
Timing Coverification of Concurrent Embedded Real-Time Systems

Pao-Ann Hsiung
Institute of Information Science, Academia Silica, Taipei, TAIWAN.

E-mail: eric@iis.sinica.edu.tw

Abstract

Hardware-software codesign results of c~ncurrcnt embedded real-
time systems are often not easily verifiable. The main difficulty
lies in-the different time-scales df the embedded hardware, of thk
embedded software, and of the environment. This rate difference
cawes state-space explosions and hence coverification has been
mostly restricted t0 the initial system specifications. Currently,
most codesign tools or methodologies only support validation in
the form of cosimulation and testing. Here, we propose a new for-
mal coverification method based on linear hybrid automam. The
basic problems found in nm~t coveritication tasks are presented and
solved. For complex systems, a simplification strategy is proposed
to attack state-space explosions in formal covedtication. Experi-
mental results show the feasibility of our approach and the increase
in verification scalability through the application of the proposed
method.

1 Introduction

An embedded real-time system is one which is installed in a larger
system called envimnment. It is generally a compact, task-oriented,
and budget-limited system satisfying timing constraints and cost
bounds. Embedded real-time systems usually have both hardware
and software interacting with each other to accomplish a specific
task. Hardware tries to satisfy timing canstraittts. and software re-
duces the overall cost and provides design flexibility. The presence
of both hardware and software incurs difficukies in verifying an
embedded real-time system. Some c~mnt~n obstacles faced are:
the lack of a formal method that can specify both hardware and
software, the different time scales of the hardware, the software,
and the environment, the requirement of communication protocols
between hardware and software, synchronization mechanisms in
hardware-software interfaces, and the lack of a formal verification
technology devoted to hardware-software coverification. After a
careful analysis of possible/existing verification techniques, we felt
the need of proposing a new coverhication method that can tackle
smne of the above problems and has is scalable to complex systems.

The three different time scales of an embedded system and its
environment posed a great problem in previous approaches (see

Section 2). The differing time scales lead m an explosion of state-
space during model composition for coverification. Hybrid au-
tomata, as defined later in Section 3, were proposed for modeling
hybrid systems [2I. Not only can each hybrid autcmaten have a
different time scale, but a hybrid automaton can also have different
time scales within each location (collection of states). This feature
allows the modeling of a multi-rate system that has several timers
with different progress rates. In the hardware-software context, this
means not only can we model a single chip hardware (I-ASIA) and
a uniprocessor software (I-CPU), but also multi-chip hardware (n-
ASIC) and multiprocessor software (m-CPU), where n,m > 0.

Another reason for using the hybrid automata model is that an
embedded digital system can always be perceived as a linear sys-
tem, that is, the clock rares are all linear. The verification theory for
linear hybrid autmnata was proposed by Alar et al in [2] and already
implemented in the HyTech tool [ill. Our contribution mainly
lies in modeling embedded digital systems using the linear hybrid
automata model, demonstrating how basic coverification problems
can be solved, experimenting with real examples, and proposing a
simplification strategy for coverifying complex systems.

This article is organized as follows. Section 2 describes smne
related and previous work. Section 3 gives the formal definition of
a hybrid automamn and describes how an embedded system can be
modeled by a network of hybrid automata. Section 4 presents scune
elementary commonly-found coverification problems and how they
are salved. A simplification strategy is also presented for cwerify-
ing complex systems. Section 5 presents an Ethernet Bridge case
study illustrating our coveritication concepts and method. Section 6
concludes the article with s~tne future work.

2 Previous Work

Large systems can now significantly decrease their overall cost by
designing parts of embedded systems as software executing on a
general-purpose computation processor. This cost reduction is de-
sirable, but it has also created a few new problems of its own such
as the need for a communication protocol between the hardware
and software parts, more complicated fault-tolerance problems, the
myth that software can be easily changed, without any heavy con-
sequences, and coverification problems.

Codesign is an emerging field of research that deals with de-
signing systems that have both hardware and software. In the past
few years. several codesign methodologies were proposed. such
as COSMOS IS], ECOS project [I], LOTOS-based codesign 1151,
CMAPS 1121 to name a few. Codesign tools also abound, such
as SpecSyn [IO], Ptolemy, and Polk [41, COSYMA [9I, wndex,
SAW, COWARE, and CHINOOK 171. Either a combined pmgmm-
ming language such as VHDL with C and HardwareC, or scune

110

fmmal specification language such as LOTOS, ETOILE, Esterel,
graphical FSM. and CSP are used for specifying embedded sys-
tems. Formal techniques have often been limited to the specilica-
tion stage such as formal verification of the system specification in
LOTOS 1151.

From the above, most codesign methodologies or tools cur-
rently validare the codesigns produced, instead of verifring them.
Validation occurs in the fotm of cosimulation and testing. Cover-
ification, although difficult, should not be neglected, especially in
high-consequence systems such as nuclear projects, safety systems,
etc. The main pmblems faced in coverifying a design such as differ-
ent time-scales, etc. were presented in Section 1. Below, we brietly
mention two formal models that have been used for coverification
and/or codesign. namely CFSM and IPN.

Codesign FSM (CFSM) [5] is a fomml model used in the PO-
LIS codesign tool [4]. Coverification is petfomxd by translating
CFSM into traditional FSM and existing FSM-based verification
techniques applied. The problem of different time scales is not
solved because traditional FSM either have no notion of time or
their extension such as T%mdAutomota 131 allow specjfication of
clocks with a single uniform rate only. Inteprered Petri Nets (IPN)
were used for synthesizing interfaces in [I 61. Temporal constraints
were specified by asserting a delay to a place in IPN. But, the
delays occurring in a multi-rate system must be transfomxd into
a common base rate. This transformation is not always ideal or
straightforward. Both CFSM and IPN have the same problem of
having to handle different time scales, either for coverification or
codesign. The hybrid aufomata model we use for formal coverifi-
cation solves the problem of different time-scales and at the same
time automatic covetification can be performed. We will show how
using this model, several covetification problems are solved.

Funher, existing real-time system verification tools such as Up-
paal [6l, SGM (State-Graph Manipulators) [13, 171, and others do
not explicitly distinguish hardware and software verification. Since
our model is based on hybrid automata, we use the HyTech tool
[I I] developed by Henzinger, et al. HyTech is a popular tool for
verifying hybrid systems.

3 Hybrid Automata Model

The hardware-software timingcoverification approach proposed in
this article is mainly based on the hybrid automata model. There
are various reasons for “sing such a model as given in Section 1.
In this section, hybrid systems are defined and illustrated with ex-
amples, the hybrid aotomata model is formally defined, and two
different system models for hardware-software coverification are
proposed.

The hybrid automara model was initially proposed for hybrid
systems. A hybrid system consists of a discrete program with a”
analog environment [2]. For example, a thermostat which controls
the temperature of a room by sensing the temperature and contml-
ling a heater is a hybrid system because when the heater is off the
tentperahtre (x) decreases with a rate of -Kx and when the heater
is on, the tempemtue changes with a rate of K(h -x), where K
is a constant related to the mom and h is a constant related to the
power of the heater. The specification for the thermostat is that
the temperature sho”,ld be maintained between m and M degrees
(0 < m < &4). Other examples of hybrid systems include a water-
level monitor, timed mutual-exclusion protocol, leaking gas burner,
and a game of billiards [I 11. Hybrid systems can also be composed
in parallel. Linear hybridsystems are hybrid systems that have their
activities, invariants. and transition relations all expressed as linear
expressions on the system variables 121.

A hybrid automaton can he fomxilly defined as follows.
Definition 1 Hybrid Automaton (HA)
A hybrid automaton (HA) is a tuple H = (L,V,B, E,a,q), where L

is a set of locations, V is a set of variables, B is a set of synchm-
nization labels, E is a set of edges called transitions, E = {ele =
(l,b,p,I’),i, I’ E L,b E B,p G fl}, where v is the set of all valu-
ations of the variables in V, a is a labeling function that assigns to
each location a set of ocfivities which are time-invariant, and q is
a labeline function that assiens to each location I E L a” invariant
co”ditionq(l) G v’. - II

A state of a hybrid automaton H is a oair (1,~). where 1 EL
and Y is a valuatidn of the variables in V. ‘A I& df H is a finite
or infinite sequence p : cro -+:0 01 +:, ., where oi = (ii, vi), ti E
cK.>‘, fi E a(Ii), h(O) = vi,fi(t) E rl(l;)Vt,O 5 I 5 ti, and cti+t is a
transition swcessor of c$ = (li,fi(li)).

An embedded system with hardware and software can be mapped
into a network of linear hybrid automata (LHA). In the simplest
case, one hybrid a”tomato” represents the hardware and one repre-
sents the software. The hardware and software interfaces are mod-
eled into the hardware hybrid a”tomato” (HHA) and the software
hybrid autoomato” @HA), respectively. Another form of modeling
could be mapping the hardware part into several LHA each repre-
senting some physical hardware component and the software part
into several LHA each representing a software process. Due to
page-limit, this part is omitted.

4 Coveri0cation Techniques

Using the hybrid automata model for a” embedded system, solu-
tion techniques are proposed for some commonly-found coverifice-
lion problems. The five commonly-found elementary coverification
problems presented here include: Sofrware Synchmnizaion, Hard-
ware Synchmnization, Sofhvare Concumncy, Hardware Concur-
rency, and Integrated Co&sign Altcmative VeriJsation. A sys-
tematic simplification technique called SHIV (Sofnuare-Ha&an+
Interface Verification) is also presented for verifying complex sys-
tems. SHIV decomposes the LHA models into three parts. namely
the software, the hardware, and the interface, and ensures that the
system is safe by performing verification of each part.

4.1 S&ware Synchronization

I” most embedded systems, the software accomplishes some tasks
that are costly for the hardware. Often, the hardware makes a re-
quest to the software for perfotming a taSk and waits for the soft-
ware to respond. Blocking synchronization is assumed throughout
this article because embedded systems are generally synchronous.
Asynchrony increases complexity and embedded systems usually
cannot afford it. The hardware after making a request waits for a
pre-specified period of time. as determined by the system specili-
cation or the codesign methodology. If the time limit is reached
and the software has not yet responded, the hardware enters a dan-
gerous ambiguous state and the system is unsafe. Coverification
must ensure that all such software synchronizations are successful
for the given different time scales of the hardware and the sofhvz~e.

Figure 1 shows a LHA simple model of a software synchroniza-
tion. The hardware has a relative clock rate of [S/6,7/6] and the
software (3/4,4/S]. Running the model “sing the HyTech tool, we
found that software synchronization is guaranteed only if 9h,, 2
14s-. Further analysis shows that if [hr,h.] and [sr, s.] were the
hardware and software clock rates. respectively, then the condition
for software synchronization can be given as a parametric expres-
sion:

s,hmax 2 husmin (1)
where h,, is the maximum time the hardware, after making are-
quest, will wait for the software response and S,G~ is the maximum
time the software mwt take for computation of the requested task
or equivalently the slowest computation delay.

111

x,, = 0 \ da E [S/6,7/61 x, = 0 \ dx, E [3/4,4/S]

H8XdW.W sonware

Figure I: Software Syochmtization

4.2 Hardware Synchronization

In contraSt to software synchronization, hardware synchronization
involves a minimum time that the hardware must wait after making
a request to the software. This situation occurs in the execution of
periodic tasks, where the start time of two instances of the same
tasks must he separated by a minimum time interval. For exam-
ple, when the software is responsible for digital signal processing,
if two instances of the same tasks overlap randomly, then the com-
putation of the first task will be affected by the second one, thus
causing a delay in all future outputs. The situation becomes worse
when more then tu’o instances of tbe same task all overlap causing
a heavy workload on the processor executing the software. Coveri-
fication in this case must ensure that the hardware does not violate
the minimum wait time constraints.

Figure 2 shows a hybrid automata model of a hardware syn-
chronization. The hardware and software relative clock-rate ranges
were [5/6,7/6] and [3/4,4/5], respectively. The model specifica-
tion was executed using HyTech and the results obtained: hard-
ware synchronization is guaranteed when the parametric condition
25s,, 2 24h,, is satisfied. Further analytical study shows that
if the hardware and software clock-rate ranges were [h,, hu] and
[sr,s.], respectively, then the hardware synchronization is guamn-
teed only if the following condition is satisfied.

where s- is the maximum computation time of the software and
k,,,;” is the minimum wait-time of the hardware.

4.3 Software Concurrency

If a multiprocessor system is within cost constraints for executing
the software, a natural question that arises is how many compute-
tion processors must be used to speed up software execution in or-
der to cope with hardware requirements and thus guarantee a safe
and feasible system. This question can be answered through Sofr-
war72 Concw7wzcy Coveri*tian (EC). Software concurrency cov.
erification mainly derives parametric conditions that must be sat-
isfied by a m-processor system (m > 1) to ensure a safe system.

4 = 0 \ dxh E [Z/6,7/6] .r, = 0 \d% E [3/4,4/5]

HardWCUE SOftWiUC

Figure 2: Hardware Synchmnization

Figure 3: Software Concurrency

The clock rates for each contiguration of the m-processor system
(m 2 I) must be estimated. The hardware waits for some minimum
time period after making B request. By increasing the quantity of
processors, the software performance could be improved to give
results within the hardware minimum time period.

Figure 3 shows a hybrid automata model for a system with one
hardware and three possible software configurations: l-processor,
2-processor, and 3.processor systems. The hardware relative clock
rate is assumed to be [3/5,2/3] end that of the software contigura-
tions [l/4.3/7], [l/2.2/31. and [3/4.4/51, respectively. A sub-linear
increase in computing power of the software configurations is as-
sumed. If k,, is the maximum hardware wait-time time and smb is
the slowest sofhvare computation period, then on running through
HyTech either one of the following holds: (1) all the three contigu-
rations are safe if k- > 3s,;“, m (2) only the l-processor system
is not safe if h,, > Zs,;., or (3) only the 3-processor system is
safe if hmnr > s,,,in.

Depending on the particular task at hand, km and s,,,;n could be
estimated end the degree of software concurrency obtained through
coverification.

4.4 Hardware Concurrency

In contmst to software concurrency caverification, which increases
software performance to meet hardware requirements, Hardware
Concurrency Coverificalion (HCC) decreases the hardware cost to
meet both the cost end software requirements. Often a cheaper,
slower hardware could satisfy all timing requirements in an em-
bedded system. Opting for such a hardware could decrease ovemJl
system cost, thus leaving more budget for other embedded systems.
Hardware concurrency coverification derives pammetic conditions
for each hardware-software configuration end the verification engi-
neer could then decide on one particular configuration that meets
the timing requirements.

Figure 4 shows the LHA model of hardware concurrency cov-
erification with three hardware configurations HI, Hz, and Hj and
one software configuration (5’). The hardware clock rates are re-
spectively [l/4,3/7], [l/2,2/3], end [3/4,4/5] and that of the soft-
ware is [3/5,2/3]. Suppose that k,,,h,, k,;.,,and h,,,!,, are the re-
spective minimum time that the hardware configurations must wait
(see Hardware Synchronization Caverification in SubSection 4.2)
and smar be the maximum computation time of software. Running
this model through HyTech, we obtain the result that the system
configumtions are safe only if the following conditions are satis-
fied: (1) (Ht,S) is safe if 3kd,, < snar. (2) (HI ,S) and (&S) are
safe if Zhm,, < smm and (3) (HI& (.%,s), end (&.Y) are all
safe if h,i., < sw Hence, if in the slowest and cheapest hardware

112

Figure 4: Hardware Concurrency

configuration (Ht) the condition 3he, < smar is met, then we can
use HI instead of the costlier Hz and H3 hardware configurations.

4.5 Integrated Codesign AIternative Verification

Inregrared Codesign Ahmotive VeriJication (ICAV) handles the
case of complex embedded systems with more then one hardware
architectures and a multiprocessor system for executing the soft-
ware. Several codesign alternatives may be produced and vali-
dated by a codesign methodology Normally the selection c&e-
rion depends on either the cost (minimum cost) or the performance
(maximum throughput) or both (minimum cost-perfonuaoce ratio).
ICAV proposes a new criterion, namely Incomparibiliry Ratio of
SqYware-Hardware (IRSH), which is defined as the safest ratio of
hardware and software clock rates. By a safe ratio, it means that
the ratio is either a minimum or a maximum that must be satis-
fied by an embedded system’s clock rates in order for the system
to be safe. IRSH is a global minimum ratio when there are purely
software synchronizations, it is a global maximum ratio when there
are purely hardware synchronizations, otherwise it is expressed as
a range with its lower bound being the minimum of all locally min-
imal ratios corresponding to software synchronizations end its up-
per bound being the maximum of all locally maximal ratios COT-
responding to hardware synchronizations. This metric achieves a
better tradeoff between the hardware and the software than the
conventional cost-perfonuaoce ratio because the latter can be de-
ceiving at times for very low costs and peak performaoces.

IRSH is best illustrated by an example as shown in Fig. 5.
There me two hardware alternatives with clock rates [3/Z, 15/8]
and [S/6,7/6] and two software alternatives with clock rates [3/4,
4/5] end [l/Z,S/S]. This example is a case of multiple software
synchronization. Table 1 shows the four different configurations
(C,, C2, C3, Cd) achievable by the two hardware end the two soft-
ware alternatives along with their costs, performance values. and
cost-perfomxmce ratios. We observe that under different metrics
the best design configuration is different:

l Cd has the least cost, hut it has a very poor perfomuuxe,

. Cl has the best perfomwnce, but it has a very high cost,

. Cz has the best cost-performance ratio, but on applying ICAV
we found that it has the largest software-hardware incom-
patibility (highest IRSH), which means synchronization and
other communications could require a large effort, and

. C3 has the least IRSH, which means that the hardware and
the software are the least incompatible and thus achieves a
better hardware-software tradeoff than the others.

Figure 5: Integrated Cod&m AUemstive Verification

4.6 Software-Hardware-Interface Veri&ation

A new modularized verification strategy celled Sofhvare-Haniware-
Interface Verifcation (SHIV) is proposed for hardware-software
embedded systems. Generally, the software and the hardware of
an embedded system communicate either through au interface us-
ing communication protocols or through shared memory using syn-
chronization variables. The interface is often explicit and important
in au embedded system. The SHIV strategy verh%z au embedded
system by verifying each part individually, namely the hardware,
the software, and the interface. The awme-guamnlee principle of
formal modular verification (141 is employed in SHIV. In verifying
(guamnreeing) the interface, it is assumed that both the hardware
and the software themselves are correct. Similarly, the principle is
applied to the other two parts: the hardware and the software.

In the context of the linear hybrid automata model. SHIV must
perform each of the following steps to verify a system

. S&vare Verification: The triggering conditions on the tran-
sitions interconnecting the interface and the software are as-
sumed to be TRUE. All clock variables are either reset or
advanced a period of time depending on the triggering con-
ditions on the above transitions.

. Hardware Verification: The triggering conditions on the tmn-
sitions interconnecting the interface and the hardware are as-
sumed to be TRUE. All clock variables are either reset or
advanced a period of time depending on the triggering con-
ditions on the above transitions.

. Inter&e Vwijication: The triggering conditions on the Van-
sitions interconnecting the interface and the hardware and on
the transitions interconnecting the interface and the software
are assumed to be TRUE. All clock variables are either re-
set or advanced a period of time depending on the triggering
conditions on the above transitions.

5 Ethernet Bridge Case Study

Besides the five elementary problems presented in the previous see
tion, we had applied our approach to several real-world systems.
An Ethernet Bridge [151 example is presented in this section for
illustration. It is assumed as in [IS] that the Ethernet LANs oper-

113

Figure 6: Ethernet Bridge: Hardware/Software Models

Figure 7: Ethernet Bridge: lntertace Models

ate under CSMA/CD. The communication estimates given in [IS]
were tmnsfonned into our linear hybrid automata model.

It was found that if the LHA model was directly verified us-
ing HyTech, it could not terminate even after modifying the sys-
tem model as indicated in the HyTech user guide [I 11. Finally, the
SHIV strategy was applied. T%e decomposed hardware and soft-
ware LHA are shown in Fig. 6 and the interface LHA in Fig. 7.
We present the interface verification which is the most important
for a codesign problem. The bridge processing rate was 3C0Ll pps
(packets per second) and the hardware area was 4wO [15].

Given a hardware clock range of 151 /lo, 6] and a softw~e clock
range of [l/5,2/5], the safety condition was 4k,,,in 5 51~~. For
the estimates found in [IS], k,i,, is 127 and smDI is 10, hence the
condition is satisfied.

Since the above condition depends on the clock rates, a hmher
analysis shows that if l/q, k.] and [q,s.] were the respective bard-
ware and software clock ranges, then the condition would be:

6 Conclusion

A linear hybrid automata model based coverification approach was
proposed for hardware-software embedded systems. It was shown
how different time scales of the hardware and the software and the
environment could he handled by the model. Five commonly-found
elementary coverificakion problems were presented and solved ns-
ing the proposed approach. A simplification strategy called SHIV
was also proposed for complex systems. Finally, an Ethernet Bridge

case study was presented which showed bow SHIV could be used to
verify a system when the traditional approach failed. Future work
will include developing more strategies using the linear hybrid au-
tomata model to solve other coverification problems.

References

Ill M. Aiguiec I. Bema!&, G. Bemot. S. Bern& D. DuPont, L. Fcand.
M. had, and F. Rousseau. ECOS: A generic codesign ewimnment
for the Promtyping of real-time applications. In J-M. Berg=. Oz Levi+
and Jacques Rouillard. editors, H,zr&am/So#,wre Co-Des@, ami
Co-Verification Kluwer Academic hbhshtrs, 1997.

[Zl R. Alw C. Courcoubetis, N. Halbwacbs. T.A. “enringer, P.-H. Ho,
X. Nidin, A. Olivem, 1. Sifakis. and S. Yovine. ‘The algorithmic
analysis of hybrid systems. ThPorzrical Cornpurer Science, 1X?:?-
34, 1995.

131 R. Alur and D. Dill. Automata for modeling real-time systems. The-
oretiml Comp”*erSciencc. 126(2):,83-236. npli, ,994.

141 F. Balacin, M. Cbiodo, P. Giusta, H. Hsieb, A. luneskp L. La~gno,
C. Passemne, A. Sangiowan-Wncentelli. E. Sentwich. K. Suzuki,
and B. Tabbarn. Hardware-So,%wre Co-Design of.&,bedded Sys-
lenw: Tke Polis Approach. Kluwer Academic Publishers, 1997.

I51 F. B&in, H. Hsieh. A. lurccska. L. Lavagno. and A. Sangiavzmni-
Vincatelli. Formal verification of embedded systems based on
CFSM nehvork.s. In Proceedings ofthe Design Aumnzaion Confer-
ence, 1996.

[IO] D. Gajski, E V&id. and S. Narayan. A design methodology for sys-
tem spezifictiion mkmnent. In Pmcs. European Design Aummafion
Conference, February 1994.

I1 11 T.A. Henzinger, P.-H. Ho. and H. Wang-T& A user guide to HyTecb.
In Pmcs. Tools and Algorirhmrfor the Consrnrcrion and Annlysis of
sy3mLs, LNCS, valunle 1019. pages 41-71. springer “edag, 1995.

[I21 P.-A. Hsiung. CMAPS: A cosynthcsis methodology for application-
oriented parallel systems. ACM Trans. on Design Aummation OfElec-
tmnic Sysrems, 5t2Mo appear, April 2OW.

[I31 P.-A. Hsiung and F. Wang. A state-graph manipulator tool for real-
time system spechication and verification. In Proc. 5th. IEEE Interna-
tional Conference on ReobTime Computing Systems and Applicotionr
(RTCSA’98,. October 1998.

1141 Oma Kupferman and M.Y. V.&i. On the complexity of branching
modular model checking. In Pmcs. 6th lnlemnfiotud Conference on
Concurrency Tkeor,c LNCS. valumc 962, August 1995.

[I51 L. Sanchez, M. L. Lopez, N. Mantier, C. Canwas, J.C. Lopez,
C. Delgdo-Kloos. A. Royo, and P.T. Breuer. Co-design at work:
The ethernet bridge case study. In I-M. Bcrge, Oz Levi% and
Jacques RouiUard. editors. Har&are/Sfnwrz Co-Design nnd Co-
Verifcorion Kluwer Academic Publisbcn, ,997.

1161 Christopher Vial and Bmno Rouzeyre. “&wan-software co-
synthesis: Modelling and synthesis of interfaces using interpreted
pe!xi neti. In J-M. Berge, Oz Levis. and Jacques Rouillard, ed-
hors, Horhuore/sofMiaare Co-Design and Co-Verijcotion Kluwer
Academic Publishers. 1997.

114

