
Automating Formal Modular Verification of Asynchronous Real-Time
Embedded Systems ∗

Pao-Ann Hsiung and Shu-Yu Cheng
Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi–621, Taiwan, ROC

E-mail: hpa@computer.org

Abstract

Most verification tools and methodologies such as
model checking, equivalence checking, hardware veri-
fication, software verification, and hardware-software
coverification often flatten out the behavior of a tar-
get system before verification. Inherent modularities,
either explicit or implicit, functional or structural,
are not exploited by these tools and algorithms. In
this work, we show how assume-guarantee reasoning
(AGR) can be used for such exploitations by integrat-
ing AGR into a verification tool. Targeting at real-time
embedded systems, we propose procedures to auto-
matically generate assumptions, guarantees, and time
constraints, which otherwise require manual efforts
and human creativity. Through a complex but com-
prehensible real-time embedded system example such
as a Vehicle Parking Management System (VPMS), we
illustrate the feasibility of the AGR approach and the
extremely large reduction possible in state-space sizes
when AGR is applied. Due to AGR, we also found five
errors in the VPMS design using much lesser CPU time
and memory space than possible without AGR.

1 Introduction

The theory behind Assume-Guarantee Reasoning
(AGR) has been well-studied and can be traced back
to Misra and Chandy’s assumption-commitment ap-
proach [24] and Jones’ rely-guarantee approach [19]
proposed around two decades ago. Though AGR has
a long history, yet it has been “more widely studied
than actually used” [26]. Theoretically, AGR states
that a system can be verified by first decomposing it
into constituent parts, second the parts are individu-
ally verified such that each part satisfies a guaranteeG
only if its environment satisfies an assumption A, and

∗This work was supported in part by project grant NSC 91-2213-
E-194-008 from the National Science Council, Taiwan, ROC.

finally discharging all the assumptions made for each
component using a circular induction over time. This
reasoning will be explained in more details in Sec-
tion 3. The main benefit of this approach is that the
explicit construction of the system global state-space,
which is usually of an exponentially large size, can be
avoided [16, 17]. Thus, verification scalability is in-
creased through the application of AGR.

Only in the recent few years has there been some
applications of the AGR technique to real-world sys-
tems such as asynchronous systems [1, 2], syn-
chronous reactive systems [7, 8, 18], Tomasulo’s algo-
rithm [22], a pipelined implementation of a directory-
based coherence protocol in Silicon Graphics Origin
2000 servers [10], a VGI dataflow processor array de-
signed by the Infopad project at U. C. Berkeley [11],
pipelined implementation of an ISA architecture [14],
audio output interface of a multimedia extension SoC
[25], and a software supervisor for a multi-user phone
system [28].

The AGR technique has also been extended in sev-
eral ways, for example, to accomodate multiple con-
straints on a single output port [22], branching time
refinement [15], different implementation and specifi-
cation time scales [13], and liveness constraints [23].

The application of AGR can be semi-automatically
performed by a user of the MOCHA tool [9, 3] through
its proof manager, but the user is still burdened with
the task of constructing abstraction and witness mod-
ules [12], which in general requires human creativity.
Recently, there are some works on mechanizing the
construction of both abstraction modules [4] and wit-
ness modules [6]. Automation for the application of
AGR has been greatly enhanced by such mechaniza-
tions. Nevertheless, the automation is still limited to
refinement checking.

All the above-cited previous works show that the
AGR technique is gaining importance due to the in-
crease in system complexity. Nevertheless, the above
literatures mainly consists of case studies, where it is

shown how AGR can be applied to a particular sys-
tem. As detailed above, the application of AGR is
also limited to refinement checking in the current ver-
sion of the MOCHA tool. In our present work, firstly,
we show how the application of AGR can be general-
ized for the verification of a typical real-time embed-
ded system. We propose automating the application
of AGR not only in refinement checking, but also in
invariant checking. Secondly, we show how assump-
tions, guarantees, and time constraints can be auto-
matically generated for a real-time embedded system.
Finally, we illustrate through an example how AGR
helps in uncovering design faults using lesser CPU
time and memory space.

This article is organized as follows. Section 2
will formulate the problem to be solved and describe
the system model along with an example of a real-
time embedded system. Section 3 will illustrate how
assume-guarantee reasoning can be applied to the for-
mal verification of SoC, along with the automatic gen-
eration of assumptions and guarantees. Section 4 will
give the verification results conducted for the VPMS
example. Section 5 will conclude the article with some
research directions for future work.

2 System Model

Our target system for verification is a Real-Time
Embedded System (RTES), which we basically view as
a collection of embedded hardware components, soft-
ware components, and interfaces. Our real-time em-
bedded system model is based on the timed automata
model [5], which is defined as follows, where the sets
of integers and non-negative real numbers are denoted
by N and R≥0, respectively.

Definition 1 : Mode Predicate
Given a set C of clock variables and a setD of discrete
variables, the syntax of a mode predicate η over C and
D is defined as: η := false | x ∼ c | x − y ∼ c | d ∼
c | η1 ∧ η2 | ¬η1, where x, y ∈ C, ∼∈ {≤, <,=,≥, >
}, c ∈ N , d ∈ D, and η1, η2 are mode predicates. ‖

Let B(C,D) be the set of all mode predicates over
C and D.

Definition 2 : Timed Automaton
A Timed Automaton (TA) is a tuple Ai =
(Mi,m

0
i , Ci, Di, Li, χi, Ei, λi, τi, ρi) such that: Mi is

a finite set of modes, m0
i ∈ M is the initial mode,

Ci is a set of clock variables, Di is a set of dis-
crete variables, Li is a set of synchronization labels,
χi : Mi 7→ B(Ci, Di) is an invariance function that
labels each mode with a condition true in that mode,

Ei ⊆ Mi ×Mi is a set of transitions, λi : Ei 7→ Li

associates a synchronization label with a transition,
τi : Ei 7→ B(Ci, Di) defines the transition triggering
conditions, and ρi : Ei 7→ 2Ci∪(Di×N) is an assign-
ment function that maps each transition to a set of as-
signments such as resetting some clock variables and
setting some discrete variables to specific integer val-
ues. ‖

Using the above TA definition, our system model
can be defined as follows.

Definition 3 : Real-Time Embedded System (RTES)
A Real-Time Embedded System is defined as a collec-
tion of hardware, software, and interface components.
Each component is modeled by one or more timed au-
tomata. A system is modeled by a network of commu-
nicating timed automata. Notationally, if a system S
has a set of hardware components {H1, H2, . . . , Hn}
and a set of software components {S1, S2, . . . , Sm},
then S = H1‖H2‖ . . . ‖Hn‖S1‖S2‖ . . . ‖Sm, where
‖ is a parallel composition operator resulting in the
concurrent behavior of its two operands. If Hi is
modeled by a TA AHi

, 1 ≤ i ≤ n, and Sj is modeled
by a TA ASj

, 1 ≤ j ≤ m, then the TA defined by
AS = AH1

× . . . × AHn
× AS1

× . . . × ASm
is a

TA model for system S, where × is the Cartesian
product operator for two timed automata. Concur-
rency semantics is defined as follows. Two concurrent
transitions with the same synchronization label are
represented by a single synchronized transition. Two
concurrent transitions without any synchronization
label are represented by interleaving them, resulting
in possibly two different paths (computations). ‖

For simplicity, it is assumed that a single hardware
or software component is modeled by a single TA, in-
stead of the more general case of one or more TA. The
above definition can be easily extended to the general
case.

An embedded real-time system called Vehicle Park-
ing Management System (VPMS) [20, 21] will be used
to illustrate our verification methodology throughout
this article.

VPMS controls the entry and exit of vehicles into
and from a parking garage or lot. Functionally, it con-
sists of the three subsystems: an ENTRY Management
Subsystem, which controls the entry of vehicles into a
garage such that each driver gets a parking ticket with
an entry time stamp, an EXIT Management Subsys-
tem, which controls the exit of vehicles from a garage
such that only drivers with a valid paid ticket gets per-
mission to exit, and a DISPLAY Subsystem, which in-
dicates the number of vacant parking spaces currently
available in a garage or lot.

The architecture of VPMS is illustrated in Figure 1

 Vehicle Parking

Management System

ENTRY Management
Subsystem

Display
Subsystem

Gate
Controller Ticket Checker Motor

Control
Unit

ENTRY gate EXIT gate

isa isa

Sensor Send/Receive
Device

Control
Unit

ENTRY Sensor EXIT Sensor

isa isa

Display Device Control System

Counter Display
Interface

7-Segment LCD Dot Matrix

Time
Stamp

EXIT Management
Subsystem

: Represent Aggregation

: Represent Generalization

isa: is a kind of

Figure 1: Vehicle Parking Management System

using the Unified Modeling Language (UML). An EN-
TRY (or an EXIT) subsystem consists of three parts: a
ticket processor, a motor-controlled gate, and a set of
sensors. Constraints for the VPMS system include: a
maximum system cost of $1,300, a maximum ticket
emission time of 20 ns, a maximum display response
time of 250 ns. VPMS is modeled using five TA:
one for each of the three subsystems, namely EN-
TRY, EXIT, and DISPLAY, and two for the environ-
ment, which includes the user and other external de-
vices such as the Display Board. Further details on
VPMS can be found in [20, 21].

3 Assume-Guarantee Verification

Assume-guarantee reasoning (AGR) is the dual
counterpart to formal verification just as divide-and-
conquer is to discrete optimization. Informally, AGR
combines verification results of each constituent part
of a system to make conclusions on the verification of
the whole system, instead of directly verifying the full
system. AGR can be beneficial in terms of higher veri-
fication scalability, provided the size of the state-space
for the individual verification of each constituent part
is significantly smaller than that for the full system.

Furthermore, the adoption or application of AGR is
often restrained by the necessity for human creativity
in the following tasks: (1) In refinement checking, ab-
straction modules [4] and witness modules have to be
constructed [6], and (2) In invariant checking, assump-
tions and guarantees have to be generated.

The rules for assume-guarantee reasoning appear
in several different forms in the literature. Here, we
give the form of rules on which our work is based.
As shown in Equation (1), we have extended the rules
for applying AGR to invariant checking from [28] by
including timing constraints. A system S has an as-
sumption A, a guarantee G, and a Boolean timing
constraint T . Each component of the system also has
an assumption Ai, a guarantee Gi, and a timing con-
straint Ti. From Equation (1), we see there are 2n+ 1
premises to be satisfied for a system with n compo-
nents to be completely verified and to arrive at the con-
clusion A →T G, where →T denotes logical implica-
tion while satisfying time constraints T . The first set
of n premises Ai →Ti

Gi gives the rule for verify-
ing that each component satisfies its own guaranteeGi

under its assumption Ai and time constraint Ti. The
second set of n premises constitute the discharging of
all the assumptions by ensuring that each Ai can be
implied by the system assumption A and the guaran-

tees Gj , j 6= i of the other components under the time
constraints T and Tj , ∀j 6= i. The last premise simply
states that the system behavior G is constructed from
a conjunction of the behaviors of each system com-
ponent Gj . This last premise must be considered and
ensured while G and each Gj are being constructed.

Ai −→Ti
Gi,

A ∧
∧

j 6=i Gj −→T∧
∧

j∈{1,...,n} Tj
Ai,∧

j∈{1,...,n}Gj −→T∧
∧

j∈{1,...,n} Tj
G

A −→T G

(1)

To apply and take advantage of assume-guarantee
reasoning in verifying a complex system, assumptions,
guarantees, and time constraints are required for each
system component and for the system environment.
Our algorithm to automatically generate them for a
system component is as detailed in Table 1.

4 Verification Results for the VPMS Ex-
ample

We applied the assume-guarantee reasoning prin-
ciples to the Vehicle Parking Management System
(VPMS) [20, 21] example, which was introduced in
Section 2. After applying the algorithm from Table 1,
the assumptions, guarantees, and time constraints for
VPMS were generated, part of which are given in Ta-
ble 2. There are three computation runs for each of
ENTRY and EXIT subsystems, and four computations
runs for the DISPLAY subsystem. As given in the last
two rows of Table 2, namely Entry Environment and
Exit Environment, the assumptions, guarantees, and
time constraints for the system environment were de-
rived from user-given requirements (see Section 2).

The AGR rules for invariant checking given in
Equation (1) were all checked with the assumptions,
guarantees, and time constraints of VPMS (Table 2).
There were five errors found as follows.

• Component Assumption Error: While using
the second rule (Equation (1)) for discharg-
ing the component assumption with time-
constraints in the Entry component (see first
row of Table 2), two errors were found in
the Entry assumptions count above zero?
and count zero? with time constraints
δ(count request!, count above zero?) =
[200, 200] and δ(count request!, count zero?) =
[200, 200]. It was found that these time
constraints could not be satisfied be-
cause of contradiction with the com-
ponent guarantees count above zero!

and count zero! with time constraints
δ(count request?, count above zero!) = [18, 18]
and δ(count request?, count zero!) = [18, 18]
in the Display component. Solutions to the
first error could consist of changing either of
the two time constraints, but because the signal
count above zero could be output (guaranteed)
by 18 ns, our solution to this error was to change
the time constraint of the Entry component to
δ(count request!, count above zero?) = [0, 200].
Similarly, our solution to the second error
was to change the time constraint of the Entry
component to δ(count request!, count zero?) =
[0, 200].

• Environment Guarantee Errors: While us-
ing the third rule (Equation (1)) for check-
ing whether the environment guarantee was
conjunctively implied by the component
guarantees, two errors were found in the
environment guarantees ent update dboard?
and ex update dboard? with time constraints
δ(take ticket!, ent update dboard?) = [0, 250]
and δ(ticket ok?, ex update dboard?) = [0, 250].
The time constraints were originally derived from
the user-given constraint that the maximum dis-
play response time should be 250 ns. These time
constraints could not be satisfied by the system
components. For example, consider the first time
constraint mentioned above. The conjunction
of δ(take ticket?, car in!) = [244,∞) from
Entry with δ(car in?, ent update dboard!) =
[42, 142] from Display results in
δ(take ticket!, ent update dboard?) = [286,∞),
which does not satisfy the user-given constraint
of 250 ns maximum. Solutions to this error
could consist of changing either component or
environment time constraints, but because the
component constraints could not be changed due
to physical device restrictions, our solution was
to ask the user to relax his/her constraint to at
least 286 ns.

• Environment Assumption Error: While using
the second rule (Equation (1)) for discharging
the basic assumption push button? with time
constraint δ(car in!, push button?) = [244,∞)
in the Entry 1 schedule of the Entry component
(see first row of Table 2), it was found that
the time constraint could not be guaranteed
unless there was an environment assump-
tion δ(ent update dboard?, push button!) =
[202,∞). This is because there is
only a time constraint between sig-
nals car in and ent update dboard (i.e.,

Table 1: Automatic Generation of Assumptions, Guarantees, and Timing Constraints
Gen Comp AG(Xi)
Xi ∈ S = {H1, . . . , Hn, S1, . . . , Sm};
{
Ai = {}; Gi = {}; Ti = {}; (1)
schedule set = All Finite Schedules(Xi,m

0
i); (2)

while (ψ = One Finite Schedule(schedule set) 6= NULL) { (3)
last signal = NULL; first time = second time = NULL; (4)
// start generating assumption and guarantee (5)
while (γ = Get Signal(ψ) 6= NULL) { (6)

if (last signal == NULL and type(γ) == out) (7)
return Unsupported System ERROR; // schedule begins with output signals (8)

switch (type(γ)) { (9)
case ‘in’: (10)

if (last signal == in) Basic a = Basic a⊕ γ; // ⊕ ∈ {≺,�} (11)
else { (12)

if (Basic a 6= NULL) Schedule a = 〈Schedule a,Basic a〉; (13)
Basic a = γ; (14)
last signal = in; } break; (15)

case ‘out’: (16)
if (last signal == in) { (17)

if (Basic g 6= NULL) Schedule g = 〈Schedule g,Basic g〉; (18)
Basic g = γ; (19)
last signal = out; } (20)

else Basic g = Basic g ⊕ γ; break; } } (21)
if (Basic a 6= NULL) Schedule a = 〈Schedule a,Basic a〉; (22)
if (Basic g 6= NULL) Schedule g = 〈Schedule g,Basic g〉; (23)
if |Schedule a| 6= |Schedule g| return Unsupported System ERROR; (24)
else { Ai = Ai ∪ Schedule a; Gi = Gi ∪ Schedule g; } (25)
// start generating time-constraints (26)
while (ζ = Get Temporal Signal(ψ) 6= NULL) { (27)

if (there is signal with temporal value in ζ) (28)
first time = ζ; (29)

if (first time 6= NULL and there is signal with temporal value in ζ) (30)
second time = ζ; (31)

if (first time 6= NULL and second time 6= NULL){ (32)
Basic t = Evaluate Time Constraint(first time, second time); (33)
Schedule t = Schedule t ∧ Basic t; (34)
first time = second time = NULL; } } (35)

Ti = Ti ∪ Schedule t; } (36)
return (Ai, Gi, Ti); (37)

}

Table 2: Some Assumptions, Guarantees, and Time Constraints for VPMS
Subsystem Schedule # Assumption(A), Guarantee (G), Time Constraints∗ (T)

Entry 1

A : 〈push button?, count above zero?, take ticket?〉
G : 〈count request!, ticket out!, car in!〉
T : δ(count request!, count above zero?) = [200, 200]∧

δ(take ticket?, car in!) = [244,∞)∧
δ(car in!, push button?) = [244,∞)

Entry Entry 2
A : 〈push button?, count zero?〉
G : 〈count request!, no ticket out!〉
T : δ(count request!, count zero?) = [200, 200]

Entry 3

A : 〈push button?, count above zero?, take ticket?〉
G : 〈count request!, ticket out!, ent time out!〉
T : δ(count request!, count above zero?) = [200, 200]∧

δ(ent time out!, push button?) = [244,∞)

Exit 1
A : 〈ticket insert?〉, G : 〈ticket ok! ≺ car out!〉
T : δ(ticket ok!, car out!) = [244,∞) ∧

δ(car out!, ticket insert?) = [244,∞)Exit
Exit 2 A : 〈ticket insert?〉, G : 〈ticket error!〉

Exit 3
A : 〈ticket insert?〉, G : 〈ticket ok! � ex time out!〉
T : δ(ex time out!, ticket insert?) = [244,∞)

Display 1

A : 〈initialize?, car in?〉
G : 〈reset dboard!, ent update dboard!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(car in?, ent update dboard!) = [42, 142]

Display
Display 2

A : 〈initialize?, count request?〉
G : 〈reset dboard!, count zero!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(count request?, count zero!) = [18, 18]

Display 3

A : 〈initialize?, count request?〉
G : 〈reset dboard!, count above zero!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(count request?, count above zero!) = [18, 18]

Display 4

A : 〈initialize?, car out?〉
G : 〈reset dboard!, ex update dboard!〉
T : δ(initialize?, reset dboard!) = [0, 100] ∧

δ(car out?, ex update dboard!) = [42, 142]

Entry Env 1

A : 〈push button!, take ticket!〉
G : 〈ticket out?, ent update dboard?〉
T : δ(push button!, ticket out?) = [0, 20) ∧

δ(take ticket!, ent update dboard?) = [0, 250]

Entry Env 2
A : 〈push button!〉, G : 〈no ticket out?〉
T : δ(push button!, no ticket out?) = [0, 20)Entry Environment

Entry Env 3
A : 〈push button!, take ticket!〉
G : 〈ticket out?, ent time out?〉
T : δ(push button!, ticket out?) = [0, 20)

Entry Env 4 A : 〈initialize!〉, G : 〈reset dboard?〉

Exit Env 1
A : 〈(ticket insert!〉, G : 〈ticket ok? ≺ ex update dboard?〉
T : δ(ticket ok?, ex update dboard?) = [0, 250]Exit Environment

Exit Env 2 A : 〈ticket insert!〉, G : 〈ticket error?〉
Exit Env 3 A : 〈ticket insert!〉, G : 〈ticket ok? � ex time out?〉

∗All times are in nanoseconds.

δ(car in?, ent update dboard!) = [42, 142]
in the Display 1 schedule of the Display com-
ponent), but no time constraint between signals
ent update dboard and push button. Our solution
was to add the time constraint to the environment
assumptions.

Since we used AGR to verify VPMS, the above five
errors were found using lesser CPU time and memory
space, compared to that without using AGR. The first
two and last errors were found by merely construct-
ing a state-graph representing the concurrent behav-
ior of Entry Environment and Display, with a size of
54 modes and 159 transitions, which is much smaller
compared to the total sizes of state-graphs constructed
without AGR: 1375 modes and 4360 transitions. The
third and forth errors were found by constructing the
following two state-graphs: (1) Concurrent merge of
Entry and Display: 14 modes, 17 transitions, and (2)
Concurrent merge of Exit and Display: 251 modes,
636 transitions. All these state-graphs were much
smaller in size compared to the total sizes when AGR
was not used. This shows we can scale-up verifica-
tion for complex systems and speed-up verification for
simple systems. The tool used was State-Graph Ma-
nipulators (SGM) [27].

5 Conclusion

With the rapid progress of computer and electronic
technology, guaranteeing the correctness of systems
is no more easier than actually designing the system.
For example, the verification of a System-on-Chip ac-
counts for as much as 70% of the total design time.
We need practical automatic techniques that can han-
dle such highly complex systems. The work presented
on assume-guarantee reasoning (AGR) in this article
is one step towards that goal. Besides giving an algo-
rithm for incorporating AGR into tools, we proposed
an automatic generation procedure for assumptions,
guarantees, and time constraints in real-time embed-
ded systems. We quantified the advantages of applying
AGR as against that without AGR. Our experiments
on a fairly complex system such as the Vehicle Park-
ing Management System corroborates our claims of
the benefits obtained from applying AGR to invariant
checking. Future research directions include applying
AGR to other larger applications and integrating AGR
techniques with informal validation techniques such as
simulation and testing.

References

[1] M. Abadi and L. Lamport. Composing specifica-
tions. ACM Transactions on Programming Lan-
guages and Systems, 15(1):73–132, 1993.

[2] M. Abadi and L. Lamport. Conjoining specifica-
tions. ACM Transactions on Programming Lan-
guages and Systems, 17(3):507–534, 1995.

[3] R. Alur, L. de Alfaro, R. Grosu, T. A. Henzinger,
M. Kang, R. Majumdar, F. Mang, C. M. Kirsch,
and B. Y. Wang. MOCHA: A model check-
ing tool that exploits design structure. In Pro-
ceedings of the 23rd International Conference
on Software Engineering (ICSE’01), pages 835–
836, 2001.

[4] R. Alur, L. de Alfaro, T. A. Henzinger, and
F. Y. C. Mang. Automating modular verification.
In Proceedings of the 10th International Con-
ference on Concurrency Theory (CONCUR’99),
Lecture Notes in Computer Science 1664, pages
82–97. Springer-Verlag, 1999.

[5] R. Alur and D.L. Dill. A theory of timed au-
tomata. Theoretical Computer Science, 126:183
– 235, 1994.

[6] R. Alur, R. Grosu, and B.-Y. Wang. Automated
refinement checking for asynchronous processes.
In Proceedings of the 3rd International Confer-
ence on Formal Methods for Computer-Aided
Design (FMCAD’00), 2000.

[7] R. Alur and T. A. Henzinger. Local liveness for
compositional modeling of fair reactive systems.
In P. Wolper, editor, Proceedings of the Interna-
tional Conference on Computer-Aided Verifica-
tion (CAV’95), Lecture Notes in Computer Sci-
ence 939, pages 166–179. Springer-Verlag, 1995.

[8] R. Alur and T. A. Henzinger. Reactive modules.
In Proceedings of the 11th Annual Symposium
of Logic in Computer Science (LICS’96), pages
207–218. IEEE CS Press, 1996.

[9] R. Alur, T. A. Henzinger, F. Y. C. Mang,
S. Qadeer, S. K. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In
Proceedings of the International Conference on
Computer-Aided Verification (CAV’98), Lecture
Notes in Computer Science 1427, pages 521–
525, 1998.

[10] A. T. Eiriksson. The formal design of 1M-gate
ASICs. In G. Gopalakrishnan and P. Windley,

editors, Proceedings of the International Confer-
ence on Formal Methods in Computer-Aided De-
sign (FMCAD’98), Lecture Notes in Computer
Science 1522, pages 49–63, 1998.

[11] T. A. Henzinger, X. Liu, S. Qadeer, and S. K.
Rajamani. Formal specification and verifica-
tion of a dataflow processor array. In Proceed-
ings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD’99), pages
494–499, 1999.

[12] T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
You assume, we guarantee. In Proceedings of
the International Conference on Computer-Aided
Verification (CAV’98), Lecture Notes in Com-
puter Science 1427, pages 440–451. Springer-
Verlag, 1998.

[13] T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Assume-guarantee refinement between different
time scales. In N. Halbwachs and D. Peled, ed-
itors, Proceedings of the International Confer-
ence on Computer-Aided Verification (CAV’99),
Lecture Notes in Computer Science 1633, pages
208–221. Springer-Verlag, 1999.

[14] T. A. Henzinger, S. Qadeer, and S. K. Ra-
jamani. Decomposing refinement proofs us-
ing assume-guarantee reasoning. In Proceed-
ings of the IEEE/ACM International Conference
on Computer-Aided Design (ICCAD’00), pages
245–252, 2000.

[15] T. A. Henzinger, S. Qadeer, S. K. Rajamani,
and S. Tasiran. An assume-guarantee rule for
checking simulation. In G. Gopalakrishnan
and P. Windley, editors, Proceedings of the In-
ternational Conference on Formal Methods in
Computer-Aided Design (FMCAD’98), Lecture
Notes in Computer Science 1522, pages 421–
432. Springer-Verlag, 1998.

[16] P.-A. Hsiung. Embedded software verifica-
tion in hardware-software codesign. Journal of
Systems Architecture — the Euromicro Journal,
46(15):1435–1450, December 2000.

[17] P.-A. Hsiung. Hardware-software timing cover-
ification of concurrent embedded real-time sys-
tems. IEE Proceedings — Computers and Digital
Techniques, 147(2):81–90, March 2000.

[18] P.-A. Hsiung, S.-Y. Cheng, and T.-Y. Lee. Com-
positional verification of synchronous real-time
embedded systems. In Proc. of the 2002 VLSI
Design/CAD Symposium (VLSI’02, Taitung, Tai-
wan), pages 187 – 190, August 2002.

[19] C. B. Jones. Tentative steps towards a devel-
opment method for interfering programs. ACM
Transactions on Programming Languages and
Systems, 5(4):596–619, 1983.

[20] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen. DESC:
A hardware-software codesign methodology for
distributed embedded systems. IEICE Trans-
actions on Information and Systems, E84-
D(3):326–339, March 2001.

[21] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen.
Hardware-software multi-level partitioning for
distributed embedded multiprocessor systems.
IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sci-
ences, E84-A(2):614–626, February 2001.

[22] K. L. McMillan. Verification of an implemen-
tation of tomasulo’s algorithm by compositional
model checking. In A. Hu and M. Vardi, ed-
itors, Proceedings of the International Confer-
ence on Computer-Aided Verification (CAV’98),
Lecture Notes in Computer Science 1427, pages
110–121. Springer-Verlag, 1998.

[23] K. L. McMillan. Circular compositional reason-
ing about liveness. In L. Pierre and T. Kropf,
editors, Proceedings of the International Confer-
ence on Correct Hardware Design and Verifica-
tion (CHARME’99), Lecture Notes in Computer
Science 1703, pages 342–345. Springer-Verlag,
1999.

[24] J. Misra and K. M. Chandy. Proofs of networks
of processes. IEEE Transactions on Software En-
gineering, 7(4):417–426, July 1981.

[25] S. K. Roy, H. Iwashita, and T. Nakata. For-
mal verification based on assume and guaran-
tee approach – a case study. In Proceedings of
the Asia-Pacific Design Automation Conference
(ASP-DAC’00), pages 77–80, 2000.

[26] N. Shankar. Lazy compositional verification.
Lecture Notes in Computer Science, 1536, 1997.

[27] F. Wang and P.-A. Hsiung. Efficient and user-
friendly verification. IEEE Transactions on Com-
puters, 51(1):61 – 83, January 2002.

[28] M. Zulkernine and R. E. Seviora. Assume-
guarantee supervisor for concurrent systems. In
Proceedings of the 15th International Parallel
and Distributed Processing Symposium, pages
1552–1560, April 2001.

