Timing Coverification of Concurrent Embedded Real-Time Systems

Pao-Ann Hsiung
Institute of Information Science, Academia Sinica, Taipei, TAIWAN.
E-mail: eric@iis.sinica.edu.tw

Abstract

Hardware-software codesign results of concurrent embedded real-
timie systems are often not easily verifiable, The main difficulty
lies in the different time-scaies of the embedded hardware, of the
embedded software, and of the environment. This rate difference
causes state-space explosions and hence coverification has been
mostly restricted to the initial system specifications. Currently,
most codesign tools or methodologies only support validation in
the form of cosimulation and testing. Here, we propose a new for-
mal coverification method based on Linear hybrid automata. The
basic problems found in most coverification tasks are presented and
solved. For complex systems, a simplification strategy is proposed
to attack state-space explosions in formal coverification. Experi-
mental results show the feasibility of our approach and the increase
in verification scalability through the application of the proposed
method.

1 Imtroduction

An embedded real-fime system is one which is installed in a larger
system called environment. It is generaily a compact, task-oriented,
and budget-limited system satisfying timing constraints and cost
bounds. Embedded real-time systems usually have both hardware
and software interacting with each other to accomplish a specific
task. Hardware iries to satisfy timing constraints, and software re-
duces the overall cost and provides design flexibility. The presence
of both hardware and software incurs difficulties in verifying an
embedded real-time system. Some common obstacles faced are:
the lack of a formal method that can specify both hardware and
software, the different time scales of the hardware, the software,
and the environment, the requirement of communication protocols
between hardware and software, synchronization mechanisms in
hardware-software interfaces, and the lack of a formal verification
technology devoted to hardware-software coverification. After a
careful analysis of possible/existing verification techniques, we felt
the need of proposing a new coverification method that can tackle
some of the above problems and has is scalable to complex systems.

The three different time scales of an embedded system and iis
environment posed a greal problem in previous approaches (see

Permission to make digital or hard copies of all or part ot this work for
personal or classroom use is granted withowt fee provided that copics
are not made or distributed for profit or eommercial advamage and that
copies bear this notice and the full citation on the first page. To copy
othetwise. to republish, to post on servers or to redistribute o lists,
requires prior specific permission and/or a fee.

CODES '99 Rome ltaly

Copyright ACM 1999 1-58113-132-1/99/05..%5.00

110

Section 2). The differing time scales lead to an explosion of state-
space during model composition for coverification, Hybrid au-
tomata, as defined later in Section 3, were proposed for modeling
hybrid systems [2]. Not only car each hybrid automaton have a
different time scale, but a hybrid automaton can alsp have different
time scales within each location (collection of states). This feature
allows the modeling of a multi-rate system that has several timers
with different progress rates. In the hardware-software context, this
means not only can we model a single chip hardware (1-ASIC) and
a uniprocessor software (1-CPU), but also multi-chip hardware (n-
ASIC) and multiprocessor software (m-CPU), where n,m > 0.

Another reason for using the hybrid automata model is that an
embedded digital system can always be perceived as a linear sys-
tem, that is, the ¢lock rates are all linear. The verification theory for
linear hybrid automata was proposed by Alur et al in [2] and already
implemented in the HyTech tool {111, Our contribution mainly
lies in modeling embedded digital systems using the linear hybrid
automata model, demonstrating how basic coverification problems
can be solved, experimenting with real examples, and proposing a
simplification strategy for coverifying complex systems.

This article is organized as follows. Section 2 describes some
related and previous work. Section 3 gives the formal definition of
a hybrid automaton and describes how an embedded system can be
modeled by a network of hybrid automata, Section 4 presents some
clementary commonly-found coverification problems and how they
are solved. A simplification strategy is also presented for coverify-
ing complex systems. Section 5 presents an Ethernet Bridge case
study illustrating our coverification concepts and method. Section 6
concludes the article with some future work.

2 Previous Work

Large systems can now significantly decrease their overall cost by
designing parts of embedded systems as software executing on a
general-purpose computation processor. This cost reduction is de-
sirable, but it has also created a few new problems of its own such
as the need for a communication protocol between the hardware
and software parts, tmore complicated fault-tolerance problems, the
myth that software can be easily changed, without any heavy con-
sequences, and coverification problems.

Codesign is an emerging field of research that deals with de-
signing systems that have both hardware and software. In the past
few years, several codesign methodologies were proposed, such
as COSMOS [8], ECOS project [1], LOTOS-based codesign [15],
CMAPS [12] w name a few. Codesign tools also abound, such
as SpecSyn [10], Ptolemy, and Polis [4], COSYMA (9], Tyadex,
SAW, COWARE, and CHINOQK [7]. Either a combined program-
ming language such as VHDL with C and HardwareC, or some

formal specification language such as LOTOS, ETOILE, Esterel,
graphical FSM, and CSP are used for specifying embedded sys-
tems. Formal techniques have often been limited to the specifica-
tion stage such as formal verification of the system specification in
LOTOS {15}

From the above, most codesign methodologies or tools cur-
rently validate the codesigns preduced, instead of verifying them.
Validation occurs in the form of cosimulation and testing. Cover-
ification, aithough difficuit, should not be negiected, especially in
high-consequence systems such as nuclear projects, safety systems,
ete. The main problems faced in coverifying a design such as differ-
ent time-scales, etc. were presented in Section 1. Below, we briefly
mention two formal models that have been used for coverification
and/or codesign, namely CFSM and IPN.

Codesign FSM (CFSM) [5] is a formal model used in the PO-
LIS codesign tool [4]. Coverification is performed by translating
CFSM into traditional FSM and existing FSM-based verification
techniques applied. The problem of different time scales is not
solved because traditional FSM either have no notion of time or
their extension such as Timed Automara [3] allow specification of
clocks with a single uniform rate only. Intepreted Peiri Nets (IPN)
were used for synthesizing interfaces in [16]. Temporal constraints
were specified by asserting a delay to a place in [PN. But, the
delays occurring in a multi-rate system must be transformed into
a common base rate. This transformation is not always ideal or
straightforward. Both CFSM and IPN have the same problem of
having to handle different time scales, either for coverification or
codesign, The hybrid automata model we use for formal coverifi-
cation solves the problem of different time-scales and at the same
time automatic coverification can be performed. We will show how
using this model, several coverification problems are solved.

Further, existing real-time system verification tools such as Up-
paal [6], SGM (State-Graph Manipulators) [13, 17], and others do
not explicitly distinguish hardware and software verification. Since
our model is based on hybrid automata, we use the HyTech tool
[11] developed by Henzinger, et al. HyTech is a popular tool for
verifying hybrid systems.

3 Hybrid Automata Model

The hardware-software timing coverification approach proposed in
this article is mainly based on the hybrid automata model. There
are various reasons for using such a model as given in Section 1.
In this section, hybrid systems are defined and illustrated with ex-
amples, the hybrid automata model is formally defined, and two
different system models for hardware-software coverification are
proposed.

The hybrid automata model was initially proposed for hybrid
systems. A hybrid system consists of a discrete program with an
analog environment (2], For example, a thermostat which controls
the temperature of a room by sensing the temperature and control-
ling a heater is a hybrid system because when the heater is off the
temperature (x) decreases with a rate of ~Kx and when the heater
is on, the temperature changes with a rate of K(h — x), where X
is a constant related to the room and & is a constant related to the
power of the heater. The specification for the thermostat is that
the temperature should be maintained between m and M degrees
(0 < m < M). Other examples of hybrid systems include a water-
level monitor, timed mutual-exclusion protocol, leaking gas bumner,
and a game of billiards [11]. Hybrid systems can also be compoesed
in parallel. Linear hybrid systems are hybrid systems that have their
activities, invariants, and transition relations all expressed as linear
expressions on the system variables [2].

A hybrid automaton can be formally defined as follows.

Definition I Hybrid Automaton (HA)
A hybrid automaton (HA) is a tuple H = (L,V, B, E, o,)}, where L

is a set of locations, V is a set of variables, B is a set of synchro-
nization labels, £ is a set of edges called transitions, E = {ele =
(b, '), 1,1 € L,b € B,u C V?}, where ¥/ is the set of all valu-
ations of the variables in V, ot is a labeling function that assigns to
each location a set of activities which are time-invariant, and 1j is
a labeling function that assigns to each location [€ L an invariant
condition n{[) C V.

A state of a hybrid autematon H is a pair (I,v), where [€ L
and v is a valuation of the variables in V. A run of H is a finite
or infinite sequence p : Og —)f% o —)"J . whereo; = (I, v), €
R2%, fi € ally), £i(0) = vi, fi(1) €N(LWV1,0 <1 <rj, and 041 isa
transition successor of of = (&, fi(£)).

An embedded system with hardware and software can be mapped
into a network of lincar hybrid automata (LHA). In the simplest
case, one hybrid automaton represents the hardware and one repre-
sents the software. The hardware and software interfaces are mod-
eled into the hardware hybrid automaton (HHA) and the software
hybrid automaton (SHA), respectively. Another form of modeling
could be mapping the hardware part into several LHA each repre-
senting some physical hardware component and the software part
into several LHA each representing a software process. Due to
page-limil, this part is omitted.

4 Coverification Techniques

Using the hybrid automata model for an embedded system, solu-
tion techniques are proposed for some commonly-found coverifica-
tion problems. The five commonly-found elementary coverification
problems presented here include: Software Syrchronization, Hard-
ware Synchronization, Software Concurrency, Hardware Concur-
rency, and Integrated Codesign Alternative Verification. A sys-
tematic simplification technique called SHIV (Software-Hardware-
Interface Verificarion) is also presented for verifying compiex sys-
tems. SHIV decomposes the LHA models into three parts, namely
the software, the hardware, and the interface, and ensures that the
system is safe by performing verification of each part,

4.1 Software Synchronization

In most embedded systems, the software accomplishes some tasks
that are costly for the hardware. Often, the hardware makes a re-
quest to the software for performing a task and waits for the soft-
ware to respond, Blocking synchronization is assumed throughout
this article because embedded systems are generally synchronous.
Asynchrony increases complexity and embedded systems usually
cannot afford it. The hardware after making a request waits for a
pre-specified period of time, as determined by the system specifi-
cation or the codesign methodology. If the time limit is reached
and the software has not yet responded, the hardware enters a dan-
gerous ambiguous state and the system is unsafe. Coverification
must ensure that all such software synchronizations are successful
for the given different time scales of the hardware and the software.
Figure 1 shows a LHA simple model of a software synchroniza-
tion. The hardware has a relative clock rate of [5/6,7/6} and the
software [3/4,4/5]. Running the model using the HyTech tool, we
found that software synchronization is guaranteed only if Shmay >
14smax. Further analysis shows that if [ky, k) and [s;,5,] were the
hardware and software clock rates, respectively, then the condition
for software synchronization can be given as a parametric ¢xpres-

sion:
Sthmax 2 PuSmin 14}

where Rpg, is the maximum time the hardware, after making a re-
quest, will wait for the software response and Sy, is the maximum
time the software must take for computation of the requested task
or equivalently the slowest computation delay.

111

Figure 1: Software Synchronization

4.2 Hardware Synchroaization

In contrast to software synchronization, hardware synchronization
involves a minimum time that the hardware must wait after making
a request to the software. This situation occurs in the execution of
periodic tasks, where the start time of two instances of the same
tasks must be separated by a minimum time interval. For exam-
ple, when the software is responsible for digital signal processing,
if two instances of the same tasks overlap randomly, then ihe com-
putation of the first task will be affected by the second one, thus
causing a delay in all future outputs. The situation becomes worse
when more than two instances of the same task all overlap causing
a heavy workload on the processor executing the software. Coveri-
fication in this case must ensure that the hardware does not violate
the minimum wait 1ime constraints.

Figure 2 shows a hybrid automata model of a hardware syn-
chronization. The hardware and software relative clock-rate ranges
were {5/6,7/6] and [3/4,4/5), respectively. The model specifica-
tion was executed using HyTech and the results obtained: hard-
ware synchronization is guaranteed when the parametric condition
238max > 28hpm;y, 15 satisfied. Furiher analytical study shows that
if the hardware and software clock-rate ranges were [Ay, hy] and
[51,5u], respectively, then the hardware synchronization is guaran-
teed only if the following condition is satisfied.

(2

where Sp; is the maximum computation time of the software and
Pomin 15 the minimum wait-time of the hardware.

By Smax 2 Subinin

4.3 Software Concurrency

If a multiprocessor system is within cost constraints for executing
the software, a natural question that arises is how many computa-
tion processors must be used to speed up software execution in or-
der to cope with hardware requirements and thus guarantee a safe
and feasible systerm. This question can be answered through Sofi-
ware Concurrency Coverification (SCC). Software concurrency cov-
erification mainly derives parametric conditions that must be sat-
isfied by a m-processor system (m > 1) to ensure a safe system.

xp =0~ dxy €[5/6,7/6] x5 =0\ dx; € [3/4,4/5]

Xh S 1
start
?’ = 10 B 2 Bin Xs
h = done
Hardware

Figure 2: Hardware Synchronization

112

= start
start m X =0
xp=1) w1 €[1/4,3/7)
Xp = restart]
Xs = Sminy
dxgo €(142,2/3]
restart]l restart restart2
Xp=0 xy = X5 = Smim
dxy € [3/4,4/5)
Hardware Software ¢ < Smin3

Figure 3: Software Concurrency

The clock rates for each configuration of the m-processor system
{m > 1) must be estimated, The hardware waits for some minimum
time period after making a request. By increasing the quantity of
processars, the software performance could be improved to give
results within the hardware minimum time peried.

Figure 3 shows a hybrid automata model for a system with one
hardware and three possible software configurations: 1-processor,
2-processor, and 3-processor systems. The hardware relative clock
rate is assumed to be [3/5,2/3) and that of the software configura-
tions [1/4, 3/7], {1/2, /3], and [3/4, 4/5], respectively. A sub-linear
increase in computing power of the software configurations is as-
samed. If by is the maximum hardware wait-time time and sy, 15
the slowest software computation peried, then on running through
HyTech either one of the following holds: (1) all the three configu-
rations are safe if Rpgr > 35min, Or (2) only the 1-processor systetn
is not safe if Mmay > 28min, or (3) only the 3-processor system is
safe if Amgz > Smin.

Depending on the particular task at band, Ayq, and 5,44, could be
estimated and the degree of software concurrency obtained through
coverification.

4.4 Hardware Concurrency

In contrast to software concurrency coverification, which increases
software performance to meet hardware requirements, Hardware
Concurrency Coverification (HCC) decreases the hardware cost to
meet both the cost and software requirements. Often a cheaper,
slower hardware could satisfy all timing requirements in an em-
bedded system. Opting for such a hardware could decrease overall
system cost, thus leaving more budget for other emtbedded systems.
Hardware concurrency coverification derives parametric conditions
for each hardware-software configuration and the verification engi-
neer could then decide on one particular configuration that meeis
the timing requirements,

Figure 4 shows the LHA model of hardware concurrency cov-
erification with three hardware configurations Hy, H,, and Hy and
one software configuration (5). The hardware clock rates are re-
spectively [1/4,3/7, {1/2,2/3], and [3/4,4/5] and that of the soft-
ware is [3/5,2/3). Suppose that fimam, , Aminy+-atd Fmn, are the re-
spective minimum time that the hardware configurations must wait
(see Hardware Synchronization Coverification in SubSection 4.2)
and Smq, be the maximum computation time of software. Running
this model through HyTech, we obtain the result that the system
configurations are safe only if the following conditions are satis-
fied: (1) (H1,5) is safe if 3hpmn, < Smax, (2) (H),S) and (Hz,S) are
safe if 2Rpin, < Smay, and (3) (H1,8), (H2,5), and (H3,5) are all
safe if hygpy < Smax. Hence, ifin the slowest and cheapest hardware

xy =0 \

@ x;=0 \dx, €[3/5,2/3]
start donel
xp =0 4 2 Frnny start (é:‘n-u_-,l3 done2,
one
dxy € [1/4,3/7) m done? x =0 <8
il [% 2 bai Cwain >~
Xp < hml '
dna €[1/2:2/3] € Cwaiz restartl restar2
resi X5 2 Smax X5 > Smax
X < Bming L X0 3 b x:=0 X =
days € [3/4,4/5) CWaity O™ 5 s
Hardware > < fimmy Software

Figure 4: Hardware Concurrency

configuration (H1)} the condition 3hmm, < Smax is met, then we can
use Hy instead of the costlier Ha and H3 hardware configurations.

4.5 Integrated Codesign Alternative Verification

Integrated Codesign Alternative Verification (ICAV) handles the
case of complex embedded systerms with more than one hardware
architectures and a multiprocessor system for executing the soft-
ware. Several codesign alternatives may be produced and vali-
dated by a codesign methodology. Normally the selection crite-
rion depends on either the cost (minimum cost) or the performance
{maximum throughput) or both (minimum cost-performance ratio).
ICAV proposes a new criterion, namely Incompatibility Ratio of
Saftware-Hardware (IRSH), which is defined as the safest ratio of
hardware and software clock rates. By a safe ratio, it means that
the ratio is either a minimum or a maximum that musi be satis-
fied by an embedded system’s clock rates in order for the system
to be safe. IRSH is a globa! minimum ratio when there are purely
software synchronizations, it is a global maximum ratio when there
are purely hardware synchronizations, otherwise it is expressed as
a range with its lower bound being the minimum of all locally min-
imal ratios corresponding to software synchronizations and its up-
per bound being the maximum of all locally maximal ratios cor-
responding to hardware synchronizations. This metric achieves a
better trade-off between the hardware and the software than the
conventional cost-performance ratio because the latter can be de-
ceiving at times for very low costs and peak performances,

IRSH is best illustrated by an example as shown in Fig. 5.
There are two hardware alternatives with clock rates [3/2,15/8]
and [5/6,7/6) and two software alternatives with clock rates [3/4,
4/5] and [1/2,5/8]. This example is a case of multiple software
synchronization. Table 1 shows the four different configurations
(C}, Ca, C3, C4) achievable by the two hardware and the two soft-
ware alternatives along with their costs, performance values, and
cosi-performance ratios. We observe that under different metrics
the best design configuration is different:

o C, has the least cost, but it has a very poor performance,
o) has the best performance, but it has a very high cost,

e C; has the best cost-performance ratio, but on applying ICAV
we found that it has the largest software-hardware incom-
patibility (highest IRSH), which means synchronization and
other communications could require a large effort, and

o (3 has the least IRSH, which means that the hardware and
the software are the least incompatible and thus achieves a
better hardware-software trade-off than the others.

113

Table 1: ICAV Example

l Conf | HW Clock | SW Clock | Cost | Perf | Cost/Perf | IRSH
G 3/2,15/8 374,475 1000 | 100 10.00 2.5
[* [3/2,15/8 1/2,5/8 750 80 938 3.75
[# 5/6,7/6) 3/4,4/5 650 60 10.83 1.56
Cy 5/6,7/ 1/2,578 500 50 10.00 2.33

=0 \

Xp S:limu, xS k%z donel

X1 % Smin

deq) & 13/’:!1/ 5]

€[3/6,7/6}

X5 S Imi
dra & (1/2578)

Softwarc

Figure 5: Integrated Codesign Alterniative Verification

4.6 Software-Hardware-Interface Veriflication

A new modularized verification strategy called Saftware-Hardware-
Interface Verification (SHIV) is proposed for hardware-software
embedded systems. Generally, the software and the hardware of
an embedded systerm communicate either through an interface us-
ing communication protocols or through shared memory using syn-
chronization variables. The interface is often explicit and important
in an embedded system. The SHIV stralegy verifies an embedded
system by verifying each part individually, namely the hardware,
the software, and the interface. The assume-guarantee principle of
formal modular verification { 14] is employed in SHIV. In verifying
(guaranteeing) the interface, it is assumed that both the hardware
and the software themselves are correct, Similarly, the principle is
applied to the other two parts: the hardware and the software.

In the context of the linear hybrid automata model, SHIV must
perform each of the following steps to verify a system.

» Software Verification: The triggering conditions on the tran-
sitions interconnecting the interface and the software are as-
sumed to be TRUE. All clock variables are either reset or
advanced a peried of time depending on the triggering con-
ditions on the above transitions.

Hardware Verification: The triggering conditions on the tran-
sitions interconnecting the interface and the hardware are as-
sumed to be TRUE. All clock variables are either reset or
advanced a period of time depending on the triggering con-
ditions on the above transitions.

Interface Verification: The triggering conditions on the tran-
sitions interconnecting the interface and the hardware and on
the transitions interconnecting the interface and the software
are assumed to be TRUE. All cleck variables are either re-
set or advanced a period of time depending on the triggering
conditions on the above transitions.

5 Ethernet Bridge Case Study

Besides the five elementary problems presented in the previous sec-
tion, we had applied our approach to several real-world systems.
An Ethernet Bridge [15] example is presented in this section for
illustration. it is assumed as in [15] that the Ethemnet LANs oper-

Seftware

Hardware

Figure 7: Ethernet Bridge: Interface Models

ate under CSMA/CD. The communication estimates given in [15]
were transformed into our linear hybrid automata model.

It was found that if the LHA model was directly verified us-
ing HyTech, it could not terminate even after modifying the sys-
tem model as indicated in the HyTech user guide [11]. Finaily, the
SHIV strategy was applied. The decomposed hardware and soft-
ware LHA are shown in Fig. 6 and the interface LHA in Fig. 7,
We present the interface verification which is the most important
for a codesign problem. The bridge processing rate was 3000 pps
(packets per second) and the hardware area was 4000 [15].

Given a hardware clock range of [51/10, 6] and a software clock
range of [1/5,2/5], the safety condition was 4,y < 518pg,. For
the estimates found in (15], Bypin is 127 and spay is 10, hence the
condition is satisfied.

Since the above condition depends on the clock rates, a further
analysis shows that if [Ay, h,] and [s;,5,] were the respective hard-
ware and software clock ranges, then the condition would be:

i_lm_ﬂ < f‘_l or

©)]

= Suhmin < AiSmax
Smax Su

8 Conclusion

A linear hybrid automata model based coverification approach was
proposed for hardware-software embedded systems. It was shown
how different time scales of the hardware and the software and the
environment could be handled by the model. Five commmonly-found
elementary coverification problems were presented and solved us-
ing the proposed approach. A simplification strategy called SHIV
was also proposed for complex systems. Finally, an Ethernet Bridge

114

case study was presented which showed how SHIV could be used to
verify a system when the traditional approach failed. Future work
will include developing more sirategies using the linear hybrid au-
tomata model to solve other coverification problems.

References

[1] M. Aiguier, J. Benzakki, G. Bernot, S. Beroff, D. Dupont, L. Freund,
M. Israel, and F. Rousseau. ECOS: A generic codesign environment
for the prototyping of real-time applications. In }-M. Berge, Oz Levia,
and Jacques Rouillard, editors, Hardware/Software Co-Design and
Co-Verification. Kluwer Academic Publishers, 1997.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and 8. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138:3—
34, 1995.

[3]1 R. Alur and D. Dill. Automata for modeling real-time systems, The-
oretical Computer Science, 126(2):183-236, April 1994,

{4] F. Balarin, M, Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The Polis Approach. Kluwer Academic Publishers, 1997,

F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, apd A. Sangiovanni-
Vincentelli. Formal verification of embedded systems based on
CFSM networks. In Proceedings of the Design Automation Confer-
ence, 1996.

). Bengtsson, K. Larsen, F. Larsson, P. Petterson, Y. Wang, and
C. Weise. New generation of UPPAAL. In Procs. of the International
Workshap on Software Tools for Technology Transfer, Iuly 1998,

PH. Chou, R.B. Ortega, and G. Boriello. The CHINOOK hardware-
software co-synthesis system. In Procs. International Symposium on
System Synthesis, 1995.

JM. Daveau, G.F. Marchioro, T. Ben-Ismail, and A.A. Jerraya.
COSMOS: An SDL based hardware/software codesign environment.
In JI-M. Berge, Oz Levia, and Jacques Rouillard, editors, Hard-
ware/Software Co-Design and Co-Verification. Kluwer Academic
Publishers, 1997.

R. Emnst, J. Henkel, and T. Benner, Hardware-software cosynthesis
for micro-controllers. TEEE Design and Test of Computers, 10(4),
December 1993,

D. Gajski, F. Vahid, and 8. Narayan, A design methodology for sys-
tem specification refinement. In Procs. Enropean Design Automation
Ceonference, February 1994,

T.A. Henzinger, P.-H. Ho, and H. Wong-To1. A user guide to HyTech,
In Procs. Tools and Algorithms for the Construction and Analysis of
Systems, LNCS, volume 1019, pages 41-71. Springer Verlag, 1995.
[I2] P-A. Hsiung. CMAPS: A cosynthesis methodology for application-
oriented parallel systems. ACM Trans. on Design Automation of Elec-
tronic Systems, 3(2):to appear, April 2000.

P-A. Hsiung and F. Wang. A state-graph manipulator tool for real-
time system specification and verification. In Proc. 5th. IEEE Interna-
tional Conference on Real-Time Computing Systems and Applications
(RTCSA'98), October 1998.

Orna Kupferman and MLY. Vardi. On the complexity of branching
modular model checking. In Procs. 6th International Conference on
Cancurrency Theory, LNCS, volume 962, August 1995.

L. Sanchez, M. L. Lopez, N. Martinez, C. Carreras, J.C. Lopez,
C. Delgado-Kloos, A. Royo, and PT. Brever. Co-design at work:
The ethernet bridge case study. In J-M. Berge, Oz Levia, and
Jacques Rouillard, editors, Hardware/Software Co-Design and Co-
Verification. Kluwer Academic Publishers, 1997.

Christopher Vial and Bruno Rouzeyre. Hardware-software co-
synthesis: Modelling and synthesis of interfaces using interpreted
petri nets. In J-M. Berge, Oz Levia, and Jacques Rouillard, ed-
itors, Hardware/Software Co-Design and Co-Verification Kluwer
Academic Publishers, 1997.

F. Wang and P-A. Hsiung. Automatic verification on the large. In

Proc. 3rd IEEE High-Assurance Systems Engineering Symposium
(HASE98), pages 134141, November 1998,

(5]

[6]

N

18]

(91

(10]

1)

[13]

[14]

(151

[18]

[17]

