
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000
1731

PAPER

Hardware-Software Timing Coverification of Distributed

Embedded Systems

Jih-Ming FU†, Trong-Yen LEE†, Regular Members, Pao-Ann HSIUNG††,
and Sao-Jie CHEN†, Nonmembers

SUMMARY Most of current codesign tools or methodologies
only support validation in the form of cosimulation and testing
of design alternatives. The results of hardware-software codesign
of a distributed system are often not verified, because they are
not easily verifiable. In this paper, we propose a new formal
coverification approach based on linear hybrid automata, and an
algorithm for automatically converting codesign results to the
linear hybrid automata framework. Our coverification approach
allows automatic verification of real-time constraints such as hard
deadlines. Another advantage is that the proposed approach is
suitable for verifying distributed systems with arbitrary commu-
nication patterns and system architecture. The feasibility of our
approach is demonstrated through several application examples.
The proposed approach has also been successfully used in verify-
ing deadline violations when there are inter-task communications
between tasks with different period lengths.
key words: hardware-software codesign, distributed embedded
systems, linear hybrid automata, coverification, hard deadline

1. Introduction

Conventionally, hardware design path and software de-
sign path are separated in system design cycle. These
two design paths remain independent until the stage of
system integration. During system integration, if prob-
lems are encountered, system designer has to change
the hardware and/or software designs, the pay-off is
substantial extra cost and even over-due schedule.
Hardware-software codesign means meeting system-
level objectives by exploiting the synergism of hardware
and software through their concurrent design [1].

Hardware-software codesign is an emerging field
of research that deals with embedded systems hav-
ing both hardware and software. In past few years,
several codesign methodologies were proposed, such
as COSMOS [2], TOSCA [3], ECOS project [4], and so
on. Codesign tools also abound, such as Ptolemy [5]
of UC Berkeley, VULCAN [6] of Stanford University,
COSYMA [7] of Braunschweig University, CODES [8]
of Siemens, and CoWare of IMEC [9].

From above, most current codesign methodologies
or tools validate (by simulation or by testing) the code-
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sign results produced, instead of verifying them (by for-
mal methods). This is because formal verification of-
ten encounters the issue of state-space explosion, which
hinders the verification of large, complex systems. We
propose a coverification method for hardware-software
codesign of distributed embedded systems. Our coveri-
fication approach is based on linear hybrid automata,
because a distributed embedded system can be per-
ceived as a linear system. The theory of hybrid au-
tomata was proposed by Alur et al. [10] and has been
developed by Henzinger et al. at UC Berkeley as a tool
named HyTech [11], which can be used for the auto-
matic analysis of LHA. Our coverification method au-
tomatically converts results of codesign to linear hybrid
automata, and we use HyTech to perform the automatic
verification of real-time constraints, such as deadlines.
Another feature is that the proposed method is suit-
able for verifying distributed systems with arbitrary
communication patterns and system architecture. Our
contribution mainly lies in the automatic conversion of
codesign results into verifiable system model (i.e., linear
hybrid automata).

This article is organized as follows. Section 2 de-
scribes distributed embedded systems and their behav-
ior. Section 3 gives the formal definition of a linear hy-
brid automaton and describes our method. Section 4
presents an example illustrating the coverification pro-
cess. Section 5 concludes the article.

2. Distributed Embedded Systems and
Hardware-Software Co-Synthesis

2.1 Distributed Embedded Systems

In recent years, due to the evolution of VLSI technol-
ogy, the widespread use of computers, and the obvi-
ous benefits of installing microprocessors within a sys-
tem, embedded systems have taken advantage of this
trend. Most embedded systems use both off-the-shelf
microprocessors and application-specific integrated cir-
cuits (ASICs) to implement specialized system func-
tions. The design of an embedded system is unique be-
cause it is a hardware-software codesign problem, where
hardware and software must be designed together to
make sure that the implementation not only functions
properly but also meets performance, cost, and relia-
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Fig. 1 Processor graph.

Table 1 Computation times of processes P1, . . . , P5.

PE type Computation time
P1 P2 P3 P4 P5

PE1 299 149 - 203 127
PE2 200 - 128 150 154
PE3 - 184 158 174 180

bility goals [12].
Many embedded systems are distributed systems,

with code running in multiple processes on several
CPUs/ASICs, and these CPUs/ASICs are connected
by communication links. Therefore, we use processor
graphs to describe these kinds of distributed system ar-
chitectures. In a processor graph model, each square
node represents a processing element (PE) which could
be a CPU or an ASIC, and each edge represents a com-
munication link. For example, in Fig. 1, there are three
processing elements PE1, PE2, and PE3 and two com-
munication links L1 and L2. PE1 connects to PE2
through L1, and PE1 connects to PE3 through L2. A
formal definition of processor graph will be given in
Sect. 3.2.

To describe the behavior of a distributed embed-
ded system, we use a task graph model [13] to represent
functions and performance requirements, without con-
cerning how these functions are implemented, either in
hardware or software. Similar task graph model has
been used in distributed system scheduling and alloca-
tion problems [14]–[20]. The following is an informal
description of a task graph model. While its formal
definition will be given in Sect. 3.2. The contents of a
task graph model are listed as follows:

• Processes: A process is the smallest behavior unit
of a distributed system, which cannot be inter-
rupted during its execution. Processes can be im-
plemented using either a CPU or an ASIC. Each
process is characterized by its computation time,
which may not be a constant, but must be bounded
for real-time systems. Thus, process computation
time is a function of PE (CPU or ASIC). Often
a table is used to store these function values. An
example is given in Table 1, where an entry of “-”
means that the particular process cannot be exe-
cuted in that type of PE.

• Tasks: A task is a partially-ordered set of pro-
cesses, which is represented as an acyclic directed
graph. A directed edge from process Pi to pro-
cess Pj represents a data dependency, that is, Pj

Fig. 2 Example of task graphs.

needs to wait for Pi to finish in order to start.
Each task must have a START node and an END
node. The START node represents the invocation
time instant for starting a task. The END node is
reached when all processes in a task finish their ex-
ecutions. Worst-case response time is the longest
possible elapsed time from START to END for the
execution of a task. Each task has a period which
is the time between two consecutive invocations of
the task, and a hard deadline which is the maxi-
mum time allowed from invocation to completion.
The period of a task may not be a constant, too.
An example of task graphs is illustrated in Fig. 2.

• Data Communication: In a task graph, a weight
on a data dependency edge denotes the volume of
data emanating from one process to another. We
assume that the weights on all edges emanating
from the START node are zero and those to the
END node are also zero. If the two processes are in
two different tasks, the communication is an inter-
task communication.

2.2 Hardware-Software Co-Synthesis

As shown in Fig. 3, hardware-software cosynthesis
starts with the specification of an embedded system
and results in an architecture of hardware and software
modules satisfying the performance, power, and cost
goals. Hardware-software cosynthesis involves alloca-
tion, scheduling, and performance evaluation. Alloca-
tion determines the mapping of processes to processing
elements (PEs) and communications to communication
links. Scheduling determines the sequencing of pro-
cesses, their mapping to PEs and the inter-task com-
munication on a link. Performance evaluation deter-
mines whether the finally resulting architecture meets
all the system specifications. Two distinct approaches
have been used for distributed embedded system cosyn-
thesis: optimal and heuristic. Examples in the opti-
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Fig. 3 Overall flow of codesign and coverification.

mal domain are the mixed-integer linear programming
(MILP) [17] and the exhaustive [21] approaches. Exam-
ples in heuristic domain are the iterative [13], [18], [19],
[22] and the constructive (COSYN) [20] approaches.

An overall flow of cosynthesis and coverification
is shown in Fig. 3. Our coverification method can be
applied to any codesign system result as long as it is
modeled using processor and task graphs. For illus-
tration purpose, some codesign results from Yen and
Wolf’s cosynthesis algorithm [13], [19] are used. Ini-
tially, Yen and Wolf’s cosynthesis algorithm [13], [19]
allocates a PE for each process and a bus for each
message. Then, sensitivities are computed, including
communication delays and bus cost. Sensitivity is the
degree by which a system performance and cost will
change when a single process is reallocated. An idle-PE
elimination technique is applied for the least-utilized
bus in the cost calculation. In addition to considering
possible reallocation of a process to another PE, pos-
sible reallocation of a message to another bus is also
considered. When no reallocation remains feasible, a
bus is created, in addition to a new PE. The sensitiv-
ities for each possible bus type and each message are
computed. A reallocation with the highest sensitivity
is chosen. After such reallocation is made, communica-
tion processes are deleted and regenerated for the new
allocation, according to the communication modeling
approach [13]. Then, PEs and buses are rescheduled.
The above steps are repeated until no reallocation is
possible. After such a cosynthesis algorithm, feasible
hardware-software systems are produced. In our cover-
ification framework, these design results will be verified
to check whether they satisfy deadline constraints.

Fig. 4 Thermostat.

3. Coverification Framework

The hardware-software coverification approach pro-
posed in this article is mainly based on the linear hy-
brid automata model. In this section, hybrid systems
are defined and illustrated with examples, along with
our coverification method.

3.1 Hybrid Automata Model

Hybrid systems are defined as digital real-time systems
that are embedded in analog environments [10]. For
example, a thermostat which controls the temperature
of a room by sensing the temperature and controlling a
heater is a hybrid system. When heater is off, tempera-
ture (x) decreases with a rate of −Kx; and when heater
is on, temperature changes with a rate of K(h − x),
where K is a constant related to the room size and h is
a constant related to the power of a heater. The spec-
ification for the thermostat is that temperature should
be maintained between m and M degrees. The hybrid
automaton model of a thermostat is shown in Fig. 4.
Hybrid systems can also be composed in parallel.

Linear hybrid systems are hybrid systems that
have their rate conditions, invariants, and transition re-
lations all linear. In each location of a linear hybrid au-
tomaton, the behavior of all variables are governed by
linear constraints on the first derivatives [10]. Formal
definition of a linear hybrid automaton [23] is shown as
follows.

Definition 1: Linear Hybrid Automaton (LHA)
A linear hybrid automaton (LHA) is a septuple H =
(L, V,B,E, α, η, η0) such that:

• L is a set of locations,
• V is a set of variables,
• B is a set of synchronization labels,
• E is a set of edges called transitions, E ={

e | e = (l, b, u, l
′
), l, l

′ ∈ L, b ∈ B, u ∈ Φ2
}

, where
Φ is the set of all valuations of variables in V ,

• α is a labeling function that assigns to each lo-
cation a set of rate conditions which are time-
invariant,

• η is a labeling function that assigns to each location
l ∈ L an invariant condition η(l) ⊆ V , and

• η0 is an initial invariant condition.

Each state in LHA can be denoted by a pair (l, v),
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where l ∈ L and v is the valuation of a variable in V .
A run of LHA is a finite or infinite sequence of states

ρ : σ0 →t0
f0
σ1 →t1

f1
. . .

where ti ∈ R≥0, the set of non-negative reals, fi ∈
α(li), fi(0) = vi, fi(t) ∈ η(li)∀t, 0 ≤ t ≤ ti and σi+1 is a
transition successor (→ti

fi
) of σ

′
i = (li, fi(ti)).

3.2 Coverification Process

The synthesis of a distributed embedded system having
hardware and software can be modeled by two kinds of
graphs: processor graph and task graph as described
in Sect. 2. Processor graph describes system architec-
ture and task graph describes system behavior. Ac-
cording to the task graphs and process characteris-
tics, hardware-software cosynthesis tools [13], [18]–[20]
can then be used to generate the topology of a dis-
tributed embedded system which meets both the per-
formance and cost goals. But, note that these tools
only validate the codesigned system that we have ob-
tained by cosynthesis through simulation, testing, and
performance estimation [20]. In order to verify whether
a specified distributed embedded system (represented
by task graphs and processor graphs) is correct we have
to map the specified results into a network of LHAs
which can then be used for automatic timing coverifi-
cation. Therefore, task graphs, process characteristics,
and processor graph of a distributed system are the in-
puts of our coverification algorithm, and a network of
LHAs is the output that we need.

Let N denote the set of non-negative integers,
then, we formally define processor and task graphs as
follows.

Definition 2: Processor Graph
A processor graph GP is defined as a tuple
〈QP , TP , ψP , δP , ρP , κP 〉, where

• QP is a set of nodes representing processors,
• TP is a set of arcs representing bus links be-

tween processors, i.e., TP = {(p, p′) | p, p′ ∈
QP and there is a bus link between p and p′},

• ψP : QP → 2∪QTi , ψP (p) = {q | ∃i, q ∈
QTi and q is executed on p}, where i is the index
label of task Ti,

• δP : QP → N , δP (q) is the computation rate of
processor q ∈ QP and is called the processor rate,

• ρP : TP → N , ρP (f) is the communication rate of
bus f ∈ TP , and

• κP : TP → 2∪TTi , κP (f) = {e | ∃i, e ∈
TTi and e is communicated on bus f}, where i is
the index label of task Ti.

Definition 3: Task Graph
A task graph GT is defined as a tuple 〈QT , q0, TT , qf ,
χT , τT , πT , δT 〉, where

• QT is a set of nodes representing processes in task
T ,

Fig. 5 Example of execution paths.

• q0 ∈ QT is an initial process of task T ,
• TT is a set of arcs representing communications

between two processes, i.e., TT = {(q, q′) | q, q′ ∈
QT and process q communicates with (sends data
to) process q′},

• qf ∈ QT is a final process of task T ,
• χT : QT → N , χT (q) is the execution time of

process q on processor ψ−1
P (q) ∈ QP ,

• τT : TT → N , τT (e) is the volume of data to be
transferred for communication e,

• πT ∈ N is the period of task T , and
• δT ∈ N is the deadline of task T .

We extend the preliminary approach presented in
[24] to include communication delay consideration. The
new approach presented in this article also reduces the
size of LHA network produced. Since a task could
have more than one threads or paths of execution that
are concurrent, we will extract the concurrent execu-
tion paths of each task for transformation into inde-
pendent LHAs. Note that process (or execution path)
concurrency in a task can only be modeled by differ-
ent independent automata. Our algorithm traverses a
task graph from its initial START node in a depth-first
search manner, such that the first path traversed (and
thus executed) is called the main path of the task graph.
The main path of a task graph always has START as
its first node and END as its last node. All other paths
obtained in depth-first traversal of the same task graph
are called general paths. These general paths will not
necessarily begin with a START node, nor terminate
with an END node. Execution paths for the example
in Fig. 2 are illustrated in Fig. 5.

We next provide an overview of our coverification
algorithm. Figure 6 presents the pseudo-code of our
algorithm. Details will be given in Figs. 7, 8, 9, and 10.
First, task graphs, a processor graph, a table of process
computation times, and a codesign result are parsed
into appropriate data structures. Second, the proces-
sor graph is mapped to a network of LHAs. Third,
task graphs are mapped to a network of LHAs. Fourth,
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Fig. 6 Coverification algorithm.

LHAs are used to represent inter-task communications.
Fifth, copies of LHAs are made for tasks that have
deadlines greater than periods since more than one in-
stance of task may be running simultaneously. And
finally, we use HyTech to verify LHA network.

Step 1 consists of inputs parsing. First, task
graphs, {GTi | GTi = 〈QTi , q

0
Ti

, TTi , q
f
Ti

, χTi , τTi , πTi ,
δTi〉, i ≥ 1}, are parsed and stored in linked lists. Sec-
ond, a processor graph, GP = 〈QP , TP , ψP , δP , ρP , κP 〉,
is parsed into a linked list. Third, a table of process
computation times is parsed. Finally, a codesign re-
sult, which is to be verified, is input to our algorithm.
A codesign result is basically a mapping of each pro-
cess in each task graph to a processor in the proces-
sor graph and a mapping of each communication in
each task graph to a bus link in the processor graph.
Since each execution of the algorithm verifies a partic-
ular codesign result, during the parsing of a table of
process computation times, not all computation times
from the table are used by the algorithm.

Step 2 consists of a processor graph mapping
algorithm as detailed in Fig. 7. Processor graph,
GP , is converted into a network of LHAs {Hp |
Hp = 〈Lp, Vp, Bp, Ep, αp, ηp, η

0
p〉} ∪ {Hf | Hf =

〈Lf , Vf , Bf , Ef , αf , ηf , η
0
f 〉}, where the former repre-

sents the set of processors and the latter represents the
set of communication buses. An LHA is created for
each element (either a node or an edge) in the proces-
sor graph. For each node (i.e. processor p ∈ QP ), a
new LHA (Hp) is created, which contains one location

Fig. 7 Processor graph mapping.

(lq) for each of the processes, q ∈ ψP (p), scheduled to
be executed by processor p. These locations are called
computation delay locations and they represent the time
delay due to process executions on processors. Fur-
ther, for each edge (i.e. communication link f ∈ TP ), a
new LHA (Hf ) is created which contains one location
(le) for each of the communications e ∈ κP (f) that
uses edge f . These locations are called communication
delay locations and they represent time delays due to
communications on an edge. Appropriate arcs are then
added for modeling the behavior of an actual network
of processors. The function procedures Create Loc()
and Create Arc() used in this algorithm are given in
Fig. 9.

Step 3 consisting of a task graph mapping algo-
rithm is detailed in Fig. 8. Each task graph, GTi , is
traversed from the initial START node in a depth-
first search manner (DFS Traverse(GTi)). All execu-
tion paths, including main path β0 and general paths
βj , j ≥ 1, are extracted from GTi . An LHA, Hβ =
〈Lβ, Vβ , Bβ, Eβ , αβ , ηβ , η

0
β〉, is created for each path of

execution βk ∈ Paths, k ≥ 0, where Paths is the set
of all execution paths for GTi . The LHA of a main
path has locations (DELAY and ERROR) to check pe-
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Fig. 8 Task graph mapping.

riod and deadline constraints. Here, we adopt an edge-
oriented mapping scheme, which is different from the
node-oriented mapping found in [24]. Then, we visit
each edge ekr from the first to the last, and create ap-
propriate locations, transitions, and synchronization la-
bels in the corresponding LHA. Fork locations, Fq and
Fqu, are created when a node q has more than one
out-going edge (out degree(q) > 1). These locations
synchronize the start of successor processes. Join loca-
tions, Jq′ and Jq′u, are created when a node has more
than one in-coming edge (in degree(q′) > 1). These
locations synchronize the end of all predecessor pro-
cesses. Function calls used in task graph mapping,
such as Create DELAY ERROR(), Create Loc(), and
Create Arc() are given in Fig. 9.

Step 4 processes inter-task communications, as de-
tailed in Fig. 10. An LHA is created for each inter-
task communication, irrespective of whether the two

Fig. 9 Function calls used in graph mappings.

Fig. 10 Inter-task communication mapping.

processes involved in an inter-task communication are
executed on the same processor or on different proces-
sors. Two locations, Idle and Com, and two arcs, a
and a′, are created for each inter-task communication
e between two tasks q ∈ QTi and q′ ∈ QTj , i �= j.

Step 5 handles cases of tasks, which have deadlines
greater than periods. At any moment of execution, a
task has at most �d/p� instances at the same time. If
a task deadline d is greater than its period p, then the
number of instances of the task will be greater than
1. So, we duplicate �d/p� − 1 more copies of the LHA
produced in Step 3 for the task and change the period to
�d/p� ∗ p for all the �d/p� LHA copies. This is required
so that all �d/p� instances are active at the same time.

Finally, in Step 6 resulting network of LHAs are
input to HyTech for verification.

In the execution of our algorithm, periods are en-
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Fig. 11 Task graphs for two tasks, showing periods and dead-
lines.

forced in an LHA by DELAY locations. Inter-task com-
munications are achieved by HyTech synchronization
labels on corresponding transitions between the two
LHAs corresponding to the two execution paths with
the inter-task communication. Concurrency among dif-
ferent tasks is modeled by assigning a network of LHAs
to each task. Concurrency among processes within a
single task is also modeled by forking out extra LHAs
that represent independent threads of execution in the
original task graph. The validity of the above presented
algorithm is proved by the following theorem.

THEOREM 1: On verification, if no task LHA en-
ters an ERROR location, all task deadlines will be sat-
isfied.

Proof: When a task LHA did not enter an ERROR
location, it should either enter a DELAY location or
remain in the last node preceding DELAY. Since all
LHAs are assumed to be strongly non-zeno, an LHA
cannot remain in the last node forever, hence it will
eventually enter DELAY, which implies all deadlines
are satisfied.

4. Experimental Results

Details of our coverification algorithm are illustrated
through example ex1 as shown in Fig. 11, Table 2, and
Table 3, which can be found in Yen and Wolf [19]. This
example consists of two tasks with periods 2807 and
789 and hard deadlines 515 and 859, respectively, and
totally 6 processes a, b, c, d, e, and f as shown in Fig. 11
The dash line from process b to process f is an inter-
task communication. The given hard cost constraint
was 1800.

This result of hardware-software cosynthesis used
three processors X , Y and Z, and two buses of bus type
B1, where processes b, c, and f are assigned to proces-

Table 2 Process computation time and PE cost.

PE Cost Computation time
type a b c d e f

X 800 179 95 100 213 367 75
Y 500 204 124 173 372 394 84
Z 400 210 130 193 399 494 91

Table 3 Communication time per data unit and bus interface
cost.

Bus Communication time Bus interface cost
type per data unit X Y Z
B1 2 36 19 30
B2 1 20 10 15

sor X , processes d, and e are assigned to processor Y ,
and process a is assigned to processor Z. There is one
bus between X and Z and another between X and Y .
The cost of system architecture is 1765, which meets
the hard cost constraint. The verification of the above
obtained result can be performed as follows.

First, our algorithm transforms the processor
graph obtained from the result of hardware-software
cosynthesis into a network of linear hybrid automata
as illustrated in Fig. 12 and the task graphs in Fig. 11
to a network of linear hybrid automata as illustrated in
Fig. 13 and Fig. 14.

Then, in Step 6, this network of LHAs was input to
HyTech [11], [25], a popular verification tool for hybrid
systems. The real-time constraints such as hard dead-
lines were verified by checking whether any ERROR
location has been reached in the reachability graph pro-
duced by HyTech. During HyTech modeling, a scale-
down of constants has to be performed for successful
verification. Cost factors are ignored since we are con-
sidering timing coverification.

Although timed automata could be used for mod-
eling the process execution times in Table 2, yet we use
linear hybrid automata because when execution rates
of processors are given, LHA could still be used for
modeling and verification.

After verification, we have found that the code-
signed architecture cannot meet the real-time con-
straints (hard deadline of 859) for Task 2 because of
the periods of tasks being different.

The reason why Task 2 misses its deadline of 859
time units is that process f must wait for data input
from process b. The first instants or jobs of the two
tasks will complete without violating their respective
deadline constraints. But, since the period of Task 1 is
2807 which is much greater than that of Task 2 (789),
and since process f must wait for the completion of
process b, thus the total execution time of Task 2 will
exceed its deadline.

Through our coverification approach, we have
shown that the codesign results obtained by Yen and
Wolf [19] are not actually feasible when inter-task com-
munication is concerned. This shows the usefulness
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Fig. 12 Networks of LHA for the system architecture obtained in [19].

Fig. 13 Networks of LHA for Task 1 and inter-task communi-
cation in Fig. 11.

of coverifying design results after hardware-software
cosynthesis.

Further, we compare the coverification results ob-
tained using a previously proposed approach [24] and
our current approach presented here. The results of
running Prakash and Parker’s two examples [17] using
our previous approach and new approach are given in
Table 4. We assume that in Prakash and Parker’s
first example the periods as well as the deadline are
7, and in the second example they are 15. Prakash
and Parker’s first example (prakash-parker-e1di) has
4 processes, and 4 design results (i = 1, . . . , 4). But
the 4th design result uses only one processor, so we do
not convert it as we are only considering distributed
systems with more than one processor. The second
example (prakash-parker-e2dj) has 9 processes, and 4

Fig. 14 Networks of LHA for one instance of Task 2 in Fig. 11.

design results (j = 1, . . . , 4). As shown in Table 4,
example prakash-parker-e1d1 consists of 1 task with 4
processes and the result of synthesis uses 3 processors
and 2 links. The result of our previous coverification
algorithm showed that we convert the synthesis result
into a network of LHAs with 9 automata requiring a
total of 1.48 seconds for verification. The result of our
new approach proposed in this article shows that we
need only a network of LHAs with only 6 automata,
and spend 0.28 seconds for verification.

The last column of Table 4 indicates whether the
synthesis example satisfies all of its task deadlines.
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Table 4 Experimental results: comparison of previous and new methods.

Example Problem size Architecture Previous [24] New Deadline
#task #process #PE #link #LHA Verification #LHA Verification Satisfied

time(sec) time(sec) ?
ex1 2 6 3 2 - - 11 616.28 No
prakash-parker-e1d1 1 4 3 3 9 1.48 6 0.28 Yes
prakash-parker-e1d2 1 4 3 3 9 1.58 6 0.34 Yes
prakash-parker-e1d3 1 4 2 3 8 1.33 5 0.26 Yes
prakash-parker-e2d1 1 9 3 3 14 143.29 8 3.79 Yes
prakash-parker-e2d2 1 9 3 3 14 157.57 8 3.61 Yes
prakash-parker-e2d3 1 9 2 3 13 103.57 7 2.98 Yes
prakash-parker-e2d4 1 9 2 3 13 98.41 7 2.89 Yes

Table 5 Experimental results: analysis of verification time.

Example Problem size Architecture Coverification
# Tasks # Processes # PE # Links # LHA Time (sec) Deadline Satisfied?

T3P3-1 3 11 3 3 8 16.75 Yes
T3P3-2 3 11 3 2 8 30.62 No
T3P4 3 11 4 3 9 53.81 Yes
T4P3 4 15 3 2 10 511.69 No
T4P4 4 15 4 3 11 3187.35 Yes

Here, only the ex1 example from [19] does not satisfy its
deadline as described above. By comparing the results
obtained using the algorithm presented in [24] (Pre-
vious in Table 4) and the algorithm proposed in this
article (New in Table 4), we conclude that the new algo-
rithm produces a much smaller network of LHAs, which
directly reduces the overall verification time. This is
especially evident for larger examples such as prakash-
parker-e2di. The reduction obtained by the new algo-
rithm in the size of LHA networks generated is as much
as 46% and the reduction in verification time is 99%.

To analyze the factors that affect verification time,
we applied our approach to some larger examples as
shown in Table 5, where TxPy-v indicates that the
specified system consists of x tasks, y PEs, and v is
an optional label denoting different codesigned archi-
tectures. From the table of coverification results, we
can deduce that coverification time depends on mainly
two factors: the number of PEs and the number of pro-
cesses. The number of PEs represents degree of system
concurrency and hence a small change (from 3 PEs to
4 PEs) results in an exponential blow-up in the veri-
fication time (compare row 4 and row 5 in Table 5).
The number of processes represents degree of system
complexity and a change (from 11 processes to 15 pro-
cesses) results in a large difference in the verification
time (compare rows 1, 2, 3 with rows 4, 5 in Table 5).

5. Conclusions

An efficient coverification algorithm based on linear hy-
brid automata has been proposed for hardware-software
codesign of distributed embedded systems. This ap-
proach automatically converts the results of codesign to
linear hybrid automata, thus, it allows automatic cover-
ification of real-time constraints, and is suitable for ver-

ifying distributed embedded systems. Experimental re-
sults show that the new approach has reduced the num-
ber of LHAs and CPU time compared to a previously
proposed approach [24] by as much as 46% and 99%,
respectively. We have also verified using our method,
that the constraint of inter-task communication in a
simple codesign example from Yen and Wolf [19] is not
feasible.
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