
Modeling Hardware Systems with Complex Clock Synchronizations in the
SGM Formal Verifier ∗

Wen-Shiu Liao and Pao-Ann Hsiung†

Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi
†hpa@computer.org

Abstract
Traditional verification techniques such as simulation and
emulation can no longer exhaustively verify large scale
hardware designs, hence many researchers and designers
are trying to apply formal verification to hardware systems.
However, many formal verification tools either have diffi-
culties to model complex clock behaviors such as multiple
bus clocks or gated clock, or do not support clock based
synchronization behavior in their model. In this paper, we
propose a novel mechanism to precisely model hardware
systems with full clock based synchronization support us-
ing extended timed automata. The proposed mechanism has
been integrated into the formal verifier SGM.

1 Introduction
With the ever-increasing capacity of integrating gates into
chips, verification has become a serious problem in the
VLSI design. The traditional verification methods suffer
from huge numbers of test vectors and are becoming inef-
ficient. Formal verification, in contrast to traditional verifi-
cation methods, provides more confidences by exhaustively
traversing complete system state spaces. When a system
fails to satisfy a property, formal verification produces a
counterexample that is very attractive and helped to system
designers. Several efforts on formally verifying VLSI indi-
cate that verifying a large system by using formal methods
is feasible although formal verification has the state space
explosion problem [1].

A study of recent research on formal verification of hard-
ware systems and on contemporary formal verification tools
shows that there still exists some restrictions on model-
ing complex hardware systems in these formal verification
tools. A major problem is the restriction on modeling com-
plex clock behaviors of hardware systems. For example,
SMV has its limits in modeling hardware systems with mul-
tiple clocks or a gated clock because in SMV there is only
one implicit global clock. This forces a designer to perform
some tricks in modeling such behaviors as in [2]. VIS does
not support multiple clocks in their model either [3]. UP-
PAAL [4] provides a basic synchronization mechanism to

∗This work was supported by project grant NSC 91-2215-E-194-008
from the National Science Council, Taiwan, ROC.

model message passing between two components by declar-
ing a channel. HyTech [5] also provides synchronization to
ensure two transitions in different automata can trigger at
the same time when an event is received. These two syn-
chronization mechanisms neither model hardware systems
with multiple bus clocks nor a gated clock. The model
checker SPIN [6] is designed to verify asynchronous be-
haviors in software systems rather than synchronous behav-
iors in hardware systems. From above, it is thus concluded
that there is a general lack of mechanism and methodology
to model clock based synchronization in formal verification
tools.

The article organization is as follows. Section 2 de-
scribes our system model and how we model hardware sys-
tems with complex clock synchronization. Section 3 will
discuss in detail how we compose synchronization transi-
tion in SGM. Section 4 gives the final conclusions with fu-
ture work.

2 System and Clock Models
To handle above issues, we choose State Graph Manip-
ulators (SGM) [7] to implement our modeling methodol-
ogy. SGM is a high-level compositional model checker with
multiple state-space reduction techniques for the verifica-
tion of real time systems. In SGM, a system is described by
a set of communication extended timed automata (ETA) [8]
and a property is specified by Timed Computation Tree
Logic (TCTL) [7]. In SGM, the global system state-space
is computed iteratively by composing one timed automaton
at a time.

2.1 System Model
Our system model is a set of Extended Timed Automata
(ETA), which have shared variables and synchronization la-
bels and are formally defined as follows.

Definition 1 Mode Predicate
Given a set C of clock variables and a set D of discrete vari-
ables, the syntax of a mode predicate η over C and D is de-
fined as: η := false | x ∼ c | x−y ∼ c | d ∼ c | η1∧η2 | ¬η1,
where x,y ∈C, ∼ ∈ {≤,<,=,≥,>}, c ∈ N , the set of inte-
gers, d ∈ D, and η1,η2 are mode predicates. 2

Administrator
The 14     VLSI Design/CAD Symposium           

Administrator
th

Administrator
   177

Administrator



Let B(C,D) be the set of all mode predicates over C and
D.

Definition 2 Extended Timed Automaton
An Extended Timed Automaton (ETA) is a tuple Ai =
(Mi,m0

i ,Ci,Di,Li,χi,Ei,λi,τi,ρi) such that: Mi is a finite
set of modes, m0

i ∈ M is the initial mode, Ci is a set of
clock variables, Di is a set of discrete variables, Li is a
set of synchronization labels, χi : Mi 7→ B(Ci,Di) is an in-
variance function that labels each mode with a condition
true in that mode, Ei ⊆ Mi × Mi is a set of transitions,
λi : Ei 7→ Li associates a synchronization label with a tran-
sition, τi : Ei 7→ B(Ci,Di) defines the transition triggering
conditions, and ρi : Ei 7→ 2Ci∪(Di×N ) is an assignment func-
tion that maps each transition to a set of assignments such
as resetting some clock variables and setting some discrete
variables to specific integer values. 2

Using the above ETA definition, our system model can be
defined as follows.

Definition 3 Hardware System
A Hardware System is defined as a set of hardware and
clock components. Each component is modeled by one or
more timed automata. A system is modeled by a network of
communicating timed automata. If a system S has a set of
hardware components {H1,H2, . . . ,Hn} and a set of clock
components {C1,C2, . . . ,Cm} , then S = H1‖H2‖ . . .‖Hn
‖C1‖C2‖ . . .‖Cm, where ‖ is a parallel composition opera-
tor resulting in the concurrent behavior of its two operands.
If Hi is modeled by an ETA AHi , 1 ≤ i ≤ n, and C j is mod-
eled by an ETA AC j , 1 ≤ j ≤ m, then the ETA defined by
AS = AH1 × . . .×AHn ×AC1 × . . .×ACm is an ETA model
for system S , where × is the state-graph merge operation in
SGM and concurrency semantics is defined as follows:

• two concurrent transitions with the same synchroniza-
tion label are represented by a single synchronized
transition in the product automaton, and

• two concurrent transitions without any synchroniza-
tion label are represented by interleaving them, result-
ing in possibly two different paths (computations). 2

2.2 Clock Models
We show how we handle system models with multiple bus
clocks and a gated clock. Figure 1 illustrates an example of
modeling two bus clocks. We use clock variables X and Y
to represent the progress of time in the two bus clocks, and
register variables CLK A and CLK B to represent the sig-
nal outputs of the two bus clocks. In the timed automata A
and B, A0 (B0) and A1 (B1) represent the states of the bus
clocks driven low and high, respectively. The transitions
from A0 (B0) to A1 (B1) represent the change of bus clock
level from low to high, which is the positive edge of the bus
clock signal. Similarly, the transitions from A1 (B1) to A0

A0


A1


X = 5

CLK_A := 0


X:=0


X = 5

CLK_A  := 1


X:=0


CLK_A :=0

X := 0


B0


B1


Y= 10

CLK_B := 0


Y :=0


Y = 10

CLK_B  := 0


Y := 0


CLK_B :=0

Y := 0


Timed

Automaton A


Timed

Automaton B


Figure 1: Two bus clocks model

Low-

power

mode


Normal


X = 5

CLK_G := 0

X:=0


X = 5 && G = 1

CLK_G  := 1

X:=0


CLK_G :=0

X := 0
 X = 5 && G = 0


CLK_G  := 0

X:=0


Figure 2: Gated clock model

(B0) represent the negative edge of the bus clock. The dif-
ferent rates of multiple bus clocks in hardware system can
be modeled by setting different values to the clock variables
X and Y on the transitions. For example, the rate of clock
CLK B is twice that of clock CLK A in Figure 1. The ini-
tialization of bus clocks can be modeled by setting the initial
state of the automata. If transitions in some hardware com-
ponent models need to be triggered at the positive edge of
CLK A, then the user can synchronize these transitions with
the clock transition from A0 to A1 in order to guarantee that
these transitions will be triggered at the same time.

Figure 2 is a gated clock model. Gated clock is a com-
mon technique for low power design in hardware. Regis-
ter variable G is a control signal that enables/disables the
clock. When G is one, the clock operates normally. When
G becomes zero, the timed automata will eventually stay in
Low-power mode until G becomes one, which represents
the gated condition of a clock.

Figure 3 illustrates transfer phase and termination phase
in non-address pipelining of an IBM CoreConnect PLB [1]
bus arbiter. We only illustrate time-out and SI addrAck of
termination phase in Figure 3. A PLB PAValid signal will
be asserted high when the arbiter grants the bus to a mas-
ter at the beginning of the transfer phase. If the SI wait is
asserted by a PLB slave, the bus arbiter will continue to
drive PLB PAValid as well as the address and transfer qual-
ifier signals until the slave asserts the SI addrAck signal. A
register variable C counts the number of bus clock cycles

Administrator
The 14     VLSI Design/CAD Symposium           

Administrator
th

Administrator
 178

Administrator



C < = 16


C := 0

PLB_PAValid  := 1

PLB_MnAddrAck := 0


Synchronize with PLB bus

clock positive edge

C < 14 and SI_wait = 0

C := C+1

PLB_PAValid := 1


Synchronize with with PLB bus clock

positive edge

C = 16 and PLB_MnAddrAck = 1

PLB_PAValid := 0

C := 0


Synchronize with PLB bus

clock positive edge

C = 15 and SI_wait = 0

C := C+1

PLB_PAValid := 1

PLB_MnAddrAck := 1


Synchronize with with PLB bus

clock positive edge

SI_AddrAck = 1

PLB_PAValid := 0

C := 0


Synchronize with PLB bus clock

positive edge

SI_wait = 1 and SI_Addrack = 0

C := 0


Figure 3: Transfer phase and termination phase in non-
address pipelining of an IBM CoreConnect PLB bus arbiter

in Figure 3. C will start counting as soon as the bus ar-
biter grants the master’s request by asserting PLB PAValid
to high. If the slave does not assert SI wait and has not re-
sponded within 15 bus clock cycles, then the arbiter will
assert PLB mnAddrAck high to indicate time-out and the
transfer will be terminated at the 16th bus clock cycle. If a
slave acknowledges the bus arbiter by asserting SI addrAck,
the address cycle is terminated and C will be reset.

3 Modeling Synchronizations
To ensure each hardware component changes its state syn-
chronously at the same clock triggering edge, the ETA mod-
els of these components must have the same synchroniza-
tion label on the synchronizing transitions. By doing so,
a hardware ETA transition will be taken only if there is a
triggering transition on a clock component model. Thus,
we can create multiple clock component models to repre-
sent multiple hardware clocks or create an enhanced clock
model to represent a gated clock or a skewed clock.

We define four data attributes for synchronization transi-
tions as follows.

1. Synchronization Label: A label which is associated
with two or more transitions that are to be synchro-
nized is call a synchronization label and the transitions
are called synchronization transitions.

2. Type of Synchronization:

(a) Base synchronization (abbreviated as sync base)
transition: A synchronization transition of clock
component models is called a base synchroniza-
tion transition. Our modeling methodology does
not allow synchronization between two base syn-
chronization transitions.

(b) Reference synchronization (abbreviated as
sync ref) transition: A synchronization tran-

sition of hardware components is called a
reference synchronization transition.

(c) Synchronized synchronization (abbreviated as
sync’ed) transition: A transition that results from
synchronizing one or more synchronization tran-
sitions of hardware components with synchro-
nization transition of a clock component model
is called a synchronized synchronization transi-
tion.

3. Transition Synchronization Base: If the synchronous
type of a synchronization transition is sync’ed, then the
sync base transition must be recorded for future com-
positions.

4. Transition Synchronization References: A list of
sync ref transitions that have been composed together
into one transition. This is used in sync ref and
sync’ed transitions.

Table 1 shows the synchronization algorithm for com-
posing two modes of two different automata. Details are
left out due to page limits. The basic idea is to compose
out-going synchronization transitions having the same syn-
chronization labels. The main issues in synchronizing two
transitions are: (1) which transition should be preserved,
and (2) whether we should create two branching synchro-
nization transitions when the composition fails. We need
to handle only four composition cases as described in the
following. Let tr1 represent a transition of a mode from
a composed automaton and tr2 represent a transition of a
mode from an automaton that is being composed.

1. tr1 is a sync base transition and tr2 is a sync ref tran-
sition: tr1 can be still be triggered even if the compo-
sition of the two transitions fails. (Steps 6, 7)

2. tr1 is a sync ref transition and tr2 being a sync base
transition: Due to tr2 being a sync base transition, we
must compose all out-going sync ref transitions having
the same synchronization label with tr2. If the transi-
tion composition fails, tr2 will still be triggered. (Steps
8, 9)

3. tr1 is a sync ref transition and tr2 is a sync ref transi-
tion: If the composition of these two transitions suc-
ceeds, the sync ref attribute in the newly composed
transition is the union of the sync ref attributes of tr1
and of tr2. If the composition fails, this means there
are some contradictions between the triggering condi-
tions of tr1 and tr2. Thus, a new branching transition is
needed. So, we must first keep tr1. Then, we compose
all non-conflicting transitions in the sync ref attribute
of tr1 with tr2. (Steps 10, 11)

4. tr1 is a sync’ed transition and tr2 is a sync ref transi-
tion: We compose tr2 with the base transition of tr1 at
the beginning. If the composition succeeds, we then

Administrator
The 14     VLSI Design/CAD Symposium           

Administrator
th

Administrator
   179



Table 1: Composition of synchronization transitions

Compose Synchronous Transitions(mode1,mode2)
mode1 = a mode of an already composed automaton;
mode2 = a mode of the automaton to be composed; {

for each out transition tr1 of mode1{ (1)
if tr1 is a synchronization transition { (2)

φ = synchronization label of tr1 (3)
{Sync list} = Get Same Sync Lab Trans(mode2,φ); (4)
for each transition tr2 ∈ {Sync list} { (5)

if tr1 is sync base and tr2 is sync ref { (6)
Compose Sync Base Ref Trans(tr1,tr2); (7)

}
else if tr1 is sync ref and tr2 is sync base { (8)

Compose Sync Ref Base Trans(tr1,tr2); (9)
}
else if tr1 is sync ref and tr2 is sync ref { (10)

Compose Sync Ref Ref trans(tr1,tr2); (11)
}
else if tr1 is sync’ed and tr2 is sync ref { (12)

Compose Sync’ed Ref Trans(tr1,tr2); (13)
}

}
}

}
}

H = 1
H = 1
 X = 1
X = 1
 Y = 1 
Y = 1 
 H = 0
H = 0
 Y = 0
Y = 0
 X = 0
X = 0


A0


A1


B0


B1


C0


C1


D0


D1


E0


E1


F0


F1


Figure 4: Reference synchronization transitions

compose the newly composed transition with tr1. If
the new composition fails, this means there are con-
tradictions between triggering conditions of tr1 and of
tr2. Thus, a new branching transition is needed. So,
we must first keep tr1. Then, we compose all non-
conflicting transitions in the sync ref attribute of tr1
with tr2. (Steps 12, 13)

Figure 4 is an example of composing synchronization
transitions. Each transition in Figure 4 is a sync ref tran-
sition and they all share the same synchronization label.
There are six ETA to be composed. The triggering con-
dition of the transition A0 → A1 conflicts with that of the
transition D0 → D1. The triggering condition of the tran-
sition B0 → B1 also conflicts with that of the transition
F0 → F1. After applying our proposed synchronization
modeling techniques, the resulting eight transitions after
composition are depicted in Figure 5. Each of the result-
ing transition is composed by three sync ref transitions. For
example, the transition Z0 → Z1 is composed by transitions
A0→A1, B0→B1, and C0→C1. If the transition Z0→ Z1
is taken, it means the ETA models will change from modes
A0, B0, and C0 to modes A1, B1, and C1, simultaneously.

We have applied the proposed clock and synchronization
models to IBM CoreConnect and ARM AMBA bus archi-
tectures in our FVP formal verification platform [9].

Z0


H=0&

X=1&

Y=1


H=1&

X=1&

Y=0


H=0&

X=1&

Y=0


H=1&

X=0&

Y=1


H=0&

X=0&

Y=1


H=1&

X=0&

Y=0


H=0&

X=0&

Y=0


H=1& 

X=1& 

Y=1


Z1
 Z2
 Z3
 Z4
 Z5
 Z6
 Z7
 Z8


Figure 5: Composed state-graph

4 Conclusion
By proposing multiple clocks model, a gated clock model,
and clock-based synchronization models, we have shown
how formal verification tools for hardware systems can be
extended to analyze multi-rate systems such as System-on-
Chip (SoC). By applying our modeling techniques to com-
mon on-chip bus architectures such as IBM CoreConnect
and ARM AMBA we have shown the feasibility and ben-
efits of our approach. By implementing all the techniques
and integrating them into the SGM model checker we have
allowed verification engineers to actually verify SoCs for-
mally.

References
[1] A. Goel and W. R. Lee. Formal verification of an IBM

CoreConnect processor local bus arbiter core. In Procs.
of the 37th Design Automation Conference, pages 196–
200, 2000.

[2] H. Choi, B. Yun, Y. Lee, and H. Roh. Model check-
ing of S3C2400X industrial embedded SoC product.
In Procs. of the 38th Design Automation Conference,
pages 611–616, June 2001.

[3] UT Austin. Examples of hardware verification us-
ing VIS. 1997. http://vlsi.colorado.edu/ vis/texas-
97/texas97benchmarks.ps.

[4] J. Bengtsson, F. Larsen, K.and Larsson, P. Petterson,
Y. Wang, and C. Weise. New generation of UPPAAL.
In Procs. of the Intl Workshop on Software Tools for
Technology Transfer (STTT’98), July 1998.

[5] Thomas Henzinger. The theory of hybrid automata. In
Procs. of the 11th Annual IEEE Symposium on Logic
in Computer Science (LICS ’96), pages 278–292, New
Brunswick, New Jersey, 1996.

[6] Gerard J. Holzmann. The model checker SPIN. Soft-
ware Engineering, 23(5):279–295, 1997.

[7] F. Wang and P.-A. Hsiung. Efficient and user-
friendly verification. IEEE Transactions on Computers,
51(1):61–83, January 2002.

[8] R. Alur and D.L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[9] W.-S. Liao and P.-A. Hsiung. FVP: A formal verifi-
cation platform for SoC. In Procs. of the 16th IEEE
International SoC Conference, September 2003.

Administrator
The 14     VLSI Design/CAD Symposium           

Administrator
th

Administrator
   180

Administrator




