methodology that not only car-
ries out hardware and software syntheses, but also in-
cludes two-level partitioning, performance analysis, and
emulation of distributed embedded systems.
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3. Distributed Embedded System Codesign
Methodology

In this section, we explain our methodology called Dis-
tributed Embedded System Codesign (DESC). As shown
in Fig. 1, the design flow is divided into three main
phases: (1) Specification and Mapping, (2) Coparti-
tioning and Performance Evaluation, and (3) Cosyn-
thesis and Emulation. Three models are used in DESC
to represent a system at different phases of design.
The models are Object Modeling Technique (OMT)
models, Linear Hybrid Automata (LHA) models, and
SES/workbench models. Given OMT models as in-
put, corresponding LHA and SES models are then gen-
erated. System is then partitioned using a two-level
partitioning scheme. Software is synthesized by task
scheduling and hardware is synthesized using an object-
oriented system-level design methodology. Finally, the
resulting system design is checked for functional feasi-
bility by emulation. The three design phases in DESC
will be described in details in the following subsections.

3.1 Specification and Mapping Phase

A system under design is represented in DESC by the
following three different models. Object Modeling Tech-
nique (OMT) models are used for system specification
input; Linear Hybrid Automata (LHA) are used as an
internal model for partitioning; and SES simulation
models are used for performance evaluation of parti-
tion results.

OMT is an object-oriented software development
methodology developed by Rumbaugh et al. [26]. OMT
uses three kinds of models to describe a system: ob-
ject model, which describes components in a system
and their inter-relationships; dynamic model, which de-
scribes temporal interactions among objects in a sys-
tem; and functional model, which describes data trans-
formations of a system. We use OMT to describe the
specification of a system under design and as an input
to DESC.

LHA was proposed for modeling and verifying reli-
able designs that ensure correct operation of controllers
in embedded systems [27]. Since LHA is a formal model
that can be used for easily modeling multi-rate hard-
ware and software embedded systems [28], DESC uses
LHA as an internal model for system evaluation during
partitioning and also for formal verification.

SES/workbench [1] is a popular modeling and sim-
ulation tool for system performance evaluation. An
SES/workbench model is a hierarchy of submodels.
Each submodel is represented by an extended di-
rected graph. A higher level submodel may call lower
level submodels. An SES/workbench model can be
thought of as a parallel program with multiple execu-
tion threads. The tool is an integrated collection of soft-

Fig. 1 Distributed embedded system codesign methodology.

ware tools for specifying and evaluating system designs.
We use SES/workbench to evaluate the correctness and
performance of a system design. Performance evalua-
tion is done by simulating the model derived from the
system specification. Correctness is evaluated by exe-
cuting, during the simulation, assertions that we attach
to each design specification component.

In summary, a distributed system to be designed is
described by a designer using OMT. DESC then trans-
forms OMT models into LHA and SES models. Due to
page-limits, we briefly mention that LHA models are
based on the OMT dynamic models and SES models
are based on all the three OMT models. An example
will be given in Sect. 4.

3.2 Copartitioning and Performance Evaluation Phase

Once LHA and SES models are generated, DESC be-
gins to partition a system-under-design into hardware
and software parts. The copartitioning results are then
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Fig. 2 Two-level partitioning.

simulated and checked whether the performance sat-
isfies system constraints. Most of recent work stud-
ied hardware-software partitioning, that targets a one-
CPU-one-ASIC topology with a predefined CPU type.
Our target system consists of an n-CPU/m-ASIC topol-
ogy, for which previous partitioning techniques are not
adequate. Distributed embedded systems require parti-
tioning techniques which not only considers hardware-
software tradeoffs but also system structure.

We propose a Two-Level Partitioning (TLP) tech-
nique for distributed systems, which uses: (1) code-
sign space exploration to iterate over the number of
CPUs and of ASICs; and (2) binary search copartition-
ing to produce hardware and software partitions that
meet user-given system constraints. After partition-
ing, a popular simulation tool, SES/workbench [1], is
used to simulate the partitioned results and to check
whether the overall system performance of a particular
partition satisfies given system constraints. This phase
produces system design results in the form of hardware-
software partitions with performance that meet system
constraints. Due to page-limits, we have omitted the
technical details of how the models are mapped to each
other and the validity proofs for model equivalences.

Since our target systems are distributed with
n-CPUs/m-ASICs, the inherent hierarchy in system
structure necessitates a Two Level Partitioning (TLP)
scheme. At the first level, we must explore how many
CPUs and ASICs to use. The second level would be the
conventional copartitioning between hardware and soft-
ware in each subsystem of a distributed system. The
flow diagram for TLP is shown in Fig. 2.

3.2.1 Codesign Space Exploration (CSE) Level

At the codesign space exploration (CSE) level, we must

decide how many CPUs to use for software implemen-
tation and execution. In general, each location can
have either zero or some positive number of proces-
sors, depending on the system cost bound. In DESC,
by default the maximum number of CPUs in a system
is constrained by the total number of different subsys-
tems. System designers can easily override this default
setting, but doing so lengthens the period of design
space exploration because of a much larger design space
size. Suppose a distributed embedded system under de-
sign has n subsystems. The CSE level iterates through
0, 1, 2, . . . , and n CPUs for software implementation.

3.2.2 Binary Search Copartitioning (BSC) Level

This binary search copartitioning (BSC) level forms
the core part of hardware-software copartitioning. We
do not start from either of the two extreme solutions
found in existing methods [4], [15]: all-hardware and
all-software. Rather we start somewhere in-between
and then based on two heuristic assumptions, we start
moving towards the heuristically optimal feasible solu-
tion. The two heuristic assumptions are as follows. (1)
First assumption is that hardware implementations al-
ways cost more than software solutions. This is true
in general when costs are amortized over several com-
ponents of a system. (2) Second assumption is that
hardware implementations always perform better than
software solutions. This is true in general because hard-
ware ASICs can be optimized to a greater extent than
software. Software optimizations are often restricted
by compiler technology and microprocessor architecture
that is hosting and executing it. Though the above two
assumptions may sound not so realistic at first, yet they
have been validated by most design experiences [2], [16],
[17].

The copartitioning flow diagram and algorithm are
given in Fig. 3 and Fig. 4, respectively. Two linear ar-
rays are used to store system objects during coparti-
tioning, namely, Immovable Linear Array (ILA) and
Movable Linear Array (MLA). ILA is used to store
objects that must be implemented as hardware parts,
while MLA is used to store objects that could be imple-
mented either as hardware or software parts. Coparti-
tioning will be performed only on the objects in MLA.
Each component in a system under partition is associ-
ated with a metric called Cost-Performance Difference
(CPD) ratio defined as follows:

CPD(x) =
[HC(x)− SC(x)]× PB(x)

|HP (x)− SP (x)| (1)

where x is an object in MLA; HC(x) is either the actual
cost or the VLSI area of x; SC(x) is either the cost of
the main memory spent or the cost of the CPU used
for executing x as a software program code; HP(x) is
the hardware response time; SP(x) is the program exe-
cution time as implemented in a processor; and PB(x)
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Fig. 3 The flow diagram of copartitioning methodology.

is the value of the performance bound associated with
part x. Here, it is assumed that each part is associ-
ated with only one performance bound. The denomi-
nator in CPD(x) is a normalization of the performance
difference, which is required for a fair comparison be-
tween different parts and performance bounds. The
CPD metric is a useful hardware-software partitioning
criterion. All objects are sorted in an ascending order
of their CPD ratios and placed in a horizontal one-
dimensional array called Movable Linear Array (MLA)
from left to right.

The three models in OMT, namely object, dy-
namic, and functional, are used for calculating the CPD
value of an object. The hardware cost and software cost
are given as data attributes for each object. The hard-
ware performance and software performance for an ob-
ject are evaluated for an object by calling corresponding
functional methods in a class description. Dynamic and
functional models are, in fact, implemented as func-
tional methods in a class description. Hence, all the
three models are required for CPD calculation.

The copartitioning method begins somewhere
around the middle of the sorted sequence of objects
in MLA. A median object is selected as an initial di-
vider. As shown in Fig. 5, the role played by a divider is
that all objects to the right of the divider, including the
divider, are implemented in software and the rest (at

HW/SW PARTITION(N1, N2, N3, . . . , Ni, . . . , Nr)
/* N1, N2, N3, . . . , Ni, . . . , Nr, where Ni is an object */ 1
Generate Immovable Linear Array (ILA) and
Movable Linear Array (MLA). 2
Calculate Cost-Performance Difference (CPD) ratio for
each MLA object. 3
Sort all MLA objects in an ascending order of their CPD
ratios such that MLA = 〈M1, M2, M3, . . . , Mm〉 4
u:= Number of PE; Flag:=true; 5
PSS={} /* PSS:Partition Solution Set*/ 6
for (p = 0, p ≤ u, p + +) 7
{
HW Cost := Max Cost − Cost(PE) × p; 8

k := 1, j := m; /* where k is called the lower bound
object index, j is called the upper bound object index */ 9

i := �m
2
	 /* where i represents divider object index */ 10

Use software to implement objects from Mi to Mj and
use hardware to implement objects from Mk to Mi−1 11

while Flag=true do 12
{
switch(cost and performance estimations) 13
{
Case 1: Cost constraint not satisfied,

but performance constraints satisfied 14

j := i; 15

i := i − � i−k
2

	; 16

break; 17

Case 2: Cost and performance constraints satisfied 18

if the partition result s′ is heuristically optimal {19
Flag := false; PSS := PSS ∪ {s′}; break; } 20

else { if performance is more important{ 21

k := i; 22

i := i + � j−i
2
	; } 23

else { j := i; /* cost is more important */ 24

i := i − � i−k
2

	;} 25

} 26

break; 27

Case 3: Cost constraint satisfied, but
performance constraints not satisfied 28

k := i; 29

i := i + � j−i
2
	; 30

break; 31

Case 4: No satisfactory partition 32
Flag:=false; break; 33

} /* end of switch */ 34

} /* end of while */ 35

Flag:=true; 36
} 37
if PSS={} print “No partition found”; 38
else output heuristically optimal partition from PSS; 39

Fig. 4 Two-level partitioning algorithm (Algorithm 1).

the left of the divider) are implemented in hardware.
The reason that such an implementation is correct is
two-folds. Firstly, the objects in the left part of the
sequence have a greater gain in performance if imple-
mented as hardware (i.e., a larger difference between
hardware and software performance) and at a smaller
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Fig. 5 Movable linear array (MLA) and divider.

expense (i.e., a smaller difference between hardware and
software costs). Secondly, the objects in the right part
of the sequence have a greater gain in saving costs if
implemented as software (i.e., a larger difference be-
tween hardware and software costs) and at a smaller
loss in performance (i.e., a smaller difference between
hardware and software performance). Thus, the intu-
ition for the CPD definition is clear from the role of the
divider in copartitioning.

The initial partition obtained is then tested for fea-
sibility under the given system constraints on cost and
performance. Hardware and software LHA models cor-
responding to each object are used for feasibility testing
and constraint satisfaction checking. Given a system
partition, a set of LHA is selected corresponding to the
hardware or software implementation of each object as
implied by the partition. The set of LHA is then ana-
lyzed using Hytech, a popular verification and analysis
tool for hybrid systems [27]. Interested readers may re-
fer to [29] for further details.

As shown in Fig. 4 (Algorithm 1), four cases are
encountered during feasibility testing. First, if the per-
formance specifications are satisfied but cost specifica-
tions are not, then we must increase the software part
by selecting a new divider towards the left of the cur-
rent divider along the linear array of sorted objects.
Second, if the cost specifications are satisfied but per-
formance specifications are not, then we must increase
the hardware part by selecting a new divider towards
the right of the current divider along the linear ar-
ray of sorted objects. Third, if both cost and per-
formance specifications are satisfied, then depending
on whether preference is given to minimizing cost or
to maximizing performance we move towards the left
or right, respectively. This will lead to a more cost-
oriented or performance-oriented heuristically optimal
solution. Finally, if either both cost and performance
specifications are not satisfied or one of them cannot
be satisfied, then the algorithm declares that no feasi-
ble partition can be found for the given system under
the given constraints.

3.2.3 Features and Validity of TLP

There are several qualities of our algorithm that deserve
further investigations. Firstly, whenever there exists a
feasible solution for a system, our algorithm will def-
initely output the heuristically optimal solution. Sec-
ondly, if a feasible solution is found by the algorithm,
then the final result will also be feasible. Thirdly, if a

completely non-feasible solution (both cost and perfor-
mance specifications are not satisfiable) is found, then
there does not exist a feasible solution for the given sys-
tem and thus our algorithm stops all further searching.
The validity of these three qualities requires the two ba-
sic assumptions mentioned previously Sect. 3.2.2. They
are formalized as the following three theorems.

THEOREM 1: If a feasible partition exists, then the
BSC copartitioning algorithm will find one.

Proof: Suppose a feasible partition Z exists and
BSC cannot find one, instead it stops at some object
divider(Z ′) corresponding to some infeasible partition
Z ′. There are two cases here:
Case (1) divider(Z ′) is on the left side of divider(Z):

Since Z ′ is not feasible, either cost(Z ′) or
performance(Z ′) does not or both do not sat-
isfy the system bounds of maximum cost or
minimum performance, respectively. Three
possibilities arise here.

(a)Only cost(Z ′) does not satisfy the
bound: BSC will move further right from
divider(Z ′), hence divider(Z ′) cannot be
the last object during the binary search.
A contradiction follows.

(b)Only performance(Z ′) does not satisfy
the bound: This implies performance(Z)
also does not satisfy the bound because
divider(Z) is on the right of divider(Z ′).
A contradiction follows.

(c)Both cost(Z ′) and performance(Z ′) do
not satisfy the bounds: By Theorem (3),
there is no feasible partition for the sys-
tem. A contradiction follows.

Case (2) divider(Z ′) is on the right side of divider(Z):
Similarly, we have three possibilities.

(a)Only cost(Z ′) does not satisfy the bound:
This implies cost(Z) also does not satisfy
the bound because divider(Z) is on the
left of divider(Z ′). A contradiction fol-
lows.

(b)Only performance(Z ′) does not satisfy
the bound: BSC will move further left
from divider(Z ′), hence divider(Z ′) can-
not be the last object during the binary
search. A contradiction follows.

(c)Both cost(Z ′) and performance(Z ′) do
not satisfy the bounds: By Theorem (3),
there is no feasible partition for the sys-
tem. A contradiction follows.

From the above two cases, we can see that in every pos-
sibility, a contradiction arises. Hence, our assumption
is wrong, that is, if there exists a feasible partition, then
BSC will definitely find one.
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THEOREM 2: Once a feasible partition is found,
the final heuristically optimal partition found by the co-
partitioning algorithm is always feasible.

Proof: Suppose a feasible partition Z is found and the
final partition found Z ′ is not feasible. Here, either one
of three cases may occur:
Case (1) Only cost(Z ′) does not satisfy the bound:

If divider(Z ′) is on the left of divider(Z),
then BSC will return either some partition
Z ′′ with divider(Z ′′) between divider(Z ′) and
divider(Z) or Z itself. If divider(Z ′) is on
the right of divider(Z), then this implies that
cost(Z) also does not satisfy the cost bound.
In either case, a contradiction arises.

Case (2) Only performance(Z ′) does not satisfy the
bound: If divider(Z ′) is on the left of
divider(Z), then this implies that performance
(Z) also does not satisfy the performance
bound. If divider(Z ′) is on the right
of divider(Z), then BSC will return either
some partition Z ′′ with divider(Z ′′) between
divider(Z ′) and divider(Z) or Z itself. In ei-
ther case, a contradiction arises.

Case (3) Both cost(Z ′) and performance(Z ′) do not
satisfy the bounds: By Theorem (3), there is
no feasible partition for the system. A contra-
diction follows.

From the above three cases, we have a contradiction
arising in each case. Hence, our assumption is wrong,
that is, if a feasible partition is ever found, the final
partition found by BSC would be feasible.

THEOREM 3: If a completely infeasible partition
(both cost and performance constraints are not satis-
fied) is ever found during BSC, then there exists no
feasible partition for the system. Hence, the partition-
ing algorithm can stop searching.

Proof: Suppose a completely infeasible partition Z is
found during the binary search and suppose there exists
a feasible partition Z ′ for the system. The following two
cases occur:
Case (1) Divider(Z ′) is on the left of divider(Z): This

implies that performance(Z ′) does not satisfy
the minimum performance bound of the sys-
tem. A contradiction follows.

Case (2) Divider(Z ′) is on the right of divider(Z): This
implies that cost(Z ′) does not satisfy the max-
imum cost bound of the system. A contradic-
tion follows.

When all objects in a system satisfy the two as-
sumptions on hardware-software cost and performance,
TLP will find a heuristically optimal solution. But, if
there are one or more objects whose hardware-software
cost and performance do not satisfy the two assump-
tions, then TLP will not be able to find a feasible solu-
tion as TLP is not an exhaustive approach.

The hierarchical approach adopted in TLP is dif-
ferent from the traditional task-graph based hardware-
software partitioning [7]–[12]. The conventional ap-
proach uses task-graphs to represent a distributed em-
bedded system such that each task graph represents a
sequential execution of processes with possible branch-
ing, either deterministic or non-deterministic. Usu-
ally cycles are not allowed in task-graphs. Two or
more task-graphs execute concurrently and may com-
municate with each other, exchanging data. Hier-
archy among task-graphs is generally represented as
flattened-out graphs. This often incurs redundancy in
representation and unnecessary repeated procedures in
the partitioning process.

TLP is based on object-oriented design modeling
and is a hierarchical process, which is more appropri-
ate for distributed architectures because they are inher-
ently hierarchical. Distributed architectures normally
have physical constraints related to the environment,
such as some subsystems must be located within some
pre-specified distance or some subsystems may share or
may not share an ASIC or a PE. Such physical restric-
tions are either difficult to model in task-graphs and
not considered in previous work on partitioning. TLP
considers all such physical constraints and thus TLP is
more realistic when distributed architectures are tar-
gets.

In summary, the two-level partitioning algorithm
presented in this section is more appropriate for dis-
tributed embedded systems than conventional parti-
tioning algorithms due to its consideration of the dis-
tributed characteristics in the systems.

3.3 Cosynthesis and Emulation Phase

In this section, we will introduce how to cosynthesize
and emulate the resulting system obtained from par-
titioning. Cosynthesis includes hardware design and
software design. Checking for design feasibility through
rapid prototyping using hardware-software emulator
will be introduced in the emulation phase of codesign.

Given the partition results from the previous
phase, in this phase, hardware is synthesized by an
object-oriented system-level design methodology called
ICOS [2] and software by scheduling tasks on proces-
sors. The synthesized system designs are then checked
for feasibility by rapid-prototyping, which includes
hardware and software emulation and testing. This
design phase is presented as follows, which produces
design results in the form of feasible synthesized dis-
tributed hardware-software systems.

3.3.1 Hardware Synthesis

The Intelligent Concurrent Object-oriented Synthesis
(ICOS) [2] methodology was used for hardware syn-
thesis in DESC for the following three reasons. (1)
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ICOS is an object-oriented design methodology and
DESC has object-oriented input models, (2) ICOS
was proposed for multiprocessor synthesis and the
target system of DESC are distributed with multi-
ple processors, and (3) ICOS proposes active self-
synthesis which is a distributed technique and thus
suitable for the distributed system synthesis in DESC.
In spite of various advantages, it was still required
to modify ICOS because the target system in ICOS
was for general-purpose multiprocessor architectures.
The main modifications performed were in the spec-
ification language (from general-purpose characteris-
tics to application-specific characteristics) and in the
class hierarchy (from general-purpose components to
application-specific components). Learning and fuzzy
methods in ICOS were not utilized for DESC because
the target systems are application-specific.

As shown in Fig. 6, the ICOS methodology [2] is di-
vided into three design phases called Specification Anal-
ysis, Concurrent Design, and System Integration. In
the specification analysis phase, a user’s system speci-
fications are first analyzed to check whether there are
any architecture related errors, or obvious errors such as
constraints that are not feasible under current technol-
ogy. In the concurrent design phase, the main system
synthesis is performed. Here, components (including
complete subsystems) are designed concurrently. An
active synthesis approach is adopted, where each com-
ponent actively seeks to synthesize itself. A design hier-
archy (DH) and a design queue (DQ) are utilized in the
concurrent design phase of ICOS for recording the cur-
rent design status and for maintaining object synthesis
turns. The final phase of system integration mainly
evaluates the performance of a completed design and
outputs the system design that best meets the design
constraints. Details can be found in [2].

3.3.2 Software Synthesis

For software synthesis, there are three issues to handle.
First issue is how to produce software state diagrams
from LHA software models. Second issue is how to pro-
duce feasible schedules from software state diagrams.
Third issue is how to produce software pseudo code
from feasible schedules. In the following, we propose
our software synthesis method.

(1) Software State Diagrams: From the partitioning
result, we know which objects are to be imple-
mented in software. Then, we convert these soft-
ware LHA models into software state diagrams.
This conversion is a direct mapping from locations
in an LHA to process states in software state dia-
grams, where each state is then implemented as a
sequential process.

(2) Software Schedules: Software state diagrams have
to be made feasible by the scheduling of processes

Fig. 6 Hardware synthesis flow (ICOS [2]).

on processors. The scheduling rules are as follows.

(a) Each state in the software state diagrams is
viewed as a process.

(b) The initial states (initialization processes) are
scheduled first.

(c) Within a group of concurrently enabled pro-
cesses, higher priority processes are scheduled
first. For arbitration between two or more pro-
cesses with equal priority, processes that have
shorter execution times are scheduled first.
The complete schedule is generated using As-
Soon-As-Possible (ASAP) algorithm [30].

(d) When two or more processes have equal prior-
ities and equal execution times, the processes
that are located in execution runs with shorter
lengths are scheduled first.

(3) Software Pseudo Code: The software pseudo code
is produced from the feasible software schedules
(obtained from the previous step) by the following
rules.

(a) Each process in the software schedule is imple-
mented as a program procedure or subroutine.

(b) If a process has more than one successor pro-
cesses that are triggered under different con-
ditions, then we use a switch-case to represent
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the process. Each case consists of one or more
procedures or subroutines.

Here, we have only shown how software schedul-
ing is performed on a single processor. For more than
one processor, task scheduling is NP-complete [31], thus
various heuristics have been proposed. For example, in
[32], [33] many algorithms were proposed for periodic
tasks in distributed systems, which form a big task with
length of the least common multiple (LCM) of all the
periods. Leinbaugh and Yamani [34] derived bounds
for response times of a set of periodic tasks running
on a distributed system without using the LCM enu-
meration. Lehoczky and Sha [35] pointed out the bus
scheduling. Yen and Wolf [13] proposed the method
of allocation and scheduling of processes and commu-
nication. The techniques such as fixed-point iterations,
phase adjustment, and separation analysis were pro-
posed to efficiently estimate tight bounds on the de-
lay required for a set of multi-rate processes preemp-
tively scheduled on a real-time reactive distributed sys-
tem. In DESC, we use Largest Scheduled Parallelism
First (LSPF) [36], Largest Width with Largest Process-
ing Time first (LWLPT) [37], and a heuristic algo-
rithm [38] for multiprocessor task scheduling.

3.3.3 Emulation

The purpose of emulation is to validate cosynthesis re-
sults such that they satisfy system constraints. The
emulation flow diagram in DESC is as shown in Fig. 7.
First, the cosynthesis results are refined such that hard-
ware and software design details are all down-scaled by
a suitable factor for possible prototyping. Hardware
prototype fabrication includes layout, placement, and
wiring. Meanwhile, the scheduled software programs
are coded into the microprocessor. Finally, the sys-
tem is tested using test cases to check system correct-
ness. Based on the system performance results obtained
through emulation, an optimal design solution is gen-
erated.

4. A Case Study – Vehicle Parking Manage-
ment System (VPMS)

We describe a distributed embedded system for illus-
trating the proposed DESC methodology. This exam-
ple is on the design of a vehicle parking system, called
Vehicle Parking Management System (VPMS) [39].
VPMS consists of three subsystems: ENTRY manage-
ment, EXIT management, and DISPLAY. As both of
the ENTRY and EXIT subsystems allow vehicles to
pass through them one by one, they are similar in most
respects. DISPLAY subsystem shows the current num-
ber of vacant parking space available in a parking lot
or garage.

An ENTRY (or an EXIT) subsystem consists of

Fig. 7 Emulation flow diagram.

three parts: a ticket facility, a gate controlled by a gate-
motor, and a pair of sensors. The ticket facility at the
entry stamps the current date and time and gives a new
ticket to an in-coming vehicle. The ticket facility at
the exit checks whether the ticket (parking) fees have
been paid and the current time is within 15 minutes
of the ticket fee payment. After a positive response is
received from the ticket facility, a gate controller opens
the ENTRY (EXIT) gate to allow a vehicle to drive in
(out). A pair of sensors are located after the gate (in
the direction of the vehicle, that is, further in for the
entry and further out for the exit). The sensors then
send a signal to the gate controller to close the gate
after a vehicle has passed by. At the same time, the
sensors also send a signal to the display for updating
the displayed number of parking vacancies.

Constraints for the VPMS system include: a max-
imum cost of $1,300, a maximum display response time
of 14,000µs, and a maximum ENTRY (EXIT) gate re-
sponse time of 250µs. The maximum display response
time ensures that the display should not be updated
too slowly. The maximum gate response time implies
that the gate should not be closing or opening too
slowly. A slow gate open would make the VPMS user
unhappy, while a slow gate close would allow more than
one vehicle to pass through the gate for each entry/exit
transaction and would make the VPMS boss unhappy.
Hence, gate response time is specified for correct ex-
ecution of the system. The above description clearly
shows that VPMS is a distributed system having some
similar parts.

4.1 Specification and Mapping of VPMS

VPMS is described using OMT models consisting of
object, dynamic, and functional models. The object
model of VPMS is shown in Fig. 8. VPMS includes
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Fig. 8 Object model of VPMS.

three subsystems: ENTRY management, EXIT man-
agement, and DISPLAY. The ENTRY management
subsystem includes time-stamp, gate controller, and
a pair of sensors (send and receive signal devices).
The EXIT management subsystem is similar to the
ENTRY management subsystem, which includes ticket
checker, gate controller, and a pair of sensors. The
gate controller and sensor object models in ENTRY
and EXIT management subsystems have many sim-
ilar parts, which allow reuse of OMT models. The
DISPLAY system consists of a control system (counter
and display interface) and a display device such as 7-
segment display, LCD, or dot matrix LED display. The
counter value (count) indicates the number of available
parking vacancies. The dynamic model of VPMS con-
sists of three models for the three subsystems. An ex-
ample for the DISPLAY is shown in Fig. 9. An exam-
ple functional model of VPMS for DISPLAY subsystem
is shown in Fig. 10. Due to page-limits, the dynamic
and functional models for the other two subsystems are
omitted. In DESC, each object uses two LHA models,
called hardware LHA model and software LHA model,
to represent the temporal behavior of hardware and
software implementations, respectively.

A SES model for car-simulator is shown in Fig. 11.
The model is used to simulate the behavior of a car
entering or exiting a parking lot. It produces events
that trigger ENTRY management, EXIT management,
and DISPLAY subsystems. Therefore, SES models of
the three subsystems are executed concurrently accord-
ing to events from the car-simulator. The performance
of VPMS, for example display response time and gate
response time, can be collected using simulation tools
supported in each SES model.

Fig. 9 Dynamic model of a DISPLAY subsystem.

Fig. 10 Functional model of a DISPLAY subsystem.

4.2 Copartitioning and Performance Evaluation of
VPMS

VPMS has five parts which can be implemented as ei-
ther hardware or software, namely, counter, exit sensor
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Fig. 11 SES model of a car-simulator.

Table 1 Calculation of CPD for VPMS parts hardware cost.

Hardware Software Hardware Software
Cost Cost Performance Performance

CPD

Sensor Driver 115 90 210 1,030 7.622
Counter 120 90 290 13,200 32.533
Motor Driver 260 90 820 1,030 202.381

driver, entry sensor driver, exit motor driver, and en-
try motor driver. In this example, we assume that the
ENTRY Management Subsystem and the EXIT Man-
agement Subsystem are located near each other such
that the two sensor drivers can be implemented as one
component (ASIC or CPU) and the two motor drivers
can also be implemented as another component both to
be shared by the two subsystems. Henceforth, we will
consider only three parts (counter, sensor driver, and
motor driver) for copartitioning.

Applying TLP to VPMS, by default TLP assumes
that at most three CPUs are used for software imple-
mentation. In Table 1, the CPD values for each of the
three parts were calculated according to Eq. (1) and
the objects arranged in an ascending order in the MLA
array. The resulting order is 〈sensor driver, counter,
motor driver〉. In the CSE level, TLP iterates through
0, 1, 2, . . ., and 3 CPUs. For each selected number
of CPUs, the BSC level determines feasible partitions.

Table 2 shows each iteration of applying TLP to the
VPMS example. An analysis of this application shows
that an exhaustive search for the heuristically optimal
partitioning requires evaluating 20 different partitions.
This number would be much greater when larger exam-
ples are considered.

From Table 2, we observe that when all three parts
are implemented as hardware (i.e. # CPU = 0), there is
no feasible partition. Here, feasibility implies satisfac-
tion of all cost and performance constraints. For each
iteration of the CSE level, the divider is selected to be
the counter part. We see that out of 20 possible parti-
tions, TLP evaluates only 6 partitions, two of which are
feasible. The heuristically optimal partition is then se-
lected to be best one of the feasible two. Here, “best” is
defined in terms of minimum cost or minimum response
time as preferred by the designer. From Table 3, it is
observed that at least for VPMS, TLP finds the heuris-
tically optimal partitioning by evaluating only 30% of
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Table 2 Applying TLP to the VPMS example.

Codesign Space Exploration Binary Search Copartitioning (BSC)
(CSE) Partitions Cost Response time (µs) Response time (µs) Feasibility

(Number of CPU) (SSP) ($) (sensor to display) (sensor to gate)
0 A(HC , HS, HM) 1,450 190 0.2 No
1 B (HC , HS, SM) 1,280 190 215 Yes

C (HC , HS, S2
M) 1,370 13,200 820 No2

D( SC , HS, SM) 1,250 13,100 215 Yes
E (S2

C , HS, SM) 1,340 13,100 210 No3
F (SC , SS , SM) 1,225 13,200 1,030 No

H:hardware, S:software, subscripts: C=Counter, S=Sensor Driver, M=Motor Driver,
superscripts: 1 ⇒ One CPU, 2 ⇒ Two CPUs, 3 ⇒ Three CPUs.

Table 3 Efficiency of TLP (VPMS example).

Exhaustive TLP Search # Feasible
Search Space Solutions

Number of
Partitions

20 6 2

Percentage of
100 30 10Design Space

Explored

all possible partitions, out of which 10% are feasible
ones. This shows that TLP is an efficient partitioning
algorithm for distributed embedded systems.

4.3 Cosynthesis and Emulation of VPMS

For VPMS, the hardware specification includes the
following: (1) the response time from sensor to dis-
play should be at least 14,000µs, and (2) the re-
sponse time from sensor to gate motor interface should
be at least 250µs. On applying ICOS to proto-
type B(HC , HS , SM ), the synthesized hardware cost
is $1,190, where H and S represent hardware and
software implementations, respectively and the sub-
scripts C, S, and M denote the parts: Counter, Sen-
sor Driver, and Motor Driver, respectively. For proto-
type D(SC , HS , SM ), the synthesized hardware cost is
$1,070.

In the software schedule of VPMS shown in Fig. 12,
the four processes: Open EXIT gate, Open ENTRY
gate, Close ENTRY gate, and Close EXIT gate, all
have equal priorities and equal execution times, but
the first two are located in runs with length of only
two, while the other two are in runs with length of five.
For example, process Close ENTRY gate is located in
the run: Scan Display → Poll Signal → Close ENTRY
gate → Decrement Counter → Update Display → Scan
Display. Hence, the first two processes are executed
before the other two.

VPMS Emulation: The two feasible partitioning
results B(HC , HS , SM ) and D(SC , HS , SM ) for VPMS
(refer to Table 2) were both emulated and their perfor-
mances obtained. We can see from Table 4 that par-
tition prototype D(SC , HS , SM ) gives a better design
result in terms of a lower cost and a lower power con-
sumption. The block diagram for partition prototype

Fig. 12 Scheduling of software diagram on VPMS.

D(SC , HS , SM ) is as shown in Fig. 13. We chose a sin-
gle chip integrated circuit 8051 [40] for software design
which has 4Kbytes of on-chip programmable memory
for software programming, four input/output ports for
data or control interface, two 16-bit timer/counters for
time calculation or counting, and one series port for
data transmission.

5. Conclusion

We have proposed a complete codesign methodology
called Distributed Embedded System Codesign (DESC),
which extends conventional centralized system code-
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Table 4 VPMS emulation results partitions.

Partitions B(HC , HS , SM ) D(SC , HS , SM )
Cost ($) 1278 1240

Power Consumption
(W)

4.76 4.20

Response time (µs)
(sensor to display)

180 13,000

Response time (µs)
(sensor to gate)

210 210

Fig. 13 Block diagram for prototype D(SC , HS , SM ).

sign methods and enhances existing distributed sys-
tem codesign methods through object-oriented design
reuse, hierarchical system partition, and consideration
of physical constraints. In DESC, three models, namely
Object Modeling Technique, Linear Hybrid Automata,
and SES simulators are used for system specification,
internal modeling, and performance evaluation, respec-
tively. A two-level partitioning algorithm was pro-
posed for distributed systems that also considered sys-
tem structure besides hardware-software copartition-
ing. Hardware is synthesized using a recently proposed
object-oriented system-level methodology called ICOS
and software is synthesized by scheduling tasks on the
microprocessors. Emulation is used for functional vali-
dation of our codesign results. A case study on VPMS
using DESC shows its advantage in accelerating design
time and decreasing design efforts.
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