Concurrent Embedded Real-Time Software Verification

Pao-Ann Hsiung
Institute of Information Science, Academia Sinica, Taiwan, ROC
E-mail: hpa@computer.org

Abstract

The verification of software is more complex than hard-
ware due to inherent flexibilities (dynamic behavior) that
incur a multitude of possible system states. The verification
of Concurrent Embedded Real-Time Software (CERTS) is
all the more difficult due to its concurrency and embedded-
ness. The work presented here shows how the complexity
of CERTS verification can be reduced significantly through
answering common engineering questions such as when,
where, and how one must verify embedded software. Appli-
cation examples illustrate the usefulness of our technique in
increasing verification scalability.

1. Introduction

With the burgeoning wide-spread embedding of software
into computerized systems and the increasing complexity
of today’s hardware-software systems, software verification
is an indispensable procedure in system synthesis. We try
to answer questions related to software verification such as
when should software be verified, where should software be
verified, and how should software be verified.

When should software be verified? Embedded software
is synthesized through a process called quasi-static schedul-
ing (QSS) (17], which computes most of the schedule for a
set of software processes at compile time, leaving at run-
time only the solution of data-dependent decisions. Veri-
fication can be performed at three different points: before
scheduling, after scheduling, and after code generation. We
propose to verify software after scheduling and before code
generation, as discussed in Section 3.

Where should software be verified? There are two kinds
of concurrencies in a hardware-software system: system
concurrency and process concurrency. System concurrency
is the number of CPUs running software. Process concur-
rency is the number of concurrent processes. Convention-
ally, software is verified under process concurrency. We
propose that embedded software should instead be verified
under system concurrency, which significantly increases

0-7695-0792-1/00 $10.00 © 2000 IEEE

verification efficiency and scalability, as illustrated in Sec-
tion 4.

How should software be verified? An algorithmic proce-
dure for formal verification that has gained unforeseen pop-
ularity among verification scientists and likewise among de-
sign engineers, is called model checking. Model checking is
an automatic procedure to verify if a given system satisfies
a given temporal property [4]. For dense real-time systems,
a system is often described using Timed Automata (TA)
[5] and a property is specified in Timed Computation Tree
Logic (TCTL) {9, 11]. We propose two model checking
algorithms for Concurrent Embedded Real-Time Software
(CERTS). The algorithms work by abridging a set of given
TA into a smaller set to acquiesce for the smaller system
concurrency (as compared to process concurrency) and then
annotating the abridged TA with pre-generated valid sched-
ules. Finally, model checking is applied on the abridged and
annotated set of TA. This is described in Section 5.

Section 2 gives a brief survey of current software syn-
thesis methods. Section 3 answers the when question by
proposing a Schedule-Verify-Map (SVM) strategy. Sec-
tion 4 answers the where question by demonstrating the va-
lidity of verifying at system concurrency. Section 5 answers
the how question by proposing two verification algorithms
for CERTS. Section 6 gives two application examples. Sec-
tion 7 concludes with some future research directions.

2. Embedded Software Synthesis

Currently, software synthesis is a hot topic of research
in the field of hardware-software codesign. Partial software
synthesis was performed for communication protocols [16],
plant controllers [6], and real-time schedulers {2]. Only re-
cently has there been some work on automatically generat-
ing software code for embedded systems [15, 17, 18]. As
far as the authors know, no automatic software synthesis
method is available for concurrent real-time embedded soft-
ware. In the following, we will survey the existing works on
the synthesis of non real-tirne software.

Lin [15] proposed an algorithm that generates a software
program from a concurrent process specification through in-

Synthesis >

Quasi-Static Syntax
c Scheduling | o, Mapping CERT Software
‘E Processes ® State Machines ® Program
g Model Model Abstraction
§~ Derivation Generation Techniques
A
Formal System Model Simplified
Models with Schedules Abstract Model
Formal Formal Simulation
Verification Verification or Testing
Verification Verified Validation Results
Results Schedules and Diagnastics
® inVSM ©® in SVM ® inSMV

Figure 1. En-route Verification

termediate Petri-Net representation. This approach is based
on the assumption that the Petri-Nets are safe, i.e., buffers
can store at most one data unit, which implies that the model
is always schedulable. The proposed method applies guasi-
static scheduling to a set of safe Petri-Nets to produce a set
of corresponding state machines, which can then be mapped
syntactically to the final software code. Later, Zhu and Lin
[18] proposed a compositional synthesis method that re-
duced the generated code size and thus was more efficient.

A software synthesis method was proposed for a more
general Petri-Net framework by Sgroi et al. [17]. A quasi-
static scheduling algorithm was proposed for Free-Choice
Petri Nets (FCPN) [17]. A necessary and sufficient condi-
tion was given for a FCPN to be schedulable. Schedulabil-
ity was first tested for a FCPN and then a valid schedule
generated by decomposing a FCPN into a set of Conflict-
Free (CF) components which were then individually and
statically scheduled. Code was finally generated from the
valid schedule. All the above work suggest that research on
software synthesis is still at a very young stage and with-
out any verification. We propose to incorporate software
verification into the synthesis procedure, just as we did for
hardware-software codesign {12, 10}.

3. Schedule-Verify-Map Strategy

This section answers the when question, that is, “when
should software be verified?” As depicted in Figure 1, there
are three stages in synthesis (first row in the figure): process
specification, scheduling, and code generation.

¢ Stage (1). In process specification, a set of communi-
cating processes representing the behavior of desired
software is specified, which can be in the form of a set
of Petri Nets [15, 18, 17], or in formal specification
languages such as Esterel, LOTQS, etc.

e Stage (2). In scheduling, except for run-time de-
pendent computations, all other computations in the

517

specified processes are quasi-statically scheduled [15,
17]. The scheduled processes are usually represented
by a set of finite state-machines.

o Stage (3). In code generation, the set of finite state-
machines is syntactically mapped to software code. A
software time loop is utilized to maintain the schedule
in the finite state-machines.

3.1. Conventional Verification Approaches

Theoretically, verifying the given processes can be done
after either one of the stages during software synthesis. Ver-
ification scientists try to verify processes immediately after
process specification (i.e., Stage (1)) to find any specifica-
tion errors. This is called the Verify-Schedule-Map (VSM)
approach (column 1 and row 1 in Figure 1). Design engi-
neers try to verify the final program after code generation
(i.e., Stage (3)). This is called the Schedule-Map-Verify
(SMV) approach (row 1 and column 3 in Figure 1). Both of
these approaches encounter different degrees of state-space
explosion problems.

Verifying process specification explores unnecessary re-
gions in the state-space that would eventually not even exist
in the final software code. These regions are basically those
that will be eliminated by scheduling (Stage (2)). The prob-
lem becomes worse when the degree of non-determinism is
high in the specification or when the degree of process con-
currency increases.

Verification of program code also indulges in unneces-
sary state-space explosions and thus affects scalability in the
number or size of processes verifiable. Software programs
usually contain many auxiliary implementation dependent
variables that contribute towards neither the real behavior
of the software nor the satisfaction of specified real-time
constraints by the software.

3.2. Proposed SVM Approach

To overcome the difficulties in verification presented
in the previous subsection, we propose a new approach
called Schedule-Verify-Map (SVM). In SVM, verification
is performed after scheduling and before code generation.
Since scheduling eliminates certain regions in the state-
space, SVM will explore a much smaller part of the state-
space. Since the target of verification is a set of scheduled
processes and not program code, SVM will also search a
smaller state-space than the engineers’ approach (verifica-
tion after code generation).

Comparing the three approaches — Verify-Schedule-
Map (VSM) adopted by verification scientists, Schedule-
Map-Verify (SMV) adopted by design engineers, and our
proposed Schedule-Verify-Map (SVM) approach, we have
the pros and cons of each summarized in Table 1.

Table 1. Verification Approach Comparison
[| Correct | Feasible | State-Space | Complete |
VSM | Too Sure | Vaguely Exp. Large Over
SVM | Sure Largely Reduced Yes
SMV | Not Sure | Practically | Medium No

In the following, the sets of integers and non-negative
real numbers are denoted by A/ and R >0, respectively.

A timed automaton (TA) is composed of various modes
interconnected by transitions. Variables are segregated into
categories of clock and discrete. Clock variables increment
at a uniform rate and can be reset on a transition, whereas
discrete variables change values only when assigned a new
value on a transition. A TA may remain in a particular
mode as long as the values of all its variables satisfy a mode
predicate, which is a conjunction of clock constraints and
boolean propositions.

Definition 1 : Mode Predicate
Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate 1 over C and D is
definedas: p:=false |z ~clz—y~cld~c|mAn |
-, wherez,y € C,~ € {<,<,=,>,>},ce N,de D,
and 7,72 are mode predicates. I
Let B(C, D) be the set of all mode predicates over C
and D.

Definition 2 : Timed Automaton

A Timed Automaton (TA) is a tuple A;
(M;,m?,C;, Di, i, Ei, 7, p;) such that: M; is a finite set
of modes, m? € M is the initial mode, C; is a set of clock
variables, D; is a set of discrete variables, x; : M; —
B(C;, D;) is an invariance function that labels each mode
with a condition true in that mode, E; C M; X M; is a
set of transitions, 7; : E; — B(C;, D;) defines the transi-
tion triggering conditions, and p; : E; = 20:U(DxN) g
an assignment function that maps each transition to a set of
assignments such as resetting some clock variables and set-
ting discrete variables to specific integer values. I

4. Handling Concurrency

This section answers the where question, that is, “where
should software be verified?” In the rest of this section, we
propose to verify embedded software under system concur-
rency, rather than under process concurrency. ‘

4.1. Verification under Two Concurrencies

The scalability of formal verification, especially that of
model checking, strictly depends on inherent concurrencies

518

Initialize
Coum

Increment
Count

C:=C-1

C:=C+1

Figure 2. Signal Polling System

in a system model. The size of state-spaces explored by
model checking grows exponentially with an increase in
concurrency. For example, a two-process system obeying
FMEP has 70 modes and 160 transitions, a three-process
system has 1239 modes and 4013 transitions, and a four-
process system has approximately 28K modes and 120K
transitions. The increase is drastic.

The concurrency of a system is generally specified as the
number of processes running in the system. This is incorrect
when embedded systems are concerned, because the actual
concurrency (number of processors) is much smaller than
the number of processes. For example, if verification is per-
formed for a four-process signal polling system executing
on two processors, then the size of state-space explored is
only 57 modes and 79 transitions, which is much smaller
than that for a four-process system verified under process
concurrency of four (78K modes and 205K transitions). A
timed automaton for the signal polling system is given in
Figure 2.

Unless mentioned otherwise, assume we are given a sys-
tem S with n processes P = {Py, P,..., Py}, modeled
by n timed automata A = {.A;, As, ..., A,}, respectively,
where A; = (M;,m?,Ci, Dy, x4, Ei,7iy0i), 1 < 4 < n.
Also, assume there are m processors in system S, that is,
Q = {Q1,Qs2,...,Q:n}. Hence, a system is defined as a
two-tuple S = (P, Q).

On software synthesis, the n processes in P are quasi-
statically scheduled on the m processors in Q (refer to Sec-
tion 2 for quasi-static scheduling). Let Z be the set of valid
schedules generated by any software synthesis method, that
is, Z = {Gi | G = (Pry, Piy, -, Pr,), Pr; €P,1 <5<
r<n,1<:< m}, where (; = <Pk1,Pk2,...,Pkr) is a
schedule for processor Q;, such that processes Py, , . .., Py,

are scheduled to run on Q;.

The main issue in handling concurrency is how do we
verify n processes under the system concurrency of m pro-
cessors. In the following two subsections, we propose two
approaches for solve this issue, namely, processor-oriented
verification and process-oriented verification.

4.2. Processor-Oriented Verification

An intuitive method is to create a new timed automaton
for modeling the behavior of each processor. This is called
processor-oriented verification. Besides being intuitive, it
can be easily extended to include process preemptions.

Based on the syntax representation of a timed automa-
ton, we know that each process automaton, 4;, either has
a transition, ey € FE;, that loops back to the initial mode,
m?, from some mode in M;\{m{} or has a final mode,
my € M;. A looping transition is defined as one that loops
back to the initial mode from some non-initial mode. A fi-
nal mode is defined as an accepting mode, from which there
is no out-going transition.

A processor timed automaton, B; = (M!,m)?,C!,
D, X}, E}, 1!, p}), is constructed for processor @; as fol-
lows. For each process, Fj;, that appears in the schedule
(s, include the process automaton Ay, into B;. The inclu-
sion method involves how two consecutive TA, Aki and
Ag,,, are to be merged into the new B;. For each loop-
ing transition, ey in Ej;, change the destination mode of
ey into the initial mode, m%jﬂ, of Ay,,,. For each final
mode, my, create a new transition, e'f, from my to the ini-
tial mode, mﬁjﬂ, of Ay,,,. Thus, transitions e; and €/
interconnect the two consecutive TA, Ay, and Ay, in the
u
new TA B;. Suppose a partial schedule, Py, ..., Py,
is to be looped for u times, where v > 1, v > 0, and
kj,...,kj+v € {1,...,n}. Counter variables are created
to keep count of the number of times the loop has executed.
Interconnecting transitions connect Ay, , with the initial
mode of A, and with the initial mode of the next process
after the loop in a schedule.

4.3. Process-Oriented Verification

Another method of verifying n processes, running under
the system concurrency of m processors, is by directly re-
stricting the execution of the process timed automata in A.
This approach is called process-oriented verification. This
approach does not allow process preemption.

A processor locking variable is used to restrict the exe-
cution of a process according to a schedule. It is a mutual
exclusion variable that indicates which process is currently
being executed on a processor. For example, a processor
locking variable, I, locks processor @y and if Iy = kj,
then process P, is currently being executed on Q.

519

Modifications of process timed automata are carried out
as follows. Create a set of m processor locking variables,
{li,...,1m}, such that I} locks processor Q, 1 < k <
m. Suppose the processor schedules are as follows: (x =
(Prys Pryy- s Pr.)y 1 <k <m,1 <7 < n. Let the initial
value of {;, be ky. Assume that process Py, is scheduled
on processor @, 1 < j < r. Modify each process timed
automaton, Ay, as follows:

o Create a new initial mode, m,” , for Ay,

.. ’
» Create a new transition, e’, from m,), tom_,

Let the triggering condition 7, (€°) be I, = k;,
For each looping transition, e, let py(e)
pr; (€); (I == Kjt1),

For each loop repetition in a schedule, a counter vari-
able maintains the loop execution count.

5. Model Checking CERTS

The framework of verification that we use for soft-
ware verification is the popular model checking framework
[4, 11], as introduced in Section 1. Model checking verifies
if a given system satisfies a given property. In our frame-
work, a real-time system is described using Timed Automata
(TA) [5] (see Definition 2) and a temporal property is spec-
ified using Timed Computation Tree Logic (TCTL) [9, 11].

Definition 3 : TCTL Formula

A timed computation tree logic formula has the following
syntax: ¢ u= 75 | A0¢" | IPU.¢" | ~¢' | ¢' vV ¢".
Here, 7 is a mode predicate in B(U_, C;, U D;), ¢', ¢"
are TCTL formulae, ~ € {<,<,=,>,>},andc € N.
J0¢" means there exists a computation, from the current
state, along which @' is always true. 3¢'U ..¢"' means there
exists a computation, from the current state, along which ¢’
is true until ¢ becomes true, within the time constraint of
~ ¢. Traditional shorthands like 3¢, VO, VO, VU, A, and
— can all be defined [11]. Il

We will now formulate our problem.

Definition 4 : CERTS Verification Problem
Given a real-time system S = (P, Q), a TCTL formula
¢, and a set of schedules Z, Concurrent Embedded Real-
Time Software (CERTS) verification problem is to verify if
S satisfies ¢ under the schedule Z. In notations, this is rep-
resented as S =z ¢. I
Two model-checking algorithms are proposed to solve
the CERTS verification problem: processor-oriented and
process-oriented. In the processor-oriented verification ap-
proach, as given in Table 2, a set of TA, B, is constructed,
from the system description and from the set of sched-
ules (generated from a synthesis method), to model the set
of processors and this set 1s input to the symbolic model

Table 2. Model Checking Algorithm for Em-
bedded Software (Processor-Oriented)
Model_Check_Embedded_Softwarel(S, ¢, Z)
system S = (P, Q); // P, € P modeled by
INA; = (M;,m%,C;,D;,x:, E;,73,p;) € A
tctl formula ¢;
schedule set Z;
{ Let B be an empty set of TA;
Fork=1,...,|Q| {
By, = Construct_Processor TA(A, ();
/I where By, is a timed automaton.
B =BU{B}; }
Symbolic MCheck(B, ¢); }

Table 3. Symbolic Model Checking Procedure

Symbolic_ MCheck(, ¢)
set of TA B,
I B; = (M!,m2,C!, D, X,
tetl formula ¢;
{ Let Reach = Unvisited = {Rinit };
While (Unvisited # NULL) {
R' = Dequeue(Unuvisited); // R': aregion
For all out-going transition, e, of R’ {
R'" = Successor_Region(R', ¢);
If R" is consistent and R"” ¢ Reach {
Reach = ReachU {R"};
Queue(R",Unvisited); } } }
Label_Region(Reach, ¢);
Return L(R;pit); }

E.

1y P

pi) €B,i>1

checking procedure. The construction procedure (Con-
struct_Processor_TA()) was described in Section 4.2. The
process-oriented verification approach is very similar to the
processor-oriented approach, except it requires a modifica-
tion of the process TA, as described in Section 4.3.

The symbolic model checking procedure
(Symbolic_MCheck()) used in the algorithm (Table 2) is
given in Table 3. A region is defined symbolically as a col-
lection of states that satisfy a symbolic condition on clock
variable values and a symbolic condition on discrete vari-
able values. Given a region R, its symbolic clock con-
dition and symbolic discrete variable condition are repre-
sented by R.ClockCond and R.DV arCond, respectively.
In most model checking tools, Difference Bound Matrices
[3, 81 and Binary Decision Diagrams {7} are used to im-
plement symbolic clock and discrete variable conditions,
respectively. Due to page-limits, Successor_Region() and

520

Table 4. Fischer’s Mutual Exclusion Protocol

[n]Sch [App | #M | #T [Mem [Time |
2 { No [VSM 23 38 0.78 0.08
2 | Yes | SVM 8 9 0.78 0.05
3 No | VSM 103 249 0.97 0.57
3| Yes | SVM 22 28 0.88 0.27
41 No | VSM 467 1,532 2.28 7.31
4 | Yes | SVM 82 115 1.81 3.65
5| No | VSM 2,381 | 10,065 | 10.47 113.00
51 Yes | SVM 392 767 | 10.40 68.25
6 | No | VSM | 14,181 | 74,046 | 98.02 | 2487.00
6 | Yes | SVM 2,284 3,589 | 88.48 | 1610.22

Units: Memory (Mem) in MB and Time in seconds

n = #Processes, Sch = Scheduled, App = Approach,
#M = No. of Modes, #T = No. of Transitions

Label_Reach() procedures are left out.

6. Examples

All the experiments were run on a Sun 296 MHz
UttraSPARC-II workstation with 256 MB memory.

6.1. SVM Approach v/s VSM Approach

The proposed Schedule-Verify-Map (SVM) approach
was compared analytically with the conventional Verify-
Schedule-Map (VSM) approach in Section 3.1. We will
illustrate through application example the actual compar-
ison between the two verification approaches. This ex-
ample is the Fischer’s Mutual Exclusion Protocol (FMEP)
[1,13,14].

The size of state-space of a system of processes obeying
the FMEP increases exponentially due to a drastic increase
in the number of possible concurrencies. This is observable
from the non-scheduled rows in Table 4. Here, n, the num-
ber of processes, was varied from 2 to 6 to observe the effect
of increasing concurrency on the state-space sizes. For il-
lustrating SVM, a system of process timed automata was
scheduled by assigning priorities to concurrent lock vari-
able writes. The results of scheduling FMEP processes are
given by the scheduled rows in Table 4. There is a large dif-
ference between the state-space sizes explored by the two
approaches. Verification scalability is improved when the
SVM approach is adopted.

6.2. System v/s Process Concurrency
Instead of process concurrency (number of processes),

verification under system concurrency (number of proces-
sors executing software) was proposed in Section 4. Two

Table 5. Signal Polling System
[m]Sch App [L]| #M [#T | Mem [Time |

4 | No | VSM | - 78K | 205K | 178 | 9608
4 | Yes | SVM | P | 1,018 | 1,255 7 34
2 | Yes | SVM | Q | 1,327 { 2,727 3 7
2] Yes | SVM | P 57 79 1 0.5
1]| Yes | SVM | P 29 41 1 0.3

L = Orientation Model, P = Process, Q = Processor

different models were-also proposed, namely, processor-
oriented and process-oriented in Sections 4.2 and 4.3, re-
spectively. Here, verification under system concurrency is
performed for two application examples and both the mod-
els compared with the conventional verification under pro-
cess concurrency.

This example is a 4-process signal polling system (SPS),
which was introduced in Section 4.1. Three different system
configurations are considered: 1 processor, 2 processors,
and 4 processors. The 4-process software system was ex-
ecuted on all the three system configurations and the state-
space sizes recorded as shown in Table 5.

It is observed that compared to verifying under process
concurrency (row 1 of Table 5), verifying under system con-
currency (rows 2—4 of Table 5) results in a much smaller
state-space and in a higher verification scalability. It is also
observed that a process-oriented model for verification un-
der system concurrency has a smaller state-space compared
to that of a processor-oriented model (rows 2,3 of Table 5).

7. Conclusion

A verification method for Concurrent Embedded Real-
Time Software (CERTS) was proposed, answering three im-
portant verification issues: when, where, and how should
CERTS be verified. In answer to the when issue, a Schedule-
Verify-Map (SVM) strategy was proposed. In answer to
the where issue, instead of the conventional verification
under process concurrency, verification under system con-
currency was proposed. The advantage of verifying un-
der system concurrency was illustrated through application
examples. In answer to the how issue, a complete sym-
bolic model checking procedure was presented within two
different verification approaches: processor-oriented and
process-oriented. Examples show how the proposed an-
swers to each of the three issues aid in CERTS verification.

References

[1] M. Abadi and L. Lamport. An old-fashioned recipe for real
time. In REX Workshop, Real-Time Theory in Practice, Lec-

521

[2]

{3]

41

{51

(61

7]

(8]

91

[10]

(11]

{12]

(13]

{14

(15]

{16}

(17

[18]

ture Notes in Computer Science, volume 600, pages 1-27,
June 1991.

K. Altisen, G. Gobler, A. Pneuli, J. Sifakis, S. Tripakis, and
S. Yovine. A framework for scheduler synthesis. In Real-
Time System Symposium (RTSS’99). IEEE Computer Soci-
ety Press, 1999.

R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and
H. Wong-Toi. An implementation of three algorithms for
timing verification based on automata emptiness. In Proc.
IEEE Intl. Conf. Real-Time Systems Symposium (RTSS’92),

1992.

R. Alur, C. Courcoubetis, N. Halbwachs, and D. Dill. Model
checking for real-time systems. In Proc. IEEE Logics in
Computer Science, 1990.

R. Alur and D. Dill. Automata for modeling real-time sys-
tems. Theoretical Computer Science, 126(2):183-236, April
1994.

E. Asarin, O. Maler, A. Pneuli, and J. Sifakis. Controller

synthesis for timed automata. In Proc. System Structure and

Control. IFAC, Elsevier, July 1998.

R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8),
1986.

D. Dill. Timing assumptions and verification of finite-state
concurrent systems. In Proc. International Conference on
Computer-Aided Verification, LNCS, volume 407. Springer
Verlag, 1989.

E. Emerson. Temporal and modal logic. Handbook of The-
oretical Computer Science, 1990.

J.-M. Fu, T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen. Hardware-
software timing coverification of distributed embedded sys-
tems. [EICE Trans. on Information and Systems, to appear.

T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for real-time systems. In Proc. I[EEE
Logics in Computer Science, 1992.

P.-A. Hsiung. Hardware-software timing coverification of
concurrent embedded real-time systems. IEE Proceedings
on Computers and Digital Techniques, 147(2):81-90, March
2000.

L. Lamport. A fast mutual exclusion algorithm. ACM Trans.
on Computer Systems, 5(1):1-11, February 1987.

K. G. Larsen, B. Steffen, and C. Weise. Fischer’s protocol
revisited: A simple proof using modal constraints. In Hy-
brid System Ill, Lecture Notes in Computer Science, volume
1066, pages 604-615, 1996.

B. Lin. Software synthesis of process-based concurrent
programs. In Proc. of Design Automation Conference

(DAC’98), pages 502 — 505. ACM Press, June 1998.

P. Merlin and G. Bochman. On the construction of sub-
module specifications and communication protocols. ACM
Trans. on Programming Languages and Systems, 5(1):1 —
25, January 1983.

M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-
Vincentelli. Synthesis of embedded software using free-
choice petri nets. In Proc. Design Automation Conference
(DAC’99). ACM Press, June 1999.

X. Zhu and B. Lin. Compositional software synthesis of
communicating processes. In Proc. of International Con-
ference on Computer Design (ICCD’99), pages 646 — 651.
IEEE CS Press, October 1999,

