
CMAPS: A Cosynthesis Methodology for
Application-Oriented Parallel Systems

PAO-ANN HSIUNG
Academia Sinica

Currently, a lot of research is devoted to system design, and little work is done on requirements
analysis. Besides going from specification to design, one of our main objectives is to show how
an application problem can be transformed into specifications. Working from the hardware-
software codesign perspective, a system is designed starting from an application problem
itself, rather than the detailed behavioral specifications. Given an application problem
specified as a directed acyclic graph of elementary problems, a hardware-software solution is
derived such that the synthesized software, a parallel pseudoprogram, can be scheduled and
executed on the synthesized hardware, a set of system-level parallel computer specifications,
with heuristically optimal performance. This is known as system-level cosynthesis of applica-
tion-oriented general-purpose parallel systems for which a novel methodology called Cosynthe-
sis Methodology for Application-Oriented Parallel Systems (CMAPS), is presented. Since
parallel programs and multiprocessor architectures are largely interdependent, CMAPS
explores the relationship between hardware designs and software algorithms by interleaving
the modeling phases and the synthesis phases of both hardware and software. High scalability
in terms of problem complexity and easy upgradability to new technologies are achieved
through modularization of the input problem specification, of the software algorithms, and of
the hardware subsystem models. The work presented in this paper will be beneficial to
designers of general-purpose parallel computer systems which must be oriented toward
solving some user-specified problem such as the global controller of an industry automation
process or a multiprocessor video server. Some application examples are given to illustrate
various codesign phases of CMAPS and its feasibility.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engi-
neering—Computer-aided design (CAD); C.0 [Computer Systems Organization]: General—
System architectures; Systems specification methodology; C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures (Multiprocessors); C.5.0 [Computer System Implemen-
tation]: General

General Terms: Design

Additional Key Words and Phrases: Application-oriented general-purpose multiprocessors,
hardware-software modeling and cosynthesis, requirements analysis

Author’s address: Institute of Information Science, Academia Sinica, Sec. 2, No. 128, Academic
Road, Nankang, Taipei, 115, Taiwan; email: eric@iis.sinica.edu.tw.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1084-4309/00/0100–0051 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000, Pages 51–81.



1. INTRODUCTION

A system is designed more often from a set of behavioral or architectural
specifications than from the original requirements of a user. This is called
system design. Before system design, a user’s requirements must often be
analyzed to derive system specifications. This is called requirements analy-
sis. Much research has been done in developing methods, either technical
or formal, to design a system from specifications. Comparatively speaking,
requirements analysis has not been given equal attention. A user often has
to specify in elaborate detail the behavior or architecture of the designed
system. As far as design automation is concerned, it would certainly be
desirable if a user’s requirements could be directly input to a synthesis tool
or methodology and a system designed from the requirements. This paper
attempts to provide a solution within the hardware-software codesign
perspective.

Synthesis is the process of automatically transforming a set of high-level
system specifications to a lower-level design schematic that includes more
architectural details required for the physical design of the system. Corre-
sponding to the different levels of architecture details, synthesis can be
performed at the system, the algorithm, the register-transfer, and the logic
levels. Hardware synthesis has helped designers to reduce design time,
effort, and cost. Several methodologies and tools have been proposed at
each level of synthesis [Hsiung et al. 1996; Hsiung et al. 1998; Birmingham
et al. 1993]. When software is simultaneously synthesized, it is called
cosynthesis or codesign which requires system partitioning, hardware-
software tradeoff refinements, and cosimulation. In particular, embedded
digital systems and DSP applications are often targets of hardware-soft-
ware cosynthesis [Wolf 1994; Kalavade and Lee 1993].

Parallel computer systems use more than one processor to provide
supercomputing power, but at the same time designers of such systems are
faced with the numerous design tradeoffs possible in such systems. Porta-
bility of software across parallel systems is also much more restrictive than
across uniprocessor systems. This is due to the heavy dependence of
parallel programs on the different architecture schemes in parallel sys-
tems. For instance, a parallel program with send message and receive
message primitives is best executed on a message-passing parallel archi-
tecture, whereas a parallel program with shared variables should be run on
a shared memory architecture for optimal performance. This interdepen-
dence between parallel software and parallel hardware motivates the
codesign approach proposed in this paper.

Increasing diversity in user requirements for computer-based applica-
tions necessarily implies higher budget allocation for several different
specialized systems. The overall cost expended by a user needing to run
several applications can be lowered at the expense of a slight decrease in
performance by using a general-purpose parallel computer system whose
subsystems are appropriately configured for executing some given applica-
tions. Besides the traditional application-specific parallel (ASP) systems,

52 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



we also consider the codesign of application-oriented general-purpose paral-
lel (AOGPP) systems, which are defined as general-purpose systems with
their subsystems designed for the efficient execution of some software
solution to a given problem. The reason for selecting such target systems is
intuitive. On the one hand, a purely general-purpose system is a perfor-
mance-balanced system which may not give the best performance in solving
a specific problem, and on the other hand, an application-specific system
often cannot be used to solve any problem besides the original application
that it was designed for.

A typical example of AOGPP systems include the image processing
workstations such as SGI’s Origin2000 distributed servers coupled with
cellular IRIX 6.4 OS, which optimize performance for desktop visual
computing applications running on personal workstations and at the same
time support normal end-user general-purpose standard software applica-
tions such as general computing, fileserver, and database applications and
standard hardware such as PCI and XIO devices. A corresponding example
of an ASP system would be medical imaging systems which do not support
standard end-user applications such as web facilities, etc. Digital embedded
systems are also ASP systems. Some other examples of AOGPP systems
include Sun’s Ultra-4000 Creator3D workstations optimized for demanding
graphics applications such as engineering visualization and design, medical
imaging and video animation; CRAY Research’s CRAY Origin-2000 family
including CRAY T3E, CRAY J90 and T90 are systems with very broad
system scalability optimized for high-performance computing and graphics.

The following are some basic differences between the codesign of AOGPP
systems and that of ASP systems:

—In AOGPP system cosynthesis, both hardware and software are needed to
solve a given problem, whereas in ASP system cosynthesis a given
problem can be solved technically using a complete hardware implemen-
tation or a complete software one.

—The synthesized hardware in AOGPP systems is only optimized for
solving a given problem but, being general-purpose at the same time, it
can solve any other problem, too; whereas the hardware in ASP systems
generally cannot solve any other problem besides the one it was designed
for.

—AOGPP system cosynthesis works at the system level, whereas most
current ASP system cosyntheses work at a lower level of design.

—In ASP system cosynthesis, ASICs are synthesized along with corre-
sponding software drivers and protocols, whereas AOGPP systems are
mainly synthesized from existing off-the-shelf building blocks.

There are also many similarities between the cosyntheses of AOGPP
systems and ASP systems.

CMAPS: A Cosynthesis Methodology • 53

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



—There is a heavy interdependence between hardware architectures and
software algorithms in AOGPP systems, just like the hardware engines
and software architectures in ASP systems.

—Similar to ASP systems, the cosynthesis of an AOGPP system must
explore a vast design space consisting of both hardware and software
modules.

—Hardware-software modeling phases are interleaved so as to arrive at
one of the best combination of hardware and software design models.

—Cosimulation is needed to compare the various codesign alternatives.

This paper is organized as follows: Section 2 describes some previous and
related work. Section 3 defines AOGPP system cosynthesis and the three
repositories used in the design. Section 4 describes our cosynthesis meth-
odology for AOGPP systems. Besides the small running example used for
illustrating the design phases, two more realistic design examples are
given in Section 5 to show the feasibility of the proposed methodology. A
conclusion is drawn in Section 6.

2. PREVIOUS AND RELATED WORK

As far as hardware design is concerned, methodologies for the system-level
synthesis of general-purpose multiprocessor systems have recently been
proposed; for example, Performance Synthesis Methodology (PSM) [Hsiung
et al. 1996] and Intelligent Concurrent Object-Oriented Synthesis (ICOS)
methodology [Hsiung et al. 1998] are two of the most recently proposed
methodologies. Some other successful methodologies for hardware design
include the Micon System [Birmingham et al. 1989; Gupta et al. 1993], and
the Megallan System [Gadient and Thomas 1993].

The current hardware-software codesign researches are all devoted to
application-specific systems such as heterogeneous multiprocessor systems
[Prakash and Parker 1992], DSP applications [Kalavade and Lee 1993],
embedded digital systems [Gupta and De Micheli 1993], UNITY language
programs [Barros, Rosentiel, and Xiong 1994], and distributed embedded
computing systems [Wolf 1994; Yen and Wolf 1995b, a; Wolf 1996; 1997].
Application-specific systems typically require system partitioning into
hardware and software parts. Therefore, current researches are typically
devoted to hardware-software partitioning and tradeoffs exploration [Ro-
zenblit and Buchenrieder 1995; Berge et al. 1997], which include strategies
to move operations from software to hardware [Ernst et al. 1993] and from
hardware to software [Gupta and De Micheli 1993], to allocate functions in
an 1-CPU/ n-ASIC system [Vahid et al. 1994], to use multiple task graphs
for heuristic cosynthesis [Yen and Wolf 1995b, 1995a], and to derive
method data flow graphs from object-oriented specifications for the con-
struction of distributed hardware-software topologies [Wolf 1996].

According to the authors’ knowledge and survey, there is currently no
literature on the hardware-software codesign of general-purpose parallel

54 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



systems. This may be due to a number of reasons including the large size of
the design space that requires an exploration time exponential in the total
number of hardware-software components, the lack of hardware architec-
ture synthesis methodologies for general-purpose systems before PSM and
ICOS were proposed, the intricate explicit dependence between the parallel
hardware and parallel software architectures, and the lack of an objective
since general-purpose systems are supposed to be able to solve any kind of
application problems with a performance-balanced execution environment.

Nevertheless, application-specific hardware-software codesign has indeed
been a valuable source of codesign experiences and techniques that may be
applied to the codesign of general-purpose systems. For example, the
codesign framework proposed by Kumar et al. [1993] presented an impor-
tant concept of iterative system refinements using an integrated hardware-
software model. The codesign methodology proposed by Thomas et al.
[1993] used a mixed hardware-software system model that facilitated
cosimulation and cosynthesis which included performing system partition-
ing at the task level. Compared to Kumar’s framework, Thomas’ is not an
iterative approach, it is a constructive one. Kalavade and Lee [1993] also
propose a codesign methodology for DSP applications using the Ptolemy
framework for simulation, prototyping, and software synthesis. This meth-
odology, besides cosynthesizing hardware and software, also synthesizes
the interface between them in a constructive way. Gupta and De Micheli
[1993] proposed the cosynthesis of digital systems which used timing
constraints to delegate tasks between hardware and software. Three differ-
ent kinds of system implementation: design-oriented, synthesis-oriented,
and codesign approaches were discussed. Graph models were proposed for
multirate systems where the general-purpose processor and application-
specific hardware may run on different clocks and speeds. Program threads
were also represented as directed graphs. Yen and Wolf [Wolf 1994; Yen
and Wolf 1996] considered the codesign of embedded computing systems.
Their target design consisted of a hardware engine made up of several
processing elements (PE) which could be either CPUs or ASICs and an
application software architecture with allocation and scheduling of pro-
cesses and communication [Yen and Wolf 1995a]. Several new techniques
such as fixed-point iterations, phase adjustments, and separation analysis
were proposed for efficient delay estimation. A hardware-software cosyn-
thesis algorithm with techniques such as sensitivity analysis, priority
prediction, and idle-PE elimination was developed [Yen and Wolf 1995b].
The advantages of an object-oriented (OO) specification were explored by
Wolf [1996], including the two levels of partition granularity inherent in
OO specifications, the encapsulation of system objects, and the natural cut
points provided by method decomposition.

As defined and described in Section 3, the cosynthesis problem consid-
ered in this paper is a new and important one. Our target architectures are
parallel systems which include general-purpose multiprocessor systems,
distributed multicomputer systems, and application-specific parallel sys-
tems. A hardware-software codesign methodology is presented to solve the

CMAPS: A Cosynthesis Methodology • 55

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



cosynthesis problems of all such parallel systems. Currently, there is no
hardware-software codesign methodology that can be used to solve the
cosynthesis problems of both general-purpose as well as application-specific
parallel systems, hence the presented methodology is a novel and pioneer
effort at deriving such a solution. Experiments on the system-level codesign
of several designs using the proposed methodology show its feasibility,
scalability, and easy technology upgradability. From the above literatures,
we have adopted and adapted a few techniques in our methodology such as
the iterative refinement of an integrated system, the mixed hardware-
software model, and the graph-based software models. The methodology
will be presented in Section 4.

3. COSYNTHESIS PROBLEM FORMULATION

System-level cosynthesis of application-oriented general-purpose parallel
systems is defined as follows:

Definition 1. AOGPP system cosynthesis: Given an application problem
composed of several elementary problems, a parallel system including a set
of hardware system architecture specifications and a software algorithmic
pseudoprogram solution, is to be synthesized such that the given problem
can be optimally solved by executing the pseudoprogram software on the
hardware architecture.

Optimal execution of software tasks on a parallel system requires multi-
processor task scheduling [Lin and Chen 1996] which is a known NP-
complete problem [Ullman 1975], hence it is concluded that AOGPP system
cosynthesis is at least NP-hard.

Since we work at the system-level of design, scalability in terms of the
complexity of the application problem and the upgradability to new tech-
nologies are two major issues of any proposed codesign methodology.
Scalability is increased in our methodology through the use of modularized
problem models.

We define an elementary problem to be a very simple known problem
which has algorithmic solutions. An elementary algorithm is an alogorith-
mic solution to an elementary problem. A target application may be a
complex real-world problem which is composed of several subproblems,
each of which is further composed of one or more elementary problems. For
example, a multimedia application may consist of a graphical tool, a
WYSIWYG editor, a music synthesizer, and a simple animator, each of
which is a subproblem and is composed of several elementary problems
such as computing discrete Fourier transforms, sorting a sequence of pixel
positions, solving sets of linear or nonlinear equations, generating permu-
tations and combinations, spline calculations, etc.

A user can specify a complex application problem by referring to elemen-
tary problems in a Problem Database and describing how the selected
elementary problems compose into the desired application problem. Up-
gradability is made easy through the use of elementary algorithms which

56 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



act as off-the-shelf building blocks for software and the use of subsystem
architecture models for hardware. Three repositories are used in our
methodology, namely Problem Database (PD), Algorithm Database (AD),
and Model Database (MD), which represent the modularizations of specifi-
cation input, of software synthesis, and of hardware synthesis, respectively.

PD is used to store elementary problems and related information such as
the unique problem name and pointers to the corresponding elementary
algorithms that can be used to solve the specific problem. For example,
sorting a sequence, solving a set of linear equations, generating permuta-
tions and combinations, and computing the discrete Fourier transform are
all elementary problems. A list of elementary problems is shown in Table V.
Formally, PD is defined as follows:

Definition 2. Problem Database (PD): PD is defined as a tuple ~P, A,
m!, where

—P is a set of elementary problems,

—A is a set of elementary algorithms,

—m is a function mapping each problem in P to a subset of elementary
algorithms from A, which can solve the specific problem, i.e., m : P 3 2A.

AD is a collection of elementary parallel algorithms that can be used to
solve the problems in PD. Related information such as time and space
complexities, and the requirement restrictions on hardware architecture
are all stored along with each algorithm. A partial Algorithm Database is
shown in Table V. The illustrated algorithms are from Akl’s book on
parallel algorithms [1989]. Formally, AD can be defined as follows:

Definition 3. Algorithm Database (AD): AD is defined as a tuple ~A, P,
n, c, f!, where

—A is a set of elementary algorithms,

—P is a set of elementary problems,

—n is a function mapping each algorithm in A to a subset of elementary
problems from P, which can be solved by the algorithm, i.e., n : A 3 2P,

—c is a software characteristics function which maps an algorithm to its
software requirements. c~a! 5 ~t~n!, u~n!!, where a [ A and t~n! and
u~n! are bounds on the execution time and number of processors,
respectively.

—f is a hardware characteristics function which maps an algorithm to its
hardware requirements. f~a! 5 ~cm, ml, ma, co!, where cm [ CM,
ml [ ML, ma [ MA, and co [ CO, and CM, ML, MA, and CO are the
sets of communication models, memory latency models or system inter-

CMAPS: A Cosynthesis Methodology • 57

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



connection models, memory access models, and control models of a
general-purpose parallel computer system as discussed in Definition 4.

Often a parallel algorithm is designed specifically for a particular system
interconnection model; in such cases, ML represents the system intercon-
nection model, otherwise ML is as given in Definition 4.

MD is a repository of models for hardware subsystems, such as Commu-
nication models ~CM!, Memory Latency models ~ML!, Memory Access
models ~MA!, and Control models ~CO!. Formally, MD can be defined as
follows:

Definition 4. Model Database (MD): MD is defined as a cartesian
product of the coordinate sets of subsystem models, that is, M 5 CM 3
ML 3 MA 3 CO, where

—CM is a set of Communication models, CM 5 $SM, MP% where SM is
shared-memory and MP is message-passing,

—ML is a set of Memory Latency models, ML 5 {NUMA, COMA, UMA,
NORMA},

—MA is a set of Memory Access models, MA 5 {CRCW, CREW, EREW},
and

—CO is a set of Control models, CO 5 {MIMD, SIMD}.

The mnemonics used in the above definition are as follows. We mainly
consider two communication models: Shared-Memory (SM) and Message-
Passing (MP). The memory latency models include the Non-Uniform Mem-
ory Access (NUMA), the Cache-Only Memory Access (COMA), the Uniform
Memory Access (UMA), and the NO-Remote Memory Access (NORMA)
models [Hwang 1993]. The memory access models include the Concurrent
Read Concurrent Write (CRCW), the Concurrent Read Exclusive Write
(CREW), and the Exclusive Read Exclusive Write (EREW) models [Fortune
and Wyllie 1978]. The control models include the Multiple Instruction
Multiple Data-stream (MIMD) and the Single Instruction Multiple Data-
stream (SIMD) models [Flynn 1972].

The above discussion on the modularization of the problem, of the
software, and of the hardware models further allow us to analyze the
design space size for system-level cosynthesis. Assume that an application
problem as specified by a system designer is composed of n elementary
problems, $ p1, p2, . . . , pn%, where n # ?P? and pi [ P, 1 # i # n, and
for each i, there are xi algorithms from A that can solve subproblem pi,
where xi # ?A?. Further, assume there are yij feasible hardware model
configurations for the jth algorithm of pi, where yij # ?M?, 1 # i # n and
1 # j # xi. Thus, the total design space size is

6codesign 5 P
i51

n O
j51

xi

yij (1)

58 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



For ease of observation, assume that xi 5 x for all i and yij 5 y for all i
and j, then the design space size becomes

6codesign 5 ~xy!n 5 xnyn (2)

From above, we conclude that the codesign space size can be expressed in
terms of the software design space size ~6software 5 xn! and the hardware
design space size ~6hardware 5 yn!.

6codesign 5 6software 3 6hardware (3)

4. COSYNTHESIS METHODOLOGY FOR APPLICATION-ORIENTED
PARALLEL SYSTEMS

Having gone through the basic concepts, we explain our methodology called
Cosynthesis Methodology for Application-Oriented Parallel Systems
(CMAPS) in detail in this section. As shown in Figure 1, the design flow is
divided into three main phases: (1) Initialization, (2) Modeling and Evalu-
ation, and (3) Synthesis and Simulation.

In brief, designers can input their specifications by constructing a Prob-
lem Graph using elementary problems from a Problem Database, along
with subproblem sizes and other related constraints. First, CMAPS maps
this graph into an initial solution. Then, CMAPS transforms the initial
solution into hardware models and software models, and coevaluates them
while checking which models can be eliminated to decrease the complexity
of synthesis. Finally, the hardware and software models are synthesized
into hardware system-level specifications and software pseudoprograms,
respectively, and a cosimulation of hardware and software is performed
after having chosen an appropriate scheduling algorithm.

4.1 Initialization Phase

The designer specifies his or her problem using a Problem Graph (PG)
which is a directed acyclic graph GP~VP, EP!, such that VP 5 $vi ? vi

represents a problem pi [ P% and EP 5 $~vr, vs! ? vr must be solved
before vs and vr, vs [ VP%. This graph is similar to the traditional task
graph specification used in distributed system synthesis [Chu and Tan
1987] and cosynthesis algorithms [Prakash and Parker 1992; Yen and Wolf
1995; Wolf 1996; 1997].

The result of this phase is a Solution Graph (SG), which is defined to be
a directed acyclic graph GS~VS, ES!, where each vertex in VS represents an
elementary algorithm from AD and each edge in ES represents the order of
precedence between two algorithms.

A PG input ~GP~VP, EP!! is transformed into an SG result ~GS~VS, ES!!
through the following solution modeling process:

CMAPS: A Cosynthesis Methodology • 59

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



model_solution(G_P, G_S, A)
begin

for each v_i in V_P do
select a_i from A such that

(1) a_i solves p_i (represented by v_i) and
(2) cost(a_i) 5 MIN{cost(a_k) | a_k solves p_i }

where “cost(a_i) 5 exec_time(a_i) * num_processor-
s(a_i)”

V_S 5 set_union(V_S, {a_i})
endfor
for each (v_r, v_s) in E_P do

E_S 5 set_union(E_S, {(a_r, a_s)})
endfor

end.

The resulting SG is most probably not a feasible solution, but it serves as
a useful initial solution for the next Modeling and Evaluation phase. The

Problem
Graph

Synthesis and
Simulation Phase

Initialization Phase

Modeling and
Evaluation Phase

Problem
Database

Algorithm
Database

Software Synthesis Hardware Synthesis

Software
Modeling

Cosimulation

Coevaluation

Hardware
Modeling

Solution
Modeling

Solution Graph

HW ModelSW Model

Next HW ModelNext SW Model

Model
Database

SW/HW Model

Parallel Pseudo
Program

Parallel System
Specs

A Heuristically Optimal
Parallel System

Next SW/H Model

Fig. 1. CMAPS design flow.

60 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



graph SG is not unique when the selected algorithm ai for problem pi is not
unique. For ease of illustration, the above pseudocode generates one SG; it
can be easily extended to generate all possible SGs.

The various phases in this section are illustrated using a small running
example given in Figure 2. The Problem Graph, as input by the designer
consists of five elementary problems, p1, p2, . . . , p5, each being an ele-
mentary problem from the Problem Database. Five subalgorithms, a1, a2,
. . . , a5, are selected from the Algorithm Database, each being the algo-
rithm that best solves the corresponding problem. These five subalgorithms
are composed into an initial solution, the Solution Graph, as drawn in
Figure 2.

4.2 Modeling and Evaluation Phase

The Solution Graph (SG) obtained in the Initialization phase is made
feasible iteratively through an interleaving of hardware and software
modeling processes. This phase consists of three subphases: Hardware
Modeling, Software Modeling, and Coevaluation. Using SG, a Hardware
Model (HM) is generated in the Hardware Modeling subphase by going

p1

p2

p3 p4

p5

Problem Graph

solution
modeling

a1

a2

a3 a4

a5

Software Models

Solution Graph Hardware Models

hardware
modeling

 HM1 =
(SM, NUMA,

      CRCW, SIMD)
 HM2 =

(SM, NUMA,
      EREW, SIMD)

  SM=Shared Memory
  NUMA=Non-Uniform

   Memory Access

M =

















10 0100 001 01
10 1000 100 01
01 0001 001 10
10 1000 100 01
01 0001 010 10

software
modeling

For HM1: a3 & a5 are 
reselected giving

SM1 = (a1, a2, a31, a4, a51)
SM2 = (a1, a2, a32, a4, a51)

For HM2: a2, a3, a4, a5 are 
reselected giving

SM3 = (a1, a21, a33, a41, a52)

coevaluation fHM1 = 3/5,
fHM2 = 1/5
select HM1!

HW
synthesis

SW
synthesis

CRCW→EREW,
shared semaphores,

synchronization barriers

120 processors, 120 MB
RAM, Multistage

Interconnection Network,
4 processor/cluster

cosimulation perf TS1 TS2 TS3

SM1 1/610 1/600 1/520
SM2 1/700 1/620 1/500

Hence, select (SM2, TS3)!

Final result: (HM 1, SM2, TS3)

Fig. 2. CMAPS running example.

CMAPS: A Cosynthesis Methodology • 61

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



through the following steps: Initialization, Model-Space Exploration, and
Model Configuration steps. The Software Modeling subphase mainly consti-
tutes the transformation of a Solution Graph (SG) into a Software Model
(SM), the difference being that SG may be nonfeasible, but SM has to be
feasible, that is, its requirements matching those provided by the corre-
sponding HM. The final Coevaluation subphase reduces the number of
hardware and software models to be considered for synthesis, thus signifi-
cantly decreasing the complexity of cosynthesis.

4.2.1 Hardware Modeling Subphase. In the following, we assume that a
given problem has n subproblems, that is, ?VS? 5 n, where SG 5 ~VS, ES!
is the Solution Graph of the given problem and each subproblem is an
elementary problem from PD. Further, we assume that a Hardware Model
(HM) has m features, where a feature is a hardware design characteristic;
for example, some features can be the memory organization, the system
interconnection network, etc. Further, each hardware feature may have
different values assigned to it; we call them feature options; for example,
Shared Bus , Mesh, and Hypercube are feature options for the system
interconnection network feature. As shown in Figure 3 and described
below, this subphase consists of three steps: Initialization, Model-Space
Exploration, and Model Configuration.

Step a. Initialization: An n 3 m hardware requirement matrix, M~mij!,
is constructed as follows such that mij represents the jth hardware model
feature ~fj! of the ith subalgorithm ~ai!, i 5 1, 2, . . . , n and j 5 1, 2,
. . . , m.

(1) Sort the hardware model features in a descending order of the overall
degree of effect that a feature has on the system or in a descending
order of the degree of importance as stipulated by a system designer.
For example, a typical order may be CM (communication model), ML
(memory-latency model), MA (memory-access model), and CO (control
model).

(2) Denote feature options using binary values from the set $1,10,100,
. . . % such that a larger value indicates a functionally stronger option,
e.g., CRCW 5 100, CREW 5 010, and EREW 5 001 in the case of
memory access models.

(3) Let bit~mij, k! return the kth least significant bit of mij and let bj be
the number of significant bits in the binary representation of the jth
feature fj,

bit~mij, k! 5 1 if ai requires the kth option of fj, k 5 1,2, . . . , bj (4)

For instance, the matrix M for the small running example given in Figure 2
is

62 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



M 5 1
10 0100 001 01
10 1000 100 01
01 0001 001 10
10 1000 100 01
01 0001 010 10

2 (5)

where

—The first column represents the Communication (CM) model with 10 5
Shared-Memory (SM) and 01 5 Message Passing (MP),

—The second column represents the Memory Latency (ML) model with
1000 5 NUMA, 0100 5 COMA, 0010 5 UMA, and 0001 5 NORMA,

—The third column represents the Memory Access (MA) model with 100 5
CRCW, 010 5 CREW, and 001 5 EREW, and

—The fourth column represents the Control (CO) model with 10 5 MIMD
and 01 5 SIMD.

Solution Graph

Model-Space

Exploration

Model

Configuration

Initialization

Hardware

Requirement Matrix

Model

Vector

Feasible

Hardware Models

Fig. 3. Hardware modeling.

CMAPS: A Cosynthesis Methodology • 63

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



Step b. Model-Space Exploration: In this step, as given in Equation (6) the
kth option of the jth feature is considered for further software modeling
(denoted by tjk 5 1) if the option demand ~sjk! is at least the mean demand
~n/bj!, k 5 1, 2, . . . , bj and n is the problem size given in terms of the
number of elementary problems in PG. Here, the option demand is defined
as the number of subalgorithms which demand the kth option of the jth
feature and the mean demand is the average weight assigned to each
feature, that is, the mean demand for the jth feature is n/bj.

tjk 5 5 1 if sjk $
n

bj

, where sjk 5 O
i51

n

bit~mij, k!

0 otherwise

(6)

For the running example in Figure 2, n 5 5, m 5 4, and using Equation
(5) and Equation (6) tjk are computed as follows:

Step c. Model Configuration: In this step, the hardware model configu-
rations are generated from the hardware model vector, vY , which is defined
from tjk as follows:

vY 5 ~t11. . . t1b1, t21. . . t2b2, . . . , tm1. . . tmbm! (7)

For the running example, vY 5 ~10,1001,101,01!. Further, a designer
may specify some hardware requirements which will be represented by a
hardware specification vector uY . The hardware model configurations are
generated as follows.

The configurations are generated starting from the functionally strongest
one. In other words, for each feature in vY generate configurations starting
from the leftmost bit which has a value of ‘1’. Due to the order in which the
configurations are generated, they are already sorted in a descending order
of their binary values and there are totally )

j51

m
(

k51

bj t jk configurations.
Consider one configuration at a time. If the configuration selected is not
feasible (as defined later), it is discarded and the next one is considered.
Let vY ~vj! be a hardware model vector generated in Step b and uY ~uj! be a
user-given hardware specification vector, 1 # j # m. Nonfeasible hard-
ware models are eliminated as follows:

CM ML MA CO

a1 10 0100 001 01
a2 10 1000 100 01
a3 01 0001 001 10
a4 10 1000 100 01
a5 01 0001 010 10
sjk 32 2102 212 23

n/bj 2.5 1.25 1.66 2.5
tjk 10 1001 101 01

64 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



(1) Eliminate Models with Contradictions: CMAPS uses basic hardware
system assumptions such as a Shared Memory (SM) architecture (v1

5 10) should not have a NO Remote Memory Access (NORMA) model (
bit~v2, 1! 5 1), hence we eliminate such SM/NORMA combinations by
performing a Boolean conjunction of v2 with 1110 (& is the bit-wise
AND operator in the following equations).

if ~v1 5 10! ∧ ~bit~v2, 1! 5 1! then v2 5 ~v2&1110! endif (8)

Further, a Message-Passing (MP) architecture should not share any
global memory, such as in the NUMA, COMA, and UMA models (i.e.,
(

k52

4 bit~v2, k! $ 1 if any memory is shared). Hence, we eliminate all
such combinations by a Boolean conjunction of v2 with 0001.

if ~v1 5 01! ∧ ~ O
k52

4

bit~v2, k! $ 1! then v2 5 ~v2&0001! endif (9)

(2) Eliminate Models with Conflicts: A Boolean conjunction of a generated
hardware model vector (vY ) and a user-given hardware specification
vector (uY ) will eliminate all the hardware models that are in conflict
with the user given specification vectors.

vj 5 ~vj & uj! for all j, 1 # j # m (10)

For example, suppose a user specifies two desired configurations (uY and
u9Y ), uY is an MIMD machine with a NUMA memory latency (i.e., u2 5
NUMA and u4 5 MIMD) and u9Y an SIMD machine with a UMA memory
latency (i.e., u92 5 UMA and u94 5 SIMD). Further, if a generated
hardware model vector is an SIMD machine with NUMA memory
latency (i.e., v2 5 NUMA and v4 5 SIMD), then there will be a conflict
with the user given specification vectors, thus this hardware model
vector vY is eliminated.

(3) Generate Feasible Configurations: Finally, if no component of the hard-
ware model vector is completely eliminated through the above steps
(i.e., ?y j, such that vj 5 0), then at least one feasible hardware model
can be generated.

if ?j, vj 5 0, then report_error~!; else generate_configs~v! endif (11)

For our running example in Figure 2, after eliminating nonfeasible
hardware models, the final feasible configurations generated are
~10,1000,100,01! and ~10,1000,001,01! corresponding to HM1 5 (SM,
NUMA, CRCW, SIMD) and HM2 5 (SM, NUMA, EREW, SIMD).

CMAPS: A Cosynthesis Methodology • 65

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



4.2.2 Software Modeling Subphase. Considering the feasible hardware
models generated in the Modeling and Evaluation Subphase one at a time,
software models are generated by transforming the Solution Graph (SG)
into a feasible software solution. This transformation process, as shown in
Figure 4, checks the compatibility of each subalgorithm in SG with the
hardware model under consideration. Compatibility is defined in terms of
the hardware model features, $CM, ML, MA, CO%, of which Communica-
tion ~CM! model and Control ~CO! model require an exact match, whereas
Memory Latency ~ML! model and Memory Access ~MA! model are defined
compatible when the hardware feature is functionally stronger than the
software requirement; for example, CRCW, PRAM, and CREW algorithms
are assumed compatible.

Considering a subalgorithm a_i with hardware requirements (cm_i,
ml_i, ma_i, co_i) and a hardware model HM_j 5 (CM_j, ML_j, MA_j,
CO_j) , their compatibility can be checked as follows.

compatible(a_i, HM_j)
begin

if ( (cm_i 55 CM_j) && (ml_i ,5 ML_j)
&& (ma_i ,5 MA_j) && (co_i 55 CO_j)) then

return TRUE
else

return FALSE
endif

end.

If a subalgorithm is compatible with the hardware model under consider-
ation then it is configured as follows:

select next ai

compatible(ai, HMj)

∃ ak in AB s.t.
compatible(ak, HMj) & ai, ak

solve the same problem

configure(ai, HMj)

reselect(ai, HMj)

modify(ai, HMj)

yes

no

yes

no

Solution
Graph

Fig. 4. Software modeling.

66 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



configure(a_i, HM_j)
begin

if (ml_i , ML_j) then
ml_i 5 ML_j

endif
if (ma_i , MA_j) then

ma_i 5 MA_j
endif

end.

Noncompatibility of a subalgorithm calls for a reselection of the subalgo-
rithm from the set of algorithms A. Reselection is possible only when there
exists a compatible algorithm in AD such that it solves the same problem
as the incompatible algorithm under consideration. If there is more than
one such algorithm in A, then the one with the minimum cost will be
selected for further synthesis.

reselect(a_i, HM_j)
begin

Let R 5 {a_r | a_r is in A,
a_r solves the same problem as a_i, and
compatible(a_r, HM_j) }

if (R is not empty) then
select a_k such that

cost(a_k) 5 MIN {cost(a_r) | a_r belongs to R }
endif

end.

Finally, if there is no compatible algorithm for use in A, then the original
one is modified into a compatible one. The modification of an algorithm for
execution on a hardware system requires emulation techniques and is
considered only when the software algorithm requires a stronger function
feature than that existing on a hardware system, for example, a CRCW
algorithm needs to be modified for possible execution on an EREW parallel
system. As far as memory access is concerned, this modification is done by
serializing reads and writes in PRAM models using PRAM simulation
techniques [Harris 1994].

modify(a_i, HM_j)
begin

serialize_mem_access(a_i);
end.

For the running example, assume that subalgorithms a3 and a5 are
reselected from A for compatibility with HM1, whereas a2, a3, a4, and a5

have to be reselected from A for compatibility with HM2. As shown in
Figure 2, for HM1 two choices of a3 from A generate two software models,
SM1 and SM2, and for HM2 one software model, SM3, is generated.

4.2.3 Coevaluation. The final subphase is to coevaluate the software
models ~SMi! with their corresponding hardware models ~HMj! in order to
reduce the total number of models that have to be synthesized in the next
phase. Corresponding to each combination of ~SMi, HMj!, compute the

CMAPS: A Cosynthesis Methodology • 67

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



degree of feasibility, f 5 e/n, where n is the number of elementary prob-
lems in PG and e is the ease of software modeling for SMi with respect to
HMj as defined below,

fHMj 5
e~HMj!

n
5

1

n
O

k51

n

ek, where ek 5 5 1 if compatible ~ak, HMj!

0.5 if ak is reselected from A
0 if ak is modified

(12)

Hardware models are selected based on the following criteria:

Select HMr such that fHMr $
1

h
O
j51

h

~fHMj! (13)

where h is the total number of HM generated in the Hardware Modeling
step.

For the running example as shown in Figure 2, the degrees of feasibility
for HM1 and HM2 computed using Equation (12) are 3/5 and 1/5, respec-
tively. Using the criteria given in Equation (13), only HM1 is considered for
further synthesis.

4.3 Synthesis and Simulation Phase

The previous Modeling and Evaluation Phase corresponds to requirements
analysis, and the phase called Synthesis and Simulation described in this
section corresponds to system design, as defined in Section 1. In this phase,
the hardware and software models are now individually synthesized into
parallel system specifications and parallel pseudoprograms, respectively,
and then cosimulated by scheduling the parallel program on the parallel
architecture defined by the parallel system specifications. The Hardware
Synthesis subphase consists of four steps: System Configuration, Processor
Clustering, System Interconnection Selection, and Cluster Design. The
Software Synthesis subphase interconnects the final choice of algorithms by
Algorithm Interface Construction, Serialization of Memory Accesses, and
Addition of Communication Constructs. In the Cosimulation subphase, the
hardware and software solutions generated in the previous two subphases
are now interrelated by scheduling the software on the hardware.

4.3.1 Hardware Synthesis Subphase. After the three subphases of hard-
ware modeling, software modeling, and coevaluation, pairs of feasible
hardware-software models are generated. At this stage corresponding to a
specific model pair, we have a set of hardware system-level specifications
such as the communication model, the memory latency model, the memory
access model, and the control model. For the running example in Figure 2,
we have HM1 5 {SM, NUMA, CRCW, SIMD}, which says that the user-
given problem graph can be solved by a parallel computer system which
uses shared-memory (SM) under the uniform memory latency (NUMA),

68 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



along with concurrent read concurrent write (CRCW) memory access, and
single instruction multiple data-stream (SIMD) control. At the same time,
we also know from the requirements of the corresponding generated
software model: the kind of system interconnection network required for
each of the elementary algorithms, the total number of processors required,
and the communication locality (i.e., the processor clustering) required.
Given all these specifications, this subphase generates an actual feasible
overall architecture that meets the demands of a hardware-software mod-
els pair generated in the previous subphase. This subphase consists of four
steps as described in the rest of this subsection.

Step a. System Configuration: The type of processors, the total number
of system processors (NSP), and the total amount of memory are determined
for each system combination ~SMi, HMj! by using the Performance Synthe-
sis Methodology (PSM) [Hsiung et al. 1996], a system-level object-oriented
hardware synthesis methodology for multiprocessor systems. For better
efficiency, Intelligent Concurrent Object-Oriented Synthesis (ICOS) method-
ology [Hsiung et al. 1998] may also be used.

Step b. Processor Clustering: The system processors are then grouped
into clusters of NCP processors each, where NCP is calculated by taking the
least common multiple (LCM) of the individual number of processors per
cluster requirement ~ ppci! of each subalgorithm ~ai!. If this LCM is larger
than the total number of system processors ~NSP!, then no clustering is
done.

Step c. System Interconnection Selection: Given the set of interconnec-
tions required by the subalgorithms of a software model, it is reduced to a
singleton set by using the following techniques:

(1) redundancy elimination: if two interconnections are functionally equiv-
alent, one of them is removed from the set,

(2) set reduction: embeddable interconnections are removed from the set,
and

(3) set integration: a functionally more powerful interconnection which can
embed two or more interconnections from the set, is included into the
set and the embeddable ones removed.

The final single element in the set is the system interconnection choice.
The above process is guaranteed to terminate resulting in a singleton set
because in the worst case the Crossbar Interconnection can embed all
interconnections.

Step d. Cluster Design: The target parallel system is assumed to have
symmetrical clusters. A cluster is designed using the same principles as for
the global design of the whole parallel system. It includes the cluster
memory subsystem configuration and the cluster interconnection network
selection.

4.3.2 Software Synthesis Subphase. Software synthesis subphase con-
sists of the following steps: Algorithm interface construction, Serialization

CMAPS: A Cosynthesis Methodology • 69

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



of memory accesses, and Addition of communication constructs for each of
the selected or modified subalgorithm of a software model.

(1) Algorithm interface construction is the transformation of an algorithm
into a pseudo-program by declaring data types, implementing functions
and procedures, using structured programming constructs, and realiz-
ing the passing of computation results from a parent subalgorithm to a
child subalgorithm in the software model. User specified program
interfaces have also to be implemented.

(2) Serialization of memory accesses is mainly the serializing of read and
write accesses in CRCW and CREW models into the EREW model
[Harris 1994]. Since all parallel programs eventually have to be exe-
cuted on real machines which do not allow concurrent memory accesses
(i.e., EREW machines), the programs must have all memory accesses
serialized.

(3) Addition of communication constructs such as shared semaphores,
send-receive primitives, and synchronization barriers into correspond-
ing shared-memory and message-passing subalgorithm in the software
model is carried out.

The result of software synthesis is a parallel pseudoprogram which is
implementation independent.

4.3.3 Cosimulation Subphase. The final part of synthesis is cosimula-
tion of the above synthesized hardware system specifications and software
pseudoprograms by scheduling the software solution on the hardware
architecture using three different parallel tasks scheduling algorithms,
namely, List Scheduling (LS) [Graham 1969], Largest Scheduled Parallel-
ism First (LSPF) [Lin et al. 1995], and Largest Width with Largest
Processing Time first (LWLPT) [Lin and Chen 1996] algorithms. Each
design alternative in the form of a software/hardware model pair ~SMi,
HMj! is simulated by scheduling the software on the hardware using each
of the above three task scheduling algorithms ~TSk!. This simulation
results in an execution time Time~SMi, HMj, TSk! which is used for the
final evaluation. The combination of the software model ~SMi!, the hard-
ware model ~HMj!, and the task scheduling algorithm ~TSk! that gives the
best performance, as defined in Equation (14), is the final selected output.

perf~SMi, HMj, TSk! 5
1

Time~SMi, HMj, TSk! 3 Cost~HMj!
(14)

where Time~SMi, HMj, TSk! is the execution time of SMi on HMj scheduled
using TSk and Cost~HMj! is the total hardware cost of the system. The
combination that gives the greatest perf~SMi, HMj, TSk! is the best choice.

For the running example, the results of hardware and software syntheses
are given in Figure 2. Cosimulation of the software and hardware solutions

70 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



is performed by scheduling the software solutions on the hardware systems
using three different task scheduling algorithms: LS, LSPF, LWLPT la-
beled as ~TS1, TS2, TS3!. Performances are evaluated using Equation (14)
and the final result ~HM1, SM2, TS3! is the best codesign result since it
gives the best performance.

5. APPLICATION EXAMPLES

Three application examples designed using CMAPS are presented. The first
running example, presented in the previous section, is a hypothetical one
and is used for illustrating the various design phases of CMAPS. Two other
examples will be described in this section. They are both real design
examples synthesized from problem specifications.

5.1 A Small Real Codesign Example

This is a small problem consisting of five elementary problems, namely,
solving a system of linear equations ~ pb!, sorting the solutions ~ pa!,
computing prefix sums ~ pe!, matrix transpose ~ ph!, and generating permu-
tations ~ pj!. The Problem Graph specification input is given in Figure 5
and the table of elementary problems used in this paper is described in
Table V. Here, VP 5 $ pb, pa, pe, ph, pj% and EP 5 $~ pb, pa!, ~ pa, pe!,
~ pa, ph!, ~ pe, pj!, ~ ph, pj!% where GP~VP, EP! is the Problem Graph.

The Initialization phase of CMAPS results in three Solution Graphs with
the sets of elementary algorithms as follows: SG1 with $ab1, aa2, ae2, ah3, aj1%,

Solve linear
equations (pb)

Sort solutions
(pa)

Calculate
prefix sums

(pe)

Matrix
transpose

(ph)

Generate
permutations

(pj)

Solve linear
equations (ab1)

Sort solutions
(aa2)

Calculate
prefix sums

(ae2)

Matrix
transpose

(ah3)

Generate
permutations

(aj1)

solution
modeling

Fig. 5. Small example: problem graph and a solution graph.

CMAPS: A Cosynthesis Methodology • 71

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



SG2 with $ab1, aa3, ae1, ah3, aj1%, and SG3 with $ab1, aa1, ae1, ah3, aj1%. Only
SG1 is illustrated in Figure 5. We explain in detail the cosynthesis
methodology on the illustrated SG1, leaving the other two in the final
results discussion. Here, VS 5 $ab1, aa2, ae2, ah3, aj1%, ES 5 $~ab1, aa2!,
~aa2, ae2!, ~aa2, ah3!, ~ae2, aj1!, ~ah3, aj1!%, and GS 5 ~VS, ES! is the illus-
trated Solution Graph in Figure 5.

Using Equations (4) and (6), two hardware models, HM1 and HM2, are
generated from SG1 in the Hardware Modeling subphase in the following
table:

The Software Modeling subphase mainly involves a replacement of the
elementary algorithm ae2 due to it being incompatible with either of the
hardware models. Incompatibility results because the elementary algo-
rithm chosen for pe, i.e. ae2, requires a message-passing communication
model for execution, whereas the two generated hardware models both
have shared-memory-based communication model. From Table V and the
reselection criteria given in the Software Modeling subphase, ae1 is chosen
from the Algorithm Database for solving subproblem pe. In the Coevalua-
tion subphase, using Equation (12), the degrees of feasibility of SM1 5
$ab1, aa2, ae1, ah3, aj1% corresponding to HM1 and HM2 are fHM1 5 0.9 and
fHM2 5 0.5, respectively. Hence, based on the criteria given in Equation
(13), only HM1 is selected for further synthesis.

At this stage, the hardware specifications are: a shared-memory commu-
nication model, with NUMA mean access latency, a CREW memory access
model, and an SIMD machine. The hardware requirements of the software
algorithms are: any shared-memory-based system interconnection network
and the number of processors required is n2, where n is the problem size
(here, it was specified as n 5 100). Based on the user constraints specifi-
cation of maximum hardware cost ($100,000 in this example) and perfor-
mance specifications of 950 MFlops throughput, the derived specifications
was input to the ICOS methodology [Hsiung et al. 1998]. This resulted in a
multiprocessor system consisting of 10,000 processors, a generalized cube-
based multistage interconnection network connecting the processors with a
memory of 1024 MB RAM and 10 MB cache memory.

CM ML MA CO

ab1 10 1000 010 01
aa2 10 1000 010 01
ae2 01 0001 001 01
ah3 10 1000 001 01
aj1 10 1000 001 01
sjk 41 4001 023 05

n/bj 2.5 1.25 1.66 2.5
tjk 10 1000 011 01

HM1 10 1000 010 01
HM2 10 1000 001 01

72 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



Software synthesis subphase consists of how the five elementary algo-
rithms ab1, aa2, ae1, ah3, aj1 are composed into a single feasible pseudocode
solution. The five elementary algorithms are all from Table V, the source of
which is Akl’s book on parallel algorithms [1989]. The algorithms are,
respectively, an algorithm to solve a set of linear equations (SIMD GAUSS-
JORDAN), a parallel sorting algorithm (CREW SORT), a parallel summation
algorithm (PARALLEL SUMS), a parallel matrix transpose algorithm (EREW
TRANSPOSE), and a parallel permutation generation algorithm (FULL PER-
MUTATION). The outputs of each algorithm must be input to its one or more
successor algorithms in the solution graph. Code interfaces are required to
accomplish this task and since it is not an easy job to maintain the
consistencies between algorithms, this portion of software synthesis is still
an open problem of how algorithms may be interfaced together. Currently,
our implementation is only semiautomatic; it only checks the data-type
consistencies. As far as logical consistency and other types of interface
problems are concerned, it still basically depends on the user-provided
codes for interfacing. In Figure 6, the user specifies that A and b are two
n 3 n and n 3 1 matrices, the first problem is to solve the matrix
equation Ax 5 b. The resulting solution vector xY is then transposed (into
vector yY ) and input to the CREW SORTsorting algorithm which sorts the
vector in an ascending order of element values and then prefix sums are
calculated in parallel by the PARALLEL SUMSalgorithm for the sorted
vector ~zY !. The n 3 n product matrix xYzY is then transposed using the EREW

TRANSPOSEalgorithm which results in a single value (i.e., a 1 3 1 matrix)
and then permutations are generated in parallel for that single value by
the FULL PERMUTATIONalgorithm. Algorithm interfaces required in this
example are how the solution vector xY is transposed before input to the
CREW SORTalgorithm, and how the resulting vectors xY and zY are multiplied
before input to the EREW TRANSPOSEalgorithm.

The above-detailed discussion was on how SG1 is cosynthesized, resulting
in a hardware-software model pair HM1/SM1. The cosyntheses for SG2 and
SG3 are similar and not discussed here. The modeling and evaluation phase
results in the model pairs HM1/SM1, HM3/SM2, and HM3/SM3, where
SM2 5 $ab1, aa4, ae1, ah3, aj1% and SM3 5 $ab1, aa1, ae1, ah3, aj1%. Under the
constraints given in this example: maximum cost of $100,000 and minimum
throughput of 950 MFlops, the final synthesis and simulation phase results
are tabulated in Table I, where we can observe that only the model-pairs
HM1/SM1 and HM3/SM2 satisfy the constraints, of which the former is the
heuristically optimal architecture according to the “perf” metric calculated
using Equation (14). Hence, the final result is a parallel system with
shared-memory, NUMA memory latency, CREW memory access, SIMD
control scheme, and 100,000 processors costing totally $9800 and a pseudo-
program solution as given in Figure 6.

CMAPS: A Cosynthesis Methodology • 73

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



5.2 A Large Real Codesign Example

This example illustrates the scalability of the presented methodology by
synthesizing a large target system that can solve a problem with nine
elementary problems. The problem graph specification input is shown in
Figure 7.

In the Initialization phase, eight Solution Graphs are generated using
the solution modeling process. SG1 is illustrated in Figure 8 and the others
are tabulated in Table II. For ease of illustration, only SG1 is described in a
little more detail, while the results of the others are given in the final
simulation discussion. Hardware models are then generated using Equa-
tions (4) and (6) for SG1 as follows:

Table I. Simulation Results of Example 2

Model Pairs Time Cost Perf MFlops

TS1 TS2 TS3

HM1/SM1 500 450 520 9800 2.26 3 1027 1003
HM3/SM2 700 720 760 9000 1.58 3 1027 977
HM3/SM3 800 912 788 7800 1.62 3 1027 946

algorithms
interface

construction

SIMD GAUSS JORDAN(A, b, x){
solve Ax = b ... }

Solution Vector x

Anxn, bnx1

CREW SORT(y){ ... }

Let y = transpose(x)

PARALLEL SUMS(z, y){ ... } EREW TRANSPOSE(xz){ ... }

FULL PERMUTATIONS(k){ ... }

Sorted Vector z Multiply x and z

Prefix sums a 1×1 matrixk

Fig. 6. Small example: software synthesis.

74 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



Referring to Table V and using the model_solution() process given in
Section 4, there are two choices for the first subalgorithm (ai3 or ai1), the
sixth subalgorithm (ae1 or ae2), and the seventh subalgorithm (ac1 or ac2).
The algorithm combination given in Figure 8 is selected as an initial
solution, if this Solution Graph cannot be made feasible after the genera-
tion of hardware models, then another initial solution can be generated and
used.

Software modeling produces two software models, one for each of the
hardware models as follows: (1) for HM1: since no choice of shared-memory

Matrix
Multiplication

(pi)

Minimum
Spanning Tree

(pd)

Discrete
Fourier Transform

(pg)

Knapsack
Problem

(pf)

Sorting
(pa)

Compute
prefix sums

(pe)

Solve non-
linear eqns.

(pc)

Generate
combinations

(pk)

Sorting
 (pa)

Fig. 7. Large example: problem graph.

CM ML MA CO

ai3 10 1000 100 01
ad1 10 1000 001 01
af2 01 0001 001 01
ag2 01 0001 001 01
aa2 10 1000 010 01
ae1 10 1000 001 01
ac1 10 1000 010 01
ak2 10 1000 001 01
aa2 10 1000 010 01
sjk 72 7002 135 09

n/bj 4.5 2.25 3 4.5
tjk 10 1000 011 01

HM1 10 1000 010 01
HM2 10 1000 001 01

CMAPS: A Cosynthesis Methodology • 75

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



algorithm exists in A (Table V), we modify af2 and ag2 such that they can be
executed on a shared-memory architecture, and we serialize writes in ai3,
(2) for HM2: in addition to the above three modifications, two more are
needed: serialize reads in aa2 and ac1. Coevaluation of the hardware and
software models based on the criteria in Equation (13) results in HM1 being
selected, because the degrees of feasibility of the hardware models as
calculated using Equation (12) are fHM1 5 6/9 and fHM2 5 3/9.

For hardware synthesis, the initial set of interconnections as required by
the hardware model HM1 is {SM-SI, Mesh }, where SM-SI is any shared-

Matrix
Multiplication

(ai3)

Minimum
Spanning Tree

(ad1)

Discrete
Fourier Transform

(ag2)

Knapsack
Problem

(af2)

Sorting
(aa2)

Compute
prefix sums

(ae1)

Solve non-
linear eqns.

(ac1)

Generate
combinations

(ak2)

Sorting
 (aa2)

Fig. 8. Large example: a solution graph.

Table II. Solution Graphs for Example 3

Problem Solution Graphs

SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8

pi ai3 ai3 ai3 ai3 ai1 ai1 ai1 ai1

pd ad1 ad1 ad1 ad1 ad1 ad1 ad1 ad1

pf af2 af2 af2 af2 af2 af2 af2 af2

pg ag2 ag2 ag2 ag2 ag2 ag2 ag2 ag2

pa aa2 aa2 aa2 aa2 aa2 aa2 aa2 aa2

pe ae1 ae1 ae2 ae2 ae1 ae1 ae2 ae2

pc ac1 ac2 ac1 ac2 ac1 ac2 ac1 ac2

pk ak2 ak2 ak2 ak2 ak2 ak2 ak2 ak2

pa aa2 aa2 aa2 aa2 aa2 aa2 aa2 aa2

76 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



memory system interconnection. Using set reduction technique, Mesh can
be emulated by SM-SI so Mesh is removed and the final singleton set is
{SM-SI }, that is, any shared-memory interconnection can be used. We let
N 5 n3 and thus the final number of processors is n3, where n is the
problem size which is 64 in this example, thus totally 218 processors are
used. Software synthesis involves interface construction, serializing read
and write accesses, emulation of message-passing algorithms on shared-
memory architectures, and human intervention and interpretation.

Having discussed the cosynthesis of SG1, we come to the overall design
alternatives of this example. There were totally 15 hardware models
generated for the 8 solution graphs, but 6 were eliminated due to architec-
tural inconsistencies (i.e., such as a message-passing system with shared-
memory) and one was eliminated to reduce the design space by using the
criteria in Equation (13), thus there were 8 feasible hardware models.
There were three corresponding software models. The hardware models
generated in this example are given in Table III.

Finally, the synthesized hardware and software are simulated and per-
formance evaluated as shown in Table IV. Out of the seven design alterna-
tives simulated, only five of them, namely, HM1/SM1, HM4/SM2, HM5/SM2,
HM12/SM3, and HM13/SM3, satisfy the user constraints which are a maxi-
mum cost of $6,000 and a minimum throughput of 400 MFlops. Comparing
the “perf” metric, the first design alternative in Table IV is the heuristi-
cally most optimal solution. The final solution is thus a set of hardware
system-level specifications: shared-memory architecture, nonuniform mem-
ory access latency, CREW memory access, SIMD control scheme, 218
processors, a pseudoprogram solution, and the LSPF task scheduling
algorithm.

The above-presented two examples, respectively, show the feasibility and
the scalability of CMAPS. Besides high scalability in solving complex
problems and easy upgradability to new technologies, some other advan-

Table III. Hardware Models for Example 3

SG Models CM ML MA CO Status

SG1 HM1 10 1000 010 01 feasible
HM2 10 1000 001 01 eliminated

SG2 HM3 10 1000 001 01 feasible
SG7 HM4 10 1000 001 01 feasible

HM5 10 1000 001 01 feasible
HM6 01 1000 001 01 inconsistent
HM7 01 1000 010 01 inconsistent
HM8 10 0001 001 01 inconsistent
HM9 10 0001 010 01 inconsistent
HM10 01 0001 001 01 feasible
HM11 01 0001 010 01 feasible

SG8 HM12 10 1000 001 01 feasible
HM13 10 0001 001 01 inconsistent
HM14 10 0001 001 01 inconsistent
HM15 01 0001 001 01 feasible

CMAPS: A Cosynthesis Methodology • 77

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



tages of CMAPS are as follows. Firstly, CMAPS is a complete codesign
methodology which can synthesize a parallel computer architecture start-

Table IV. Simulation Results for Example 3

Model Pairs Time Cost Perf MFlops

TS1 TS2 TS3

HM1/SM1 360 376 347 5200 5.54 3 1027 516
HM4/SM2 406 401 380 4800 5.48 3 1027 491
HM5/SM2 402 390 442 5200 4.93 3 1027 505
HM10/SM2 600 504 490 5400 3.78 3 1027 394
HM11/SM2 579 650 625 5700 3.03 3 1027 399
HM12/SM3 471 479 499 4800 4.42 3 1027 506
HM13/SM3 505 500 506 5400 3.70 3 1027 442

Table V. The Three Repositories: PD, AD, and MD. Parallel Algorithms Source: Akl’s Book
[Akl 1989]

p# Problem Names a# t~n! u~n! CM ML or SI MA CO

pa Sorting a sequence aa1 O(1) n2 SM NUMA CRCW SIMD
aa2 O ~nlogn! N SM NUMA CREW SIMD
aa3 O ~n! n SM NUMA EREW SIMD

pb Solving systems of
linear equations

ab1 O ~n! n2 SM NUMA CREW SIMD
ab2 N/A N SM NUMA CREW MIMD

pc Finding roots of
nonlinear equations

ac1 O ~logN11w! N SM NUMA CREW SIMD
ac2 N/A N SM NUMA CRCW SIMD

pd Minimum spanning
tree

ad1 O ~n2/N! N SM NUMA EREW SIMD

pe Prefix sums ae1 O ~logn! n SM NUMA EREW SIMD
ae2 O ~logn! 2n21 MP Tree EREW SIMD
ae3 O ~n1/2! n MP Mesh EREW SIMD

pf Knapsack problem af1 O ~n! n MP Tree EREW SIMD
af2 O ~n1/2! n MP Mesh EREW SIMD

pg Discrete Fourier
Transform

ag1 O ~logn! n2 MP Mesh of trees EREW SIMD
ag2 O ~n1/2! n MP Mesh EREW SIMD

ph Matrix transpose ah1 O ~n! n2 MP Mesh EREW SIMD
ah2 O ~logn! n2 MP Shuffle EREW SIMD
ah3 O(1) n2 SM NUMA EREW SIMD

pi Matrix
multiplication

ai1 O ~n! n2 MP Mesh EREW SIMD
ai2 O ~logn! n3 MP Cube EREW SIMD
ai3 O(1) n3 SM NUMA CRCW SIMD

pj Permutations aj1 O ~nPmlogm! m SM NUMA EREW SIMD
aj2 O ~ n!/N n! N SM NUMA EREW SIMD

pk Combinations ak1 O ~nCmlogm! m SM NUMA EREW SIMD
ak2 O ~ nCm/N m! N SM NUMA EREW SIMD

pl Convolution al1 O ~n! n MP Linear array EREW SIMD
al2 O ~n! n MP Tree EREW SIMD

78 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



ing from user requirements instead of detailed system specifications, thus
CMAPS has increased the degree of automation possible in the synthesis
process. Secondly, the interleaving of hardware and software modeling
phases and the coevaluation of model pairs is a novel way of model-based
codesign which has the advantage of reducing the design space by eliminat-
ing contradictory models at an early stage. Thirdly, CMAPS is the first
methodology that can be used to design the hardware and the software of
both AOGPP and ASP systems. Lastly, by integrating specification, synthe-
sis, and simulation into a single design environment, CMAPS ensures that
there is no semantic loss when transiting from one design phase to another
as is often observed when output designs have to be transformed into a
different input format either for further synthesis or simulation. But, at
the same time, CMAPS being a pioneer effort in the new direction of
synthesizing a system starting from user requirements, there is much work
left to be done; for example, more general scheduling policies must be used
to simulate the generated hardware-software models; the coevaluation
process should be more thorough, taking into account the implicit interac-
tion possible between the hardware and the software models; and further-
more, the three repositories should be made more general in order to cover
more and larger parallel systems.

6. CONCLUSION AND FUTURE WORK

Unlike traditional synthesis methods, an effort was made to synthesize a
system starting directly from a user’s requirements, in the form of an
application problem, rather than from detailed behavioral or architectural
specifications. Such an approach simplifies the user input and increases
the degree of design automation possible in hardware-software cosynthesis.

Motivated by designing a system starting from user requirements rather
than system-level specifications, the work presented in this paper can be
summarized as follows: given an application problem, specified as a di-
rected acyclic graph of interconnected elementary problems, a software-
hardware solution is synthesized such that the synthesized software (a
parallel pseudoprogram), when scheduled using a multiprocessor task
scheduling algorithm on the synthesized hardware (a parallel system),
optimally solves the given problem. Designers catering to the diverse
requirements of a user can save considerable cost and design efforts by
synthesizing one application-oriented general-purpose parallel (AOGPP)
system instead of several specialized systems. An AOGPP system is defined
to be a general-purpose parallel system whose subsystem are configured for
solving a given application problem. Specialized application-specific sys-
tems can only solve the problem they were designed for, whereas AOGPP
systems, being general-purpose, can be used to solve any other problem
besides optimally solving the given application problem.

A methodology called Cosynthesis Methodology for Application-Oriented
Parallel Systems (CMAPS) is presented for synthesizing both the software
and hardware of an AOGPP systems. CMAPS uses an iterative procedure

CMAPS: A Cosynthesis Methodology • 79

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



beginning with a solution graph and going through interleaved phases of
software and hardware modeling. The software-hardware model combina-
tions are coevaluated in order to decrease the size of the design space to be
explored. Hardware and software are then synthesized separately and
cosimulated by scheduling the synthesized software on the hardware using
multiprocessor task scheduling algorithms.

Complex problems can be solved by CMAPS due to the scalability
achieved through modularization of the problem input specification (Prob-
lem Database), of the hardware system (Model Database), and of the
software system (Algorithm Database). These three repositories, con-
structed using Object-Oriented (OO) technology [Hsiung, Lee, and Chen
1997b], also contribute toward easily upgrading to new technologies such
that new hardware components, new algorithms, and new elementary
problems can always be integrated into existing repositories.

Future work in this direction would be applying OO technology not only
to the repositories, but to the codesign process itself [Wolf 1996]. Hardware
and software dependence on each other also need further investigation. A
formal verification model [Hsiung, Lee, and Chen 1997a] for the codesign of
AOGPP systems would also be an interesting research topic.

REFERENCES

AKL, S. G. 1989. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Inc., Upper
Saddle River, NJ.

BERGE, J. M., LEVIA, O., AND ROUILLARD, J. 1997. Hardware/Software Co-Design and
Co-Verification. Kluwer Academic Publishers, Hingham, MA.

BIRMINGHAM, W. P., GUPTA, A. P., AND SIEWIOREK, D. P. 1989. The MICON system for
computer design. In Proceedings of the 26th ACM/IEEE Conference on Design Automation
(DAC ’89, Las Vegas, NV, June 25–29, 1989), D. E. Thomas, Ed. ACM Press, New York, NY,
135–140.

CHU, W. W. AND LAN, M.-T. 1987. Task allocation and precedence relations for distributed
real-time systems. IEEE Trans. Comput. C-36, 6 (June 1987), 667–679.

ERNST, R., HENKEL, J., AND BENNER, T. 1993. Hardware-software co-synthesis for
microcontrollers. IEEE Des. Test 10, 4 (Dec. 1993), 64–75.

FLYNN, M. J. 1972. Some computer organizations and their effectiveness. IEEE Trans.
Comput. C-21, 9 (Sept. 1972), 948–960.

FORTUNE, S. AND WYLLIE, J. 1978. Parallelism in random access machines. In Proceedings of
the 10th Symposium on Theory of Computing ACM Press, New York, NY, 114–118.

GADIENT, A. J. AND THOMAS, D. E. 1993. A dynamic approach to controlling high-level
synthesis CAD tools. IEEE Trans. Very Large Scale Integr. Syst. 1, 3 (Sept.), 328–341.

GRAHAM, R. L. 1969. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17
(1969), 416–429.

GUPTA, A. P., BIRMINGHAM, W. P., AND SIEWIOREK, D. P. 1993. Automating the design of
computer systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits 12, 4 (Apr.), 473–487.

GUPTA, R. K. AND DE MICHELI, G. 1993. Hardware-software cosynthesis for digital
systems. IEEE Des. Test 10, 3 (Sept. 1993), 29–41.

HARRIS, T. J. 1994. A survey of PRAM simulation techniques. ACM Comput. Surv. 26, 2
(June 1994), 187–206.

HSIUNG, P.-A., CHEN, C.-H., LEE, T.-Y., AND CHEN, S.-J. 1998. ICOS: an intelligent concurrent
object-oriented synthesis methodology for multiprocessor systems. ACM Trans. Des. Autom.
Electron. Syst. 3, 2, 109–135.

80 • P.-A. Hsiung

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.



HSIUNG, P.-A., CHEN, S.-J., HU, T.-C., AND WANG, S.-C. 1996. PSM: an object-oriented
synthesis approach to multiprocessor system design. IEEE Trans. Very Large Scale Integr.
Syst. 4, 1, 83–97.

HSIUNG, P.-A., LEE, T.-Y., AND CHEN, S.-J. 1997. MOBnet: An extended Petri net model for the
concurrent object-oriented system-level synthesis of multiprocessor systems. IEICE Trans.
Inf. Syst. E80-D, 2 (Feb.), 232–242.

HSIUNG, P. -A., LEE, T. -Y., AND CHEN, S. -J. 1997. An object-oriented technology transfer to
multiprocessor system-level synthesis. In Proceedings of the 24th International Conference
on Technology of Object-Oriented Languages and Systems (Sept.) 339–348.

HWANG, K. 1993. Advanced Computer Architecture: Parallelism, Scalability,
Programmability. McGraw-Hill, Inc., New York, NY.

KALAVADE, A. AND LEE, E. A. 1993. A hardware-software codesign methodology for DSP
applications. IEEE Des. Test 10, 3 (Sept. 1993), 16–28.

KUMAR, S., AYLOR, J. H., JOHNSON, B. W., AND WULF, W. A. 1993. A framework for
hardware/software codesign. IEEE Computer 26, 1, 39–45.

LIN, J. -F. AND CHEN, S. -J. 1996. An analysis of multiprocessor tasks scheduling. Comput.
Syst. Sci. Eng. 11, 2, 117–120.

LIN, J. -F., SEE, W. -B., AND CHEN, S. -J. 1995. Performance bounds on scheduling parallel
tasks with communication cost. IEICE Trans. Inf. Syst. (Mar. 1995), 263–268.

PRAKASH, S. AND PARKER, A. C. 1992. SOS: synthesis of application-specific heterogeneous
multiprocessor systems. J. Parallel Distrib. Comput. 16, 4 (Dec.), 338–351.

ROZENBLIT, J. AND BUCHENRIEDER, K. 1995. Codesign: Computer-Aided Software/Hardware
Engineering. IEEE Press, Piscataway, NJ.

THOMAS, D., ADAMS, J., AND SCHMIT, H. 1993. A model and methodology for hardware/software
codesign. IEEE Des. Test, 6–15.

ULLMAN, J. 1975. NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 384–393.
VAHID, F., GAJSKI, D. D., AND GONG, J. 1994. A binary-constraint search algorithm for

minimizing hardware during hardware/software partitioning. In Proceedings of the Euro-
pean Conference on Design Automation (EURO-DAC ’94, Grenoble, France, Sept. 19–23,
1994), J. Mermet, Ed. IEEE Computer Society Press, Los Alamitos, CA, 214–219.

WOLF, W. 1994. Hardware-software co-design of embedded systems. Proc. IEEE 82, 7 (July
1994), 967–989.

WOLF, W. 1996. Object-oriented cosynthesis of distributed embedded systems. ACM Trans.
Des. Autom. Electron. Syst. 1, 3, 301–314.

WOLF, W. H. 1997. An architectural co-synthesis algorithm for distributed, embedded
computing systems. IEEE Trans. Very Large Scale Integr. Syst. 5, 2, 218–229.

XIONG, X., BARROS, E., AND ROSENSTIEL, W. 1994. A method for partitioning UNITY language
in hardware and software. In Proceedings of the European Conference on Design Automation
(EURO-DAC ’94, Grenoble, France, Sept. 19–23, 1994), J. Mermet, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 220–225.

YEN, T.-Y. AND WOLF, W. 1995. Communication synthesis for distributed embedded
systems. In Proceedings of the 1995 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD-95, San Jose, CA, Nov. 5–9), R. Rudell, Ed. IEEE Computer Society
Press, Los Alamitos, CA, 288–294.

YEN, T.-Y. AND WOLF, W. 1995. Sensitivity-driven co-synthesis of distributed embedded
systems. In Proceedings of the Eighth International Symposium on System Synthesis
(Cannes, France, Sept. 13–15, 1995), P. G. Paulin and F. Mavaddat, Eds. ACM Press, New
York, NY, 4–9.

YEN, T. -Y. AND WOLF, W. 1996. Hardware-Software Co-Synthesis of Distributed Embedded
Systems. Kluwer B.V., Deventer, The Netherlands.

Received: July 1997; revised: December 1997; accepted: May 1998

CMAPS: A Cosynthesis Methodology • 81

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 1, January 2000.


