
Formal Synthesis and Code Generation of
Embedded Real-Time Software

Pao-Ann Hsiung
Department of Computer Science and/nformation Engineering

National Chung Cheng University, Chiayi-621, Taiwan, ROC
E-mail: hpa@computer.org

A B S T R A C T

Due to rapidly increasing system complexity, shortening time-to-
market, and growing demand for hard real-time systems, formal
methods are becoming indispensable in the synthesis of embedded
systems, which must satisfy stringent temporal, memory, and en-
vironment constraints. There is a general lack of practical formal
methods that can synthesize complex embedded real-time software
(ERTS). In this work, a formal method based on TJrne Free-Choice
Petri Nets (TFCPN) is proposed for ERTS synthesis. The syn-
thesis method employs quasi-static data scheduling for satisfying
limited embedded memory requirements and uses dynamic real-
time scheduling for satisfying hard real-time constraints. Software
code is then generated from a set of quasi-statically and dynami-
cally scheduled TFCPNs. Finally, an application example is given
to illustrate the feasibility of the proposed TFCPN-based formal
method for ERTS synthesis.

K e y w o r d s

Embedded rcal-time software, Petri Nets, scheduling, code genera-
tion

1. I N T R O D U C T I O N

Recently, there has been a proliferation of embedded real-time
systems in the form of home appliances, internet appliances, per-
sonal assistants, wearable computers, telecommunication gadgets,
and transportation facilities among numerous others. In the near
future, we will see a continuing escalation of system complexity,
shortening of time-to-market, and growing demands for hard real-
time. All these factors, coupled with the need to satisfy stringent
temporal, memory, and environment conswaints, have propelled the
requirement of practical formal methods for the efficient synthesis
of such systems, which usually have both embedded hardware and
embedded software. In contrast tO the maturity of hardware design
methodologies [10], software design techniques are still relatively
immature and sparse. Thus, there is a need for practical formal syn-
thesis techniques targeted at embedded real-time software (ERTS).

In light of the above-mentioned need, a formal synthesis method

Permission to make digital or hard copies o f all or part o f this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior speei fie permission and/or a fee.
CODES 01 (2openhagcn Denmark
Copyright ACM 2001 1-58113-364-2/01/04...$5.00

based on Tune Free.Choice Petri Nets (TFCPN) is proposed, which
employs quasi-static data scheduling for satisfying limited embed-
ded memory restrictions and uses dynamic real-tir~ scheduling for
satisfying hard real-time constraints. Software code is then gener-
ated from a set of scheduled TFCPNs. An application example will
illustrate the feasibility and benefits of our proposed method.

An embedded real-time system is a computation unit, installed
in a larger environment system, such that it helps the environment
accomplish some dedicated set of tasks. Some examples include
avionics flight control, vehicle cruise control, washing machine
fuzzy control, and network-enabling devices in home appliances
such as embedded web servers. In general, an embedded system
has both hardware and software parts. Hardware is fabricated as
one or more ASICs, ASIPs, or PLDs. Software is executed on one
or more microprocessors, with or without an operating system. Em-
bedded real-time software (ERTS) is a piece of program code that
must satisfy real-time constraints such as response time, deadlines,
and periods. ERTS communicates with the embedded hardware
either through an interface or through direct connections.

Two main issues involved in the design of ERrS are:

• Bounded Memory Execution: A processor cannot have infi-
nite amount of memory space for the execution of any soft-
ware process. This fact is even m ~ e emphasized in an em-
bedded system, which generally has only a few hundreds of
kilobytes memory installed.

• Real-Tune Constraints: A processor may have to execute
several concurrent tasks with precedence and temporal con-
straints. Thus, an ERrS is generally composed of several
concurrent, computation, real-time tasks.

In solution to the above two issues, a synthesis method for ERrS
must generate program code that can be executed in a bounded
amount of memory, while satisfying all given real-time constraints.
The proposed solutions to the above two issues are as follows:

• Quasi-Static Data Scheduling: The bounded memory exe-
cution issue can be solved by quasi-static data scheduling
(QSDS), which guarantees that, for all possible outcomes
in a non-deterministic data-depandent execution choice, the
memory utilized for computation is always bounded and the
execution of the softwexe is periodic, that is it always returns
to its initial status.

• Dynamic Real-Time Scheduling: The renl-time constraints is-
sue can be solved by dynamic real-time scheduling (DRTS),
which guarantees that a set of concurrent real-time software
tasks can be executed on a processor, while satisfying all pre-
cendence and temporal constraints.

2 0 8

This article is organized as follows. Section 2 gives some previ-
ons work related to ERTS synthesis. Section 3 formulates, models,
and solves the ERTS synthesis problem. Section 4 illustrates the
proposed problem solution through an application example. Sec-
tion 5 concludes the article giving some future work.

2 . P R E V I O U S W O R K
Currently, software synthesis is a hot topic of research in the field

of hardware-software codesiga of embedded systems [6]. Previ-
ously, a large effort was directed towards hardware synthesis and
comparatively little attention paid to software synthesis. Partial
software synthesis was mainly carried out for communication pro-
tecols [14], plant controllers [13], and real-time schedulers [1] be-
cause they generally exhibited regular behaviors. Only recently has
there been some work on automatically generating software code
for embedded systems [11, 16, 17, 2]. Except for MetaH from
Honeywell, no other automatic software synthesis method is avail-
able for concurrent embedded real-time sof~are. In the following,
we will briefly survey the existing works on the synthesis of non
real-time software, on which our work is based.

Lin [11] proposed an algorithm that generates a software pro-
gram from a concurrent process specification through intermediate
Petri-Net representation. This approach is based on the assumption
that the Pctri-Nets are safe, Le., buffers can store at most one data
unit, which implies that it is always schedulable. The proposed
method applies quasi-static scheduling to a set of safe Petri-Nets
to produce a set of corresponding state machines, which are then
mapped syntactically to the final software code. Later, Zhu and Lin
[17] proposed a compositional version of the synthesis method that
reduced the generated code size and was thus more efficient.

A software synthesis method was proposed for a more general
Petri-Net framework by Sgroi et ai. [16]. A quasi-static scheduling
algorithm was proposed for Free.Choice Petri Nets (FCPN) [16].
A necessary and sufficient condition was given for a FCPN to be
schedulable. Schedulability was first tested for a FCPN and then
a valid schedule generated by decomposing a FCPN into a set of
Confiict-Free (CF) components which were then individually and
statically scheduled. Code was finally generated from the valid
schedule.

Baiadn et al. [2] proposed a software synthesis procedure for
reactive embedded systems in the Codesign Finite State Machine
(CFSM) [3] framework with the POLLS hardware-software code-
sign tool [3]. This work cannot be easily extended to other more
general frameworks.

Besides synthesis of software, there are also some recent work
on the verification of software in an embedded system such as the
Schedule-Verify-Map method [7], the linear hybrid automata tech-
niques [5, 8], and the mapping strategy [4]. Recently, system pa-
ramcters have also been taken into consideration for real-time soft-
ware synthesis [9].

3 . E M B E D D E D R E A L - T I M E S O F T W A R E

S Y N T H E S I S

A formal synthesis method for embedded real-time software is
presented in this section. Its basic features are that the software
code generated by the proposed synthesis method executes in hounded
memory and satisfies all user-given real-time constraints. Before
going into the details of this method, the system model and related
terminologies are presented first.

An embedded real-time software is specified as a set of T#ne
Free-Choice Petri Nets (TFCPN), which are time extensions of
Frce-Choice Petri Nets (FCPN) [16]. As mentioned in Section 2,

t2(1 , 4)

tt(o, 2)

t3(5, lO) P3

Figure 1: A T ime Free-Choice Petri Net

FCPN was used for the quasi-static scheduling of embedded real-
time software. But, there was. no concept of time in the FCPN
model, which makes it an inconvincing model for real.time soft-
ware. Hence, we propose a time extension of FCPN, just a s / Ime
Petri Nets (TPN) are a time extension of standard Petri Nets, which
was proposed by Merlin and Father [15].

In the rest of this section, we first define TFCPN, its properties,
and explain why TFCPN are used for modeling ERTS. Then, the
problem formulation is given. Finally, our proposed synthesis al-
gorithm is described, along with code ganeration.

3 . 1 S y s t e m M o d e l

DEFINITION 1. : Time Free-Choice Petri Nets (TI~PN)
A Twne Free-Choice Petri Net is a 5-topic (P, T, F, Mo, 1"), where:

• P is a finite set of places,

• T is a finite set of Iransitions, P U T ~ g, a n d P n T = 0,

• F : (P × T) U (T × P) --+ .A/" is a weighted flow re-
lation between places and transitions, represented by arcs,
such that every arc from a place is either a unique outgoing
arc or a unique incoming arc to a transition (this is called
Free-Choice), where.N" is a set of nonnegative integers,

• M0 : P --+ N is the initial marking (assignment of tokens m
places), and

• r : T --+ O" x (Q* U oo), i.e., r (t) = (a,/5), where t E T,
a is the earliest firing t/me (EFF), and/5 is latest firing time
(LFI3. II

Graphically, a TFCPN can be depicted as shown in Fig. 1, where
circles represent places, vertical bars represent transitions, arrows
represent arcs, black dots represent tokens, and integers labeled
over arcs represent the weights as defined by F , Here, F (z , y) > 0
implies there is an are from x to y with a weight of F (x , y), where
z and y can be a place or a transition. Conflicts are allowed in a
TFCPN, where a conflict occurs when there is a token in a place
with more than one outgoing arc such that only one enabled transi-
tion can fire, thus consuming the token and disabling all other tran-
sitions. For example, t2 and t3 are conflicting mmsitions in Fig. 1.
But, confusions are not allowed in TFCPN, where a confusion is a
result of coexistence of concmrency and confict.

Semantically, the behavior of a TFCPN is given by a sequence
of markings, where a marking is an assignment of tokens to places.
Formally, a marking is a vector M --- (rex, m2, . • •, mlPi), where
m~ is the non-negative number of tokens in place Pi E P. Starting
from an initial marking Mo, a TFCPN may transit to another mark-
ing through the firing of an enabled transition and re-assignment
of tokens. A transition is said to he enabled when all its input
places have the required number of tokens for the required amount

2 0 9

of time, where the required number of tokens is the weight as de-
fined by the flow relation F and the required amount of time is the
earliest starting time a as defined by ~-. An enabled transition need
not necessarily fire. But upon firing, the required number of tokens
are removed from all the input places and the specified number of
tokens are placed in the output places, where the specified number
of tokens is that specified by the flow relation F on the connecting
arcs. An enabled transition may not fire later than the latest firing
time 8.

ERTS has both data-dependent executions, as well as, time-dependent
specifications. Both of these characteristics are well-captared by
TFCPN. TFCPN can distinguish clearly between concurrency and
choice, hence they are good models of data-dependent and con-
current computations. Further, TFCPN can also distinguish clearly
between data-dependent and time-dependent choices, thus TFCPN
are well-defined models for our target ERTS.

Some properties of Petri Nets (PN) can be defined as follows.
Reachability: a marking M ' is reachable from a marking M if there
exists a firing sequence o starting at marking M and finishing at
M'. Boundedness: a PN is said to be k-bounded if the number
of tokens in every place of a reachable marking does not exceed a
finite number k. A safe PN is one that is l-bounded. Deadlock-
free: a PN is deadlock-free if there is at least one enabled transition
in every reachable marking. Liveness: a PN is live if for every
reachable marking and every transition t it is possible to reach a
marking that enables t.

3.2 P r o b l e m F o r m u l a t i o n
A user specifies the requirements for the design an embedded

real-time soRware by a set of TFCPNs. The problem we are try-
ing to solve here is to find a construction method by which a set
of TFCPNs can be made feasible to execute as a software code,
running under given limited memory space and satisfying all given
real-time constraints. The following is a formal definition of the
ERTS synthesis problem.

DE~NITION 2. : ERTSSynthesls
Given a set of TFCPNs, an upper-hound on memory use, and a set
of real-time constraints, a software code is to be generated such that
(1) it can be executed on a single processor, (2) it uses memory less
than or equal to the upper-bound, and (3) it satisfies all the real-time
constraints. II

3.3 S y n t h e s i s A l g o r i t h m
As introduced in Section I and formulated in Definition 2, there

are two objectives for our ERrS synthesis algorithm, namely hounded
memory execution and real-time constraints satisfaction. The al-
gorithm proposed here is thus intuitively divided into two phases
corresponding to the two objectives.

As shown in Table 1, given a set of TFCPNs S = {A~] At =
(Pi, Ti, Fi, Mio, n) , i = 1, 2 , n}, a maximum bound on mem-
ory p, and a set ofperieds E = {~ri [7q E .A/',i = 1 , 2 , . . . , n } ,
where lri is the period of Ai, a software code is generated after the
following two phases:

1. Quasi-Static Data Scheduling (QSDS): The basic concept
here is to employ net decomposition such that firing choices
that exists in a TFCPN are segregated into individual Conflict-
Free (CF) components. The CF components are not distinct
decompositions as a transition may occur in more than one
component. Starting from an initial marking for each com-
ponent, a finite complete cycle is constructed, where a finite
complete cycle is a sequence of transition firings that returns
the net to its initial marking. A CF component is said to be

Table 1: Embedded Real .Time Software Synthesis Algorithm

rarrs.synth(s, l,, E)
S = {Ai I A, = (P ~ , T , , F ~ , M ~ o , n) , i = 1,2 n};
integer/~; / /Maximum memory
E={~n [~r, E N ' , i = 1,2 n } ; {

//Quasi-Static Data Scheduling (QSDS)
for each A~ in S { (1)

B~ = C¥_generate(Ai);//Bi: set of CF components (2)
for each CF component Ai~ in Bi { O)

QSSi j = quasi..statlc..schedule(A~j,p); (4)
ifQS,.q~j = NULL { (5)

print "QSDS failed for A~j'; (6)
return QSDS_Error; } (7)

else QSS, = QSS, u {QSS(j}; }} (8)
/I Dynamic Real-Time Scheduling (DRTS)
RT S = real.thne.schedule(Q S S1, . . . , Q S S, ,

S,, S2,..., S,, E); (9)
if R T S = NULL { (10)

print "DRTS failed for S"; (11)
return DRTS_Error; } (12)

else gunerate.code(S, Q S S , , . . . , QSSn, RT,S~; (13)
return Synthesized; (14)

schedulable if a finite complete cycle can be found for it and
it is deadlock-free. Once all CF components of a TFCPN are
scheduled, a valid quasi-static data schedule for the TFCPN
can be generated as a set of the finite complete cycles. The
reason why this set is a valid schedule is that since each com-
ponent always returns m its initial marking, no tokens can get
collected at any place. Some details of this procedure can be
found in [16]. Satisfaction of memory bound can be checked
by observing if the memory space represented by the max-
imum number of tokens in any place does not exceed the
bound. Here, each token represents some amount of buffer
space (i.e., memory) required after a computation (transition
firing). Hence, the total amount of actual memory required
is the memory space represented by the maximum number of
tokens that can get collected at a place during its transition
from the initial marking back to its initial marking.

2. Dynamic Real-Time Scheduling (DR]S): The basic concept
here is to find if all the TFCPNs can be scheduled for ex-
ecutiun along a single time axis (because we are consider-
ing only single processor systems). From QSDS, each CF
component has a corresponding finite complete cycle, thus
the execution time interval for this firing sequence can be
calculated by summing up all the EFT and LFT values, re-
spectively, of each transition in the sequence. Among all
the execution time intervals of CF components belonging
to the same TFCPN, the maximum LFT is selected as the
worst-case execution time of that TFCPN. Then, a real-time
scheduling algorithm such as Rate-Monotonic or Earliest-
Deadline First is employed to scheduled all the TFCPNs with
their worst-cnse execution times and periods from the set E.

After data and real-time scheduling, the set of TFCPNs is trans-
lated into software programs by a code generation procedure as
shown in Table 2. A real-time process is created for each TFCPN.
In each process, a task is created for each transition with indepen-

2 1 0

Table 2: Code Generation Algorithm

generate_code(S, Q S S, , Q S S2 , . . . , Q S S. , RT S)
S= {A, [A i = (P h T i , F ~ , M ~ o , n) , i = 1,2 ,n};
set of finite complete cycles Q S S i , i = 1 , . . . , n;
a finite periodic real-time schedule R T S = (Ai,, Ai~,. • .); {

fori = 1 , . . . , n { (1)
O ~ = create.proeess(Q S Si) ; (2)
fo r j = 1 I F R (A O { (3)

di# = ~'ente..tnsk(QSS~); (4)
generate_tesk_cede(dij); (5)
add_task(d~, DO; } } (6)

create_main(); (7)
output"for(i=0, i<length(RTS) ; i++) { "; (8)
for k = 1 , IRTSI (9)

output.code(D~); (I O)
output "}"; (11)

I F R (Ai): # transitions in A~ with independent firing rates

dent firing rate. Here, a transition is said to have an independent fir-
ing rate if it is a source transition and its firing does not depend on
any tokens being in any place. This method of task code generation
optimizes (minimizes) the number of tasks in a process because the
degree of concurrency in a process is equal to the number of inde-
pendently firing wansitions [16]. The transitions that constitute a
task can be either a subset of a single CF component or a union of
two or more subsets of different CF components.

Table 3 shows cede generation for a task. A switch-case
structure is generated whenever a conflicting transition is encoun-
tered, such that each choice of the conflict is represented by a
c a s e statement. Each c a s e in the structure is constructed by
scanning parts of the task from different CF components. In the
case of multi-rate TFCPN, the following three cases hold, where
NumFim(t) is the number of times a transition t fires in a given
QSDS schedule:

1. NumFire(t0 < NumFire(tt_,): a transition t t - , may fire
several times for tokens to accumulate in an output place
such that some succeeding transition tt that needs more than
one token is enabled for firing. A c o u n t (p) variable is
used to keep track of tokens accumulated at place p.

2. NumFire(tt) > NumFire(t~_,): after a transition t#-, fires
once, there may be more than enough tokens in one of its
output places such that a succeeding transition t~ may have
to fire several times to consume the generated tokens. A
c o u n t (p) variable is used to keep track of tokens left un-
consumed at place p.

3. NumFire(t~) = NumFire(t~_,): since both successive tran-
sitions have the same rote, a direct output of the transition
computation code is performed.

After all task codes are generated for each process. AmainO
procedure is generated by constructing a schedule-loop for the real-
time schedules generated during dynamic reul-time scheduling.

4. A P P L I C A T I O N E X A M P L E
A 2-process example is given in this section to illustrate the pro-

posed ERTS synthesis algorithm, including code generation. Fig-
are 2 shows two ~ N (F, and F2) and the associated firing in-

Table 3: Task Code Generation Algorithm

generate.tesk.code(dii)
di#: jth task with independent firing rate in A, where
dij = {di jk I d o k = (tko, tk* tk . ,) ,k > 0} {

OUtput to; H to: source transition (1)
for each ICF sub-component d i~ in d~ { (2)

f o r / = 1 , . . . ,~t~ { (3)
if t~ is visited continue; (4)
ift~ is a conflicting transition in 2~ { (5)

i fp = in.place(t~) is not yet visited (6)
output "switch (p) {"; (7)

else output " b r e a k ; "; (8)
output"case tl: call tl;"; (9)
for all p ' = out.place(t 0 (10)

output " c o u n t (p ') +=F (t (1) , p ' I ;" (11)
t i m e s - v i s i t e d v + +; } (12)

ifNumFire(tl) < NumFire(tl_,) { (13)
OUtpUt "i f (count (p) >=F (p, tl) {"; (14)
output "call tl ;" (15)
output "count (p) -=

NumFire (t (I-i)) ; }"; } (16)
ifNumFire(tt) > NumFire(tt_,) { (17)

OUtpUt 'kchile (count (p)
>=F(p, tl)){ call tl;"; (18)

for all p = in_place(tt) (19)
output "count (p) -=F (p, tl) ;"; (20)

output "}"; } (21)
if NumFire(t~) = NumFire(tL_ a) { (22)

o u t p u t " c o u n t (p) -= F (p , t l) ;"; (23)
output "call tl ; "; (24)
output"count(p') += F(tl,p') ;";} (25)

i f t i m e s . ~ i s i t e d p = hum_choice(p)
output"} "; } } (26)

tervals, which constitute the ERTS requirements. Our goal is to
generate feasible scheduled code from the requirements.

According to our proposed algorithm (Table 1), we apply quasi-
static data scheduling and dynamic real-time scheduling to the given
system.

QSDS for FI: Since t,2 and t,3 are conflicting transitions, two CF
components (Rn and RI2 in Hg. 3) are derived, which are then
individually scheduled, resulting in the following two schedules,
with their associated execution time intervals.

t)11 = (t n t l a t n t l 2 t l 4) , 11 _< ~'(Vn) _< 22 (I)

v12 = (t n t * s h s t x s) , 13 < .(v12) _< 26 (2)

There are two sets of valid schedules for this TFCPN:

~1 = {t,**,t,ls} (3)
k

E2 = {V12 , (t l l t1~v12 t l l t l~ t14 ,Vk E.N'U {00})} (4)

QSDS for Fa: Since t2 and ts are conflicting transitions, two CF
components (P~, and R22 in Fig. 4) are derived, which are then
individually scheduled, resulting in the following two schedules,
with their associated execution time intervals.

v2, = (t2xt22ta4t24t2st2st2et2ot2st2ot2e),31 _< 1"(v21) _< 68 (5)

v22 = (t2,t2st2~t2zt2~t2st29t2e), 15 _< ~'(v22) _< 36 (6)

211

FI:
t12(I, 3) t14(5, 10)

tl3(3, 5) Ps fis(4, 9)

F3: t2s(o, 5) t29(1.2)

t 2 1 (O ~ ' 10)

pl t 2 3 ~ , , (4, 8)

P6

Figure 2: Application Example S -- (FI, F2)

&,:

tt2(l, 3) 04(5, 1o)

Pl

&3:
In(2, 3)

:t3(3, 5) /73 its(4, 9)

Figure 3: Confllct-Free Comlmnents for F~

Table 4: Dynamic Real-Time Scheduling for the Example
[Task]Priori ty[a', ["r, no®(Ex) I "rm,,®(Z2)

i ,, I , i , o o l ,6 i -
T2 2 110 68 68

I Schedulable
AIg°rithms I [I Yes RM, EDF[12] [No

The set of valid schedules for this TFCPN is as given below.

Es = {~1,~22} (7)

DRTS for S: As shown in Table 4, when we used E~ as the set
of valid QSDS schedules for F1 and applied the rate-monotonic
scheduling algorithm to S, we found that though the total utiliza-
tion (0.87818) is above the Liu and Layland's bound of 2(2 x/2 -
1 = 0.828, yet S is rate-monotonic schedulable. If instead of E~,
we used E2 as the set of QSDS schedules for F1, the system was
not schedulable as the utilization is above 1. This example shows
how the synthesis of an ERTS depends on both QSDS and DRTS.

Code Generation for ~': After performing QSDS for each TFCPN
and DRTS for the full system, embedded real-time software cede
is generated for the system S. Applying our code generation al-
gorithm (Table 2), the generated cede for task110 of F1 is shown
in Table 5. Since there is only one source transition in F1, there
is only one task in the process for this TFCPN. In the case of F'2,
there are two source transitions with independent firing rates, hence
there are two tasks, namely task21 and task22, the cedes of which
are given in Tables 6 and 7. Thus, in total there ere three concurrent
tasks in the two process code for system 5'. It must be noted that
calling the transitions in the code, in fact, represents a sequence of

t2s(0, 5) t~(1, 2)

t22(t~(5, I0)

t21(0,1) _ 2 2
- P2 - p4

pl
t2s(0, 5) t2o(l, 2)

R~: ~ ~ : ~ 5 , I0)

t2,(0, 1)

pl
, (4, 8)

Figure 4: Conflict-Free Components for F~

computations as modeled by the transition. The main0 program
is generated according to the DRTS schedules. A non-preemptive
version is given in Table 8. Preemption can be added.

5. CONCLUSION
The formal automatic synthesis of Embedded Real-Time Soft.

ware (ERTS) was proposed through an algorithm along with code
generation that minimizes the number of tasks in a concurrent sys-
tem. Two phases of scheduling, namely O~asi-Stat~c Data Schedul.
ing (QSDS) and Dynamic Real-Time Scheduling (DRTS), clearly
distinguish between data and tirae scheduling, which respectively
tries to satisfy the limited memory and processor requirements of
an embedded system. When an ERTS is transferred to a faster pro-
cessor, as long as preemptive scheduling is used, there is no need of
re-scheduling the software. When an ERTS is installed in two em-
bedded systems with different memory space sizes but same com-
putation power then we need only perform QSDS twice. The same
holds for DRTS in the case of different processing power.

6 . R E F E R E N C E S
[1] K. Altisen, G. Gobler, A. Paeuli, J. Sifakis, S. Tripakis, and

212

Table S: ERTS Code for tnsklx

taSkll 0 {
call txl;
switeh(pD {

case t12:

case tls:

Hd11 =(tH,tx2, t14,tla, txs)

call t~2; count(~) += 1;
if(count(p2) ~ 2)

{ call t14; count(p2)-= 2;}
break;
call t ls; count(p3) += 2;
while(count(p3) > 1)

{ call t~s; count(ps) - = 1;}
break; }

Table 6: ERTS Code for task2x

task210 { //d21 = (t21, t22, t24, t2e, t2s, t25, t27)
call t~l;
switch(px) {

ease t:22:

case t23:

call t22; c o u n t ~) += 2;
while(count(p~) _> 1) {

count(p4) += 2; call t24; count(p2) -ffi 1;
while(count(p4) 2 1) {

call t2o; COunt(p4) --= 1;)
break;
call t2s; count(ps) += 1; eount(ps) - = 1;
call t25; count(p6) += 2; count(pc) += 2;
while(count(ps) __ 1 A count(pc) _> 1) {
call t2~; count(ps) - = 1; count(pc) - = 1; I

brenk;}

S. Yovine. A framework for scheduler synthesis. In
Real-Tbne System Symposium (RTSS'99). IEEE Computer
Society Press, 1999.

[2] E Balarin and M. Chiodo. Software synthesis for complex
reactive embedded systems. In Proc. of International
Conference on Computer Design (1CCD'99), pages 634 -
639. IEEE CS Press, October 1999.

[3] E Balarin and etal. Hardware-software Co-design of
Embedded Systems: the POLLS approach. Kluwer Academic
Publishers, 1997.

[4] J.-M. Fu, T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen.
Hardware-software timing coverificatiun of distributed
embedded systems. IEICE Trans. on Information and
Systems, E83-D(9):I731-1740, September 2000.

[5] E-A. Hsiung. Timing coverification of concurrent embedded
real-time systems. In Proc. of the 7th IEEE/ACM
International Workshop on Hardware Software Codesign
(CODES'99), pages 110 - 114. ACM Press, May 1999.

[6] P.-A. Hsiung. CMAPS: A cosynthesis methodology for
application-oriented parallel systems. ACM Transactions on
Design Automation of Electronic Systems, 5(1):51-81,
January 2000.

[7] E-A. Hsinng. Embedded software verification in
hardware-software codesign. Journal of Systems Architecture

Table 7: ERTS Code for ~ k 2 2

task220 { //d22 = (t2s, t2o, t2e)
call t2s; call t20, call t2s;

}

Table 8: ERTS Code for m l n 0

main() {
kla = k~t = k2~ = 0; l/iteration numbers
while true {

if(now0 - oql ~ kll × 100) { task110; ku + +; }
if(now0 - o~1 >_ k2x × 110) { task~x(); k2a + +; }
if(now0 - ~22 _> k22 × 110) { task22(); k22 + +; } }

}

now0: current time; o~tt, o~21, o~22: release offset time

- - the Euromicro Journal, 46(15): 1435-1450, December
2000.

[8] P.-A. Hsiung. Hardware-software timing coverification of
concurrent embedded real-time systems, lEE Proceedings on
Computers and Digital Techniques, 147(2):81-90, March
2000.

[9] E-A. Hsinng. Synthesis of parametric embedded real-time
systems. In Proco of the International Computer Symposium
(ICS'O0), Workshop on Computer Architecture (ISBN
957-02-7308-9), pages 144-151, December 2000.

[10] P.-A. Hsiung. POSE: A parallel object-oriented synthesis
environment. ACM Transactions on Design Automation of
Electronic Systems, 6(l):to appear, January 2001.

[11] B. Lin. Software synthesis of process-based concurrent
programs. In Prac. of Design Automation Conference
(DAC'98), pages 502 - 505. ACM Press, June 1998.

[12] C. Liu and J. Laylang. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the Association for Computing Machinery, 20(1):46--61,
January 1973.

[13] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of
discrete controllers for timed systems. In 12th Annual
Symposium on Theoretical Aspects of Computer Science
(STACS'95), volume 900, pages 229 - 242. Lecture Notes in
Computer Science, Springer Verlag, March 1995.

[14] P. Merlin and G. Bochman. On the construction of
submodule specifications and communication protocols.
ACM Trans. on Programming Languages and Systems,
5(1):1 - 25, January 1983.

[15] P. Merlin and D. Farber. Recoverability of communication
protocols - implication of a theoretical study. IEEE
Transactions on Communications, September 1976.

[16] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Synthesis of embedded software
using free-choice petri nets. In Proc. Design Automation
Conference (DAC'99). ACM Press, June 1999.

[17] X. 2~u and B. Lin. Compositional software synthesis of
communicating processes. In Proc. of International
Conference on Computer Design (1CCD'99), pages 646 -
651. IEEE CS Press, October 1999.

213

