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Abstract

Most verification tools and methodologies such as model
checking, equivalence checking, hardware verification, soft-
ware verification, and hardware-software coverification of-
ten flatten out the behavior of a target system before ver-
ification. Inherent modularities, either explicit or implicit,
functional or structural, are not exploited by these tools and
algorithms. In this work, we show how assume-guarantee
reasoning (AGR) can be used for such exploitations by in-
tegrating AGR into a verification tool. Targeting at real-
time embedded systems, we propose procedures to auto-
matically generate assumptions, guarantees, and time con-
straints, which otherwise require manual efforts and human
creativity. Through a complex but comprehensible real-time
embedded system example such as a Vehicle Parking Man-
agement System (VPMS), we illustrate the feasibility of the
AGR approach and the extremely large reduction possible
in state-space sizes when AGR is applied. Due to AGR, we
also found five errors in the VPMS design using much lesser
CPU time and memory space than possible without AGR.

1 Introduction

The theory behind Assume-Guarantee Reasoning (AGR)
has been well-studied and can be traced back to Misra
and Chandy’s assumption-commitment approach [24] and
Jones’ rely-guarantee approach [19] proposed around two
decades ago. Though AGR has a long history, yet it has
been “more widely studied than actually used” [26]. The-
oretically, AGR states that a system can be verified by first
decomposing it into constituent parts, second the parts are
individually verified such that each part satisfies a guaran-
tee G only if its environment satisfies an assumption A, and
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finally discharging all the assumptions made for each com-
ponent using a circular induction over time. This reasoning
will be explained in more details in Section 3. The main
benefit of this approach is that the explicit construction of
the system global state-space, which is usually of an expo-
nentially large size, can be avoided [16, 17]. Thus, veri-
fication scalability is increased through the application of
AGR.

Only in the recent few years has there been some appli-
cations of the AGR technique to real-world systems such as
asynchronous systems [1, 2], synchronous reactive systems
[7, 8, 18], Tomasulo’s algorithm [22], a pipelined imple-
mentation of a directory-based coherence protocol in Sili-
con Graphics Origin 2000 servers [10], a VGI dataflow pro-
cessor array designed by the Infopad project at U. C. Berke-
ley [11], pipelined implementation of an ISA architecture
[14], audio output interface of a multimedia extension SoC
[25], and a software supervisor for a multi-user phone sys-
tem [28].

The AGR technique has also been extended in several
ways, for example, to accomodate multiple constraints on
a single output port [22], branching time refinement [15],
different implementation and specification time scales [13],
and liveness constraints [23].

The application of AGR can be semi-automatically per-
formed by a user of the MOCHA tool [9, 3] through its
proof manager, but the user is still burdened with the task of
constructing abstraction and witness modules [12], which
in general requires human creativity. Recently, there are
some works on mechanizing the construction of both ab-
straction modules [4] and witness modules [6]. Automation
for the application of AGR has been greatly enhanced by
such mechanizations. Nevertheless, the automation is still
limited to refinement checking.

This article is organized as follows. Section 2 will for-
mulate the problem to be solved and describe the system
model along with an example of a real-time embedded sys-
tem. Section 3 will illustrate how assume-guarantee reason-
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ing can be applied to the formal verification of SoC, along
with the automatic generation of assumptions and guaran-
tees. Section 4 will give the verification results conducted
for the VPMS example. Section 5 will conclude the article
with some research directions for future work.

2 System Model

Our target system for verification is a Real-Time Embed-
ded System (RTES), which we basically view as a collection
of embedded hardware components, software components,
and interfaces. Our real-time embedded system model is
based on the timed automata model [5], which is defined
as follows, where the sets of integers and non-negative real
numbers are denoted by N and R≥0, respectively.

Definition 1 : Mode Predicate
Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate η over C and D is
defined as: η := false | x ∼ c | x−y ∼ c | d ∼ c | η1 ∧η2 |
¬η1, where x, y ∈ C, ∼∈ {≤, <,=,≥, >}, c ∈ N , d ∈ D,
and η1, η2 are mode predicates. ‖

Let B(C,D) be the set of all mode predicates over C
and D.

Definition 2 : Timed Automaton
A Timed Automaton (TA) is a tuple Ai =
(Mi,m

0
i , Ci,Di, Li, χi, Ei, λi, τi, ρi) such that: Mi

is a finite set of modes, m0
i ∈ M is the initial mode, Ci is a

set of clock variables, Di is a set of discrete variables, Li is
a set of synchronization labels, χi : Mi �→ B(Ci,Di) is an
invariance function that labels each mode with a condition
true in that mode, Ei ⊆ Mi × Mi is a set of transitions,
λi : Ei �→ Li associates a synchronization label with a
transition, τi : Ei �→ B(Ci,Di) defines the transition
triggering conditions, and ρi : Ei �→ 2Ci∪(Di×N ) is an
assignment function that maps each transition to a set
of assignments such as resetting some clock variables
and setting some discrete variables to specific integer
values. ‖

Using the above TA definition, our system model can be
defined as follows.

Definition 3 : Real-Time Embedded System (RTES)
A Real-Time Embedded System is defined as a collec-
tion of hardware, software, and interface components.
Each component is modeled by one or more timed au-
tomata. A system is modeled by a network of commu-
nicating timed automata. Notationally, if a system S has
a set of hardware components {H1,H2, . . . ,Hn} and a
set of software components {S1, S2, . . . , Sm}, then S =
H1‖H2‖ . . . ‖Hn‖S1‖S2‖ . . . ‖Sm, where ‖ is a parallel
composition operator resulting in the concurrent behavior of
its two operands. If Hi is modeled by a TA AHi

, 1 ≤ i ≤ n,

and Sj is modeled by a TA ASj
, 1 ≤ j ≤ m, then the TA

defined by AS = AH1 × . . . × AHn
× AS1 × . . . × ASm

is a TA model for system S, where × is the Cartesian prod-
uct operator for two timed automata. Concurrency seman-
tics is defined as follows. Two concurrent transitions with
the same synchronization label are represented by a single
synchronized transition. Two concurrent transitions with-
out any synchronization label are represented by interleav-
ing them, resulting in possibly two different paths (compu-
tations). ‖

An embedded real-time system called Vehicle Parking
Management System (VPMS) [20, 21] will be used to illus-
trate our verification methodology throughout this article.

VPMS controls the entry and exit of vehicles into and
from a parking garage or lot. Functionally, it consists of
the three subsystems: an ENTRY Management Subsystem,
which controls the entry of vehicles into a garage such that
each driver gets a parking ticket with an entry time stamp,
an EXIT Management Subsystem, which controls the exit
of vehicles from a garage such that only drivers with a valid
paid ticket gets permission to exit, and a DISPLAY Subsys-
tem, which indicates the number of vacant parking spaces
currently available in a garage or lot.

The architecture of VPMS is illustrated in Figure 1 using
the Unified Modeling Language (UML). An ENTRY (or an
EXIT) subsystem consists of three parts: a ticket processor,
a motor-controlled gate, and a set of sensors. Constraints
for the VPMS system include: a maximum system cost of
$1,300, a maximum ticket emission time of 20 ns, a max-
imum display response time of 250 ns. VPMS is modeled
using five TA: one for each of the three subsystems, namely
ENTRY, EXIT, and DISPLAY, and two for the environment,
which includes the user and other external devices such as
the Display Board. Further details on VPMS can be found
in [20, 21].

3 Assume-Guarantee Verification

Assume-guarantee reasoning (AGR) is the dual counter-
part to formal verification just as divide-and-conquer is to
discrete optimization. Informally, AGR combines verifica-
tion results of each constituent part of a system to make con-
clusions on the verification of the whole system, instead of
directly verifying the full system. The adoption or applica-
tion of AGR is often restrained by the necessity for human
creativity in the following tasks: (1) In refinement check-
ing, abstraction modules [4] and witness modules have to
be constructed [6], and (2) In invariant checking, assump-
tions and guarantees have to be generated.

As shown in Equation (1), we have extended the rules for
applying AGR to invariant checking from [28] by includ-
ing timing constraints. A system S has an assumption A, a
guarantee G, and a Boolean timing constraint T . Each com-
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Figure 1. Vehicle Parking Management System

ponent of the system also has an assumption Ai, a guarantee
Gi, and a timing constraint Ti. From Equation (1), we see
there are 2n + 1 premises to be satisfied for a system with
n components to be completely verified and to arrive at the
conclusion A →T G, where →T denotes logical implica-
tion while satisfying time constraints T . The first set of n
premises Ai →Ti

Gi gives the rule for verifying that each
component satisfies its own guarantee Gi under its assump-
tion Ai and time constraint Ti. The second set of n premises
constitute the discharging of all the assumptions by ensur-
ing that each Ai can be implied by the system assumption A
and the guarantees Gj , j �= i of the other components under
the time constraints T and Tj ,∀j �= i. The last premise sim-
ply states that the system behavior G is constructed from a
conjunction of the behaviors of each system component Gj .
This last premise must be considered and ensured while G
and each Gj are being constructed.

Ai −→Ti
Gi,

A ∧ ∧
j �=i Gj −→T∧∧

j∈{1,...,n} Tj
Ai,∧

j∈{1,...,n} Gj −→T∧∧
j∈{1,...,n} Tj

G

A −→T G

(1)

To apply and take advantage of assume-guarantee rea-
soning in verifying a complex system, assumptions, guar-
antees, and time constraints are required for each system
component and for the system environment. Our algorithm
to automatically generate them for a system component is
as detailed in Table 1.

4 Verification Results for the VPMS Example

We applied the assume-guarantee reasoning principles to
the Vehicle Parking Management System (VPMS) [20, 21]
example, which was introduced in Section 2. After apply-
ing the algorithm from Table 1, the assumptions, guaran-
tees, and time constraints for VPMS were generated, part
of which are given in Table 2. There are three computation
runs for each of ENTRY and EXIT subsystems, and four
computations runs for the DISPLAY subsystem. As given
in the last two rows of Table 2, namely Entry Environment
and Exit Environment, the assumptions, guarantees, and
time constraints for the system environment were derived
from user-given requirements (see Section 2).

The AGR rules for invariant checking given in Equa-
tion (1) were all checked with the assumptions, guarantees,
and time constraints of VPMS (Table 2). There were five
errors found as follows.

• Component Assumption Error: While using the
second rule (Equation (1)) for discharging the com-
ponent assumption with time-constraints in the Entry
component (see first row of Table 2), two errors were
found in the Entry assumptions count above zero?
and count zero? with time constraints
δ(count request!, count above zero?) = [200, 200]
and δ(count request!, count zero?) = [200, 200].
It was found that these time constraints could
not be satisfied because of contradiction with
the component guarantees count above zero!
and count zero! with time constraints
δ(count request?, count above zero!) = [18, 18]
and δ(count request?, count zero!) = [18, 18] in the
Display component. Solutions to the first error could
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Table 1. Automatic Generation of Assumptions, Guarantees, and Timing Constraints
Gen Comp AG(Xi)
Xi ∈ S = {H1, . . . , Hn, S1, . . . , Sm};
{

Ai = {}; Gi = {}; Ti = {}; (1)
schedule set = All Finite Schedules(Xi,m

0
i ); (2)

while (ψ = One Finite Schedule(schedule set) �= NULL) { (3)
last signal = NULL; first time = second time = NULL; (4)
// start generating assumption and guarantee (5)
while (γ = Get Signal(ψ) �= NULL) { (6)

if (last signal == NULL and type(γ) == out) (7)
return Unsupported System ERROR; // schedule begins with output signals (8)

switch (type(γ)) { (9)
case ‘in’: (10)

if (last signal == in) Basic a = Basic a ⊕ γ; // ⊕ ∈ {≺,
} (11)
else { (12)

if (Basic a �= NULL) Schedule a = 〈Schedule a,Basic a〉; (13)
Basic a = γ; (14)
last signal = in; } break; (15)

case ‘out’: (16)
if (last signal == in) { (17)

if (Basic g �= NULL) Schedule g = 〈Schedule g, Basic g〉; (18)
Basic g = γ; (19)
last signal = out; } (20)

else Basic g = Basic g ⊕ γ; break; } } (21)
if (Basic a �= NULL) Schedule a = 〈Schedule a,Basic a〉; (22)
if (Basic g �= NULL) Schedule g = 〈Schedule g, Basic g〉; (23)
if |Schedule a| �= |Schedule g| return Unsupported System ERROR; (24)
else { Ai = Ai ∪ Schedule a; Gi = Gi ∪ Schedule g; } (25)
// start generating time-constraints (26)
while (ζ = Get Temporal Signal(ψ) �= NULL) { (27)

if (there is signal with temporal value in ζ) (28)
first time = ζ; (29)

if (first time �= NULL and there is signal with temporal value in ζ) (30)
second time = ζ; (31)

if (first time �= NULL and second time �= NULL){ (32)
Basic t = Evaluate Time Constraint(first time, second time); (33)
Schedule t = Schedule t ∧ Basic t; (34)
first time = second time = NULL; } } (35)

Ti = Ti ∪ Schedule t; } (36)
return (Ai, Gi, Ti); (37)

}

consist of changing either of the two time constraints,
but because the signal count above zero could be out-
put (guaranteed) by 18 ns, our solution to this error was
to change the time constraint of the Entry component
to δ(count request!, count above zero?) = [0, 200].
Similarly, our solution to the second error was to
change the time constraint of the Entry component to
δ(count request!, count zero?) = [0, 200].

• Environment Guarantee Errors: While using the
third rule (Equation (1)) for checking whether the
environment guarantee was conjunctively implied by
the component guarantees, two errors were found
in the environment guarantees ent update dboard?
and ex update dboard? with time constraints
δ(take ticket!, ent update dboard?) = [0, 250] and
δ(ticket ok?, ex update dboard?) = [0, 250]. The time
constraints were originally derived from the user-given
constraint that the maximum display response time
should be 250 ns. These time constraints could not be
satisfied by the system components. For example, con-
sider the first time constraint mentioned above. The

conjunction of δ(take ticket?, car in!) = [244,∞)
from Entry with δ(car in?, ent update dboard!) =
[42, 142] from Display results in
δ(take ticket!, ent update dboard?) = [286,∞),
which does not satisfy the user-given constraint of 250
ns maximum. Solutions to this error could consist of
changing either component or environment time con-
straints, but because the component constraints could
not be changed due to physical device restrictions, our
solution was to ask the user to relax his/her constraint
to at least 286 ns.

• Environment Assumption Error: While using the
second rule (Equation (1)) for discharging the ba-
sic assumption push button? with time constraint
δ(car in!, push button?) = [244,∞) in the Entry 1
schedule of the Entry component (see first row of Ta-
ble 2), it was found that the time constraint could
not be guaranteed unless there was an environment
assumption δ(ent update dboard?, push button!) =
[202,∞). This is because there is only a time con-
straint between signals car in and ent update dboard
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Table 2. Some Assumptions, Guarantees, and Time Constraints for VPMS
Subsystem Schedule # Assumption(A), Guarantee (G), Time Constraints∗ (T )

Entry 1

A : 〈push button?, count above zero?, take ticket?〉
G : 〈count request!, ticket out!, car in!〉
T : δ(count request!, count above zero?) = [200, 200]∧

δ(take ticket?, car in!) = [244,∞)∧
δ(car in!, push button?) = [244,∞)

Entry Entry 2
A : 〈push button?, count zero?〉
G : 〈count request!, no ticket out!〉
T : δ(count request!, count zero?) = [200, 200]

Entry 3

A : 〈push button?, count above zero?, take ticket?〉
G : 〈count request!, ticket out!, ent time out!〉
T : δ(count request!, count above zero?) = [200, 200]∧

δ(ent time out!, push button?) = [244,∞)

Display 1

A : 〈initialize?, car in?〉
G : 〈reset dboard!, ent update dboard!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(car in?, ent update dboard!) = [42, 142]

Display
Display 2

A : 〈initialize?, count request?〉
G : 〈reset dboard!, count zero!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(count request?, count zero!) = [18, 18]

Display 3

A : 〈initialize?, count request?〉
G : 〈reset dboard!, count above zero!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(count request?, count above zero!) = [18, 18]

Display 4

A : 〈initialize?, car out?〉
G : 〈reset dboard!, ex update dboard!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(car out?, ex update dboard!) = [42, 142]

Entry Env 1

A : 〈push button!, take ticket!〉
G : 〈ticket out?, ent update dboard?〉
T : δ(push button!, ticket out?) = [0, 20) ∧

δ(take ticket!, ent update dboard?) = [0, 250]

Entry Env 2
A : 〈push button!〉, G : 〈no ticket out?〉
T : δ(push button!, no ticket out?) = [0, 20)Entry Environment

Entry Env 3
A : 〈push button!, take ticket!〉
G : 〈ticket out?, ent time out?〉
T : δ(push button!, ticket out?) = [0, 20)

Entry Env 4 A : 〈initialize!〉, G : 〈reset dboard?〉
∗All times are in nanoseconds.

(i.e., δ(car in?, ent update dboard!) = [42, 142] in the
Display 1 schedule of the Display component), but no
time constraint between signals ent update dboard and
push button. Our solution was to add the time con-
straint to the environment assumptions.

Since we used AGR to verify VPMS, the above five er-
rors were found using lesser CPU time and memory space,
compared to that without using AGR. The first two and
last errors were found by merely constructing a state-graph
representing the concurrent behavior of Entry Environment
and Display, with a size of 54 modes and 159 transitions,
which is much smaller compared to the total sizes of state-
graphs constructed without AGR: 1375 modes and 4360
transitions. The third and forth errors were found by con-
structing the following two state-graphs: (1) Concurrent
merge of Entry and Display: 14 modes, 17 transitions, and
(2) Concurrent merge of Exit and Display: 251 modes, 636
transitions. All these state-graphs were much smaller in size
compared to the total sizes when AGR was not used. This
shows we can scale-up verification for complex systems and
speed-up verification for simple systems. The tool used was
State-Graph Manipulators (SGM) [27].

5 Conclusion

With the rapid progress of computer and electronic tech-
nology, guaranteeing the correctness of systems is no more
easier than actually designing the system. We need practical
automatic techniques that can handle such highly complex
systems. The work presented on assume-guarantee reason-
ing (AGR) in this article is one step towards that goal. We
proposed an automatic generation procedure for assump-
tions, guarantees, and time constraints in real-time embed-
ded systems. Our experiments on a fairly complex system
such as the Vehicle Parking Management System corrobo-
rates our claims of the benefits obtained from applying AGR
to invariant checking. Future research directions include
applying AGR to other larger applications and integrating
AGR techniques with informal validation techniques such
as simulation and testing.
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