
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 1, NO. 1, MAY 2009 19

Hardware Resource Virtualization for Dynamically
Partially Reconfigurable Systems

Chun-Hsian Huang, Student Member, IEEE, and Pao-Ann Hsiung, Senior Member, IEEE

Abstract—The dynamic partial reconfiguration technology en-
ables an embedded system to adapt its hardware functionalities at
run-time to changing environment conditions. However, reconfig-
urable hardware functions are still managed as conventional hard-
ware devices, and the enhancement of system performance using
the partial reconfiguration technology is thus still limited. To fur-
ther raise the utilization of reconfigurable hardware designs, we
propose a virtual hardware mechanism, including the logic vir-
tualization and the hardware device virtualization, for dynami-
cally partially reconfigurable systems. Using the logic virtualiza-
tion technique, a hardware function that has been configured in
the field-programmable gate array (FPGA) can be virtualized to
support more than one software application at run-time. Using the
hardware device virtualization, a software application can access
two or more different hardware functions through the same de-
vice node. In a network security reconfigurable system for multi-
media applications, our experimental results also demonstrate that
the utilization of reconfigurable hardware functions can be further
raised using the virtual hardware mechanism. Furthermore, the
virtual hardware mechanism can also reduce up to 26% of the time
required by using the conventional hardware reuse.

Index Terms—Hardware resource virtualization, operating
system for reconfigurable systems.

I. INTRODUCTION

D UE to rapid technology breakthroughs, field-pro-
grammable gate arrays (FPGA) devices, such as Xilinx

Virtex II/II Pro, Virtex 4, and Virtex 5, can be partially recon-
figured at run-time, which means that one part of the device can
be reconfigured while other parts remain operational without
being affected by reconfiguration. A hardware/software em-
bedded system realized with such an FPGA device is called
a dynamically partially reconfigurable system (DPRS), which
enables more applications to be accelerated in hardware, and
thus reduces the overall system execution time [6]. Compared to
a conventional embedded system, a DPRS design includes not
only traditional software applications and hardware devices, but
also reconfigurable hardware functions running on an FPGA.
However, an embedded operating system is generally not de-
signed to support such a flexible system hardware architecture,
as a result of which the enhancement of system performance

Manuscript received June 06, 2009; revised June 30, 2009. First published
July 21, 2009; current version published September 23, 2009. This manuscript
was recommended for publication by A. Raghunathan.

The authors are with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Taiwan (e-mail: huang@cs.
ccu.edu.tw; grant0920@gmail.com; pahsiung@cs.ccu.edu.tw; hpa@computer.
org).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LES.2009.2028039

using partial reconfiguration technology becomes limited. In
this work, we try to bridge this gap by proposing a virtual
hardware mechanism for dynamically partially reconfigurable
systems. The virtual hardware mechanism is realized in an
operating system for the DPRS architecture, which is called
an operating system for reconfigurable systems (OS4RS). The
virtual hardware mechanism consists of the hardware device
virtualization and the logic virtualization in an OS4RS. Similar
to the concept of a virtual machine, the same hardware devices
and the same logic resources can be simultaneously shared be-
tween different software applications, that is, a reconfigurable
hardware function can be virtualized to support more software
applications.

For the kernel resources of an OS4RS, the hardware device
virtualization enables the device nodes, kernel modules, and
on-demand reconfigurable hardware functions to be dynami-
cally linked at run-time to meet different system requirements.
The relation between a device node, a kernel module, and a hard-
ware function is no longer one-to-one as in a conventional em-
bedded OS; rather, it is now a many-to-one or one-to-many map-
ping between the hardware functions configured on the FPGA
and the software applications in the OS4RS user space. Given
a fixed amount of logic resources in an FPGA device, the par-
tial reconfiguration technique enables much more combinations
of hardware functions to be accessed by software applications
in the user space, than that which can be accommodated by the
total amount of logic resources in the FPGA. As a result, using
the virtual hardware mechanism, much more software/hardware
applications can be performed in an OS4RS, even though, in re-
ality, the system resources are not enough to cover all required
hardware functions at the same time.

To realize the virtual hardware mechanism, a unified com-
munication mechanism is also proposed to standardize the
hardware/software communication interface in an OS4RS, so
the device nodes, kernel modules, and reconfigurable hard-
ware functions can be thus dynamically linked on-demand.
Using the unified communication mechanism, a user-designed
hardware function needs to be only integrated with a partial
reconfigurable hardware task template (PR template) [2], while
its control is implemented in a hardware control library. As a
result, software applications can easily interact with the new
hardware function by invoking the APIs in the hardware control
library, thus further enhancing the system scalability. This work
contributes to the state-of-the-art in the following ways.

• Using the logic virtualization technique, a hardware func-
tion that has been configured in the FPGA can be virtu-
alized to support more than one software application at
run-time. The many-to-one mapping thus increases the uti-
lization of a hardware function.

1943-0663/$26.00 © 2009 IEEE

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 22, 2009 at 23:44 from IEEE Xplore.  Restrictions apply. 



20 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 1, NO. 1, MAY 2009

• Using the hardware device virtualization, a software appli-
cation can access two or more different hardware functions
through the same device node. This one-to-many mapping
is a seamless reconfiguration of the underlying hardware,
without any change to the software.

• From the implementation point of view, the proposed uni-
fied communication mechanism that facilitates the com-
munication between software and hardware also enhances
system scalability and design productivity.

This paper is organized as follows. The related research
works are discussed in Section II. The proposed virtual
hardware mechanism is described in Section III in details.
Section IV introduces the unified communication mechanism,
while Section V presents our implemental results and analyses.
Finally, conclusions are described in Section VI.

II. RELATED WORK

Similar to the software tasks in a conventional embedded
OS, reconfigurable hardware functions can be created and re-
moved at run-time, and thus they are called hardware tasks in an
OS4RS. So et al. [4] proposed a unified hardware/software run-
time environment, namely BORPH, for FPGA-based reconfig-
urable computers. Their OS4RS ran on a control FPGA for man-
aging four user FPGAs on the BEE2 development platform. The
hardware functions were encapsulated in the BOF file format so
that they could be executed as hardware tasks in the OS4RS.
However, such an encapsulation method may lead to the lack
of the generality in accessing hardware devices, as a result of
which their unified hardware/software runtime environment was
not easy to be applied to most embedded OS.

Williams et al. [5] ported uClinux on the Xilinx MicroBlaze
soft-core processor [7]. The partial reconfiguration process was
controlled using the internal configuration access port (ICAP)
designed as a device located under /dev directory. As a re-
sult, the partial bitstreams can be reconfigured in the FPGA
through the write system call without encapsulating in a spe-
cific file format like BORPH [4]. Donato et al. [1] also adopted
the ICAP to dynamically reconfigure the FPGA at run-time. The
device driver of a reconfigurable hardware function was imple-
mented as a kernel module capable of being dynamically in-
serted in the kernel of their OS4RS. When a hardware func-
tion was configured in a partially reconfigurable region (PRR),
an IP-core manager in their OS4RS design was used to auto-
matically load the corresponding kernel module into the Linux
kernel, and thus software applications could interact with the
required hardware function through the system calls. However,
reconfigurable hardware functions were also managed as con-
ventional hardware devices in the related works [1], [5], and
thus the utilization of reconfigurable hardware functions is still
limited.

In this work, we propose a virtual hardware mechanism to fur-
ther raise the utilization of reconfigurable hardware functions,
using which reconfigurable hardware functions can be virtual-
ized to support more software applications on-demand. Similar
to the related works [1], [5], our reconfigurable hardware func-
tions are designed as regular hardware devices located under
/dev directory. However, the device nodes, kernel modules,
and on-demand reconfigurable hardware functions can be dy-

namically linked to meet different system requirements in our
OS4RS design, without being statically linked together. To re-
alize the virtual hardware mechanism, a unified communication
mechanism is proposed to standardize the communication be-
tween software and hardware, which also facilitates the integra-
tion between user-designed hardware functions and an OS4RS.

III. VIRTUAL HARDWARE MECHANISM

From the design point of view, besides supporting the partial
reconfiguration technology in an embedded OS, we propose
a virtual hardware mechanism to further raise the utilization
of reconfigurable hardware functions. The virtual hardware
mechanism is mainly realized in the kernel space of an OS4RS
and the FPGA. Similar to the interactions between software
applications and hardware devices in a conventional embedded
OS, software applications in our OS4RS design also interact
with reconfigurable hardware functions through the device
nodes, which, unlike BORPH [4], does not sacrifice the gen-
erality in accessing the hardware device design. The proposed
virtual hardware mechanism consists of the logic virtualization
and the hardware device virtualization in an OS4RS.

A. Logic Virtualization

When different software applications need to simultaneously
interact with the same hardware function, in a conventional em-
bedded OS, the device node specific to the hardware function
must be closed by one of the software applications and then
opened by another. Thus, the required hardware function can
be used or accessed by different software applications at dif-
ferent time points turn by turn. However, such manipulations to
support different software applications by continuously closing
and opening the device node may lead to additional time over-
heads. Hence, an embedded OS needs to minimize such device
manipulations so as to guarantee the quality of service (QoS)
for each software application, especially when it is in a hard
real-time environment. However, using the logic virtualization
as shown in Fig. 1(a), another device node (comm3) can be
dynamically linked to the required hardware function (HW1)
such that it can be accessed by Application2. Thus, Ap-
plication2 can access HW1, while Application1 is ac-
cessing HW2. Through the many-to-one logic virtualization, a
required hardware function can be virtualized such that it can
be accessed by different software applications through different
device nodes. The processing results of the required hardware
function are separately transferred to the kernel modules corre-
sponding to different software applications, and then read back
by the software applications in the user space.

B. Hardware Device Virtualization

When a software application sequentially interacts with dif-
ferent hardware functions, a conventional embedded OS must
transfer the processing results of a required hardware function
from the kernel space to the user space, and then sent to the
kernel space again for data processing by another hardware
function. This is because the interactions between a software
application and its required hardware function are accom-
plished through the corresponding device nodes. However, the
repeated data transfers between the kernel space and the user

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 22, 2009 at 23:44 from IEEE Xplore.  Restrictions apply. 



HUANG AND HSIUNG: HARDWARE RESOURCE VIRTUALIZATION FOR DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS 21

Fig. 1. Logic and hardware device virtualization: (a) logic virtualization and
(b) HW device virtualization.

Fig. 2. Hardware task management.

space by using copy_from_user and copy_to_user
kernel APIs may cause a large time overhead. Though dif-
ferent hardware functions, which are used for sequential data
processing in an application, can be integrated into a more
powerful hardware function at design-time for reducing such
a large time overhead, the flexibility of the reconfigurable
hardware functions, however, is thus neutralized at run-time.
To keep the flexibility of reconfigurable hardware functions
and to reduce such a large time overhead, using the hardware
device virtualization as shown in Fig. 1(b), the kernel module
corresponding to a required hardware function (HW1) can be
dynamically linked to another required hardware function HW2.
Through the many-to-one logic virtualization, HW2 can be
shared by different device nodes. Thus, the processing results
of HW1 can be directly transferred to HW2 through the kernel
module, and the final processing results of HW2 are then sent
back to the user space. As a result, the time overhead in repeat-
edly transferring data between the user space and the kernel
space can be significantly reduced.

C. Hardware Task Management

Besides proposing the virtual hardware mechanism to fur-
ther enhance the utilization of reconfigurable hardware func-
tions, a hardware task manager is required to not only manage
all data transfers between the kernel modules and the reconfig-
urable hardware functions, but also determine which virtualiza-
tion mechanism will be used. As shown in Fig. 2, the hardware
task management is divided into three categories, including the

Fig. 3. Unified communication mechanism.

hardware device virtualization, the logic virtualization, and the
partial reconfiguration.

When a request of hardware function is received, the hard-
ware task manager first checks if the required hardware function
has been configured in a PRR. If not, the hardware task man-
ager thus requests the ICAP in the FPGA to reconfigure the re-
quired hardware function in a best-fit PRR. Otherwise, the hard-
ware task manager then checks if the request is received from
the same software application. If not, the logic virtualization is
thus invoked to dynamically link another unused device node
to the corresponding PRR. Otherwise, the hardware task man-
ager dynamically link the previously used kernel module to the
PRR with the required hardware function if it does not already
exist, and thus the processing results of the previous hardware
function can be directly transferred to the requested hardware
function.

IV. UNIFIED COMMUNICATION MECHANISM

To realize the virtualization mechanism for further raising
the utilization of reconfigurable hardware functions in an
OS4RS, a unified communication mechanism is thus proposed
to standardize the hardware/software communication interface.
As shown in Fig. 3, the unified communication mechanism is
divided into the hardware part and the software part.

In the hardware part of the unified communication mecha-
nism, a communication component is used to connect to the
system bus. To ease the integration of user-designed hardware
functions into an OS4RS, a partially reconfigurable hardware
task template (PR template) [2] is used to connect user-designed
functions with the system bus via the communication compo-
nent. The PR template consists of eight 32-bit input data signals,
one 32-bit input control signal, four 32-bit output data signals,
and one 32-bit output control signal, while it also contains an
optional Data Transformation Component (DTC) for unpacking
incoming data and packing outgoing data based on the I/O reg-
isters sizes in the hardware functions.

In its software part, different from the device driver designed
for a specific hardware function in a conventional embedded
OS, a unified kernel module is designed to only interact with
the fourteen 32-bit signals of the PR template. All the inter-
actions between software applications and reconfigurable hard-
ware functions are through the ioctl system calls of the uni-
fied kernel module. However, different hardware functions have

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 22, 2009 at 23:44 from IEEE Xplore.  Restrictions apply. 



22 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 1, NO. 1, MAY 2009

different interactive methods, and thus a hardware control li-
brary is used to implement the interactive methods of all recon-
figurable hardware functions. As a result, a user-designed hard-
ware function needs to be only integrated with the PR template,
and then to update the hardware control library with its interac-
tive method. The new hardware function can be thus accessed
by software applications, which also enhances the scalability of
an OS4RS and reduces system development efforts.

V. EXPERIMENTS

To demonstrate that using the proposed virtual hardware
mechanism the system resources can be more effectively used,
we adopt a real network security reconfigurable system for
multimedia applications as our example. To ensure the security
and integrity of image transfers on the network, the real-time
128 64 pixel images are sequentially transferred to a crypto-
graphic function and a hash function for data processing, and
then transferred to a receiver on the network. However, the
required cryptographic and hash algorithms are changed with
different receivers and environment conditions. Thus, the cryp-
tographic and hash functions are designed as reconfigurable
hardware functions in the FPGA. In this experiment, the net-
work security reconfigurable system was implemented on the
Xilinx ML310 platform with a Virtex II Pro XC2VP30 FPGA
chip that has 13,696 slices. The proposed virtual hardware
mechanism was realized in the PetaLinux embedded OS [3],
which ran on a Xilinx MicroBlaze soft-core processor [7] at
100 MHz. The network security reconfigurable system supports
three cryptographic hardware functions having different key
sizes in bits, including RSA32, RSA64, and RSA128, and three
hash hardware functions having different input data sizes in
bits, including CRC32, CRC64, and CRC128, by implementing
only two different sized PRRs, namely a small PRR1 and a
large PRR2. The reconfigurable hardware functions can be dy-
namically configured in PRR1 and PRR2 except that RSA128
only can be configured in PRR1.

A. System Resource Analysis

The system resources using a conventional embedded OS,
using related OS4RS designs [1], [5], and using an OS4RS
design with the virtual hardware mechanism, respectively, are
listed in Table I. In the multimedia application for transferring
real-time images to a receiver on the network, the six hard-
ware functions must be first configured in the conventional
embedded system at design-time for being interacted with
software applications at run-time. In the related OS4RS designs
[1], [5], and the OS4RS design using the virtual hardware
mechanism, only the logic resources of PRRs are required
because the PRRs can be reconfigured to be different hardware
functions at run-time for fitting different system requirements.
However, reconfigurable hardware functions are still managed
as conventional hardware devices in the related OS4RS designs
[1], [5], and thus six device nodes and six kernel modules
are required for the multimedia application. When the virtual
hardware mechanism is invoked, our OS4RS design only needs
at least two device nodes and two kernel modules to link to
the two PRRs. Furthermore, the number of device nodes and
kernel modules can be extended to support all the six hardware

TABLE I
SYSTEM RESOURCE COMPARISON

Fig. 4. Comparisons between conventional hardware reuse and many-to-one
logic virtualization.

functions or more for being interacted with more software
applications.

B. Time Analysis

In our first experiment, two multimedia applications simulta-
neously interact with the same cryptographic hardware function,
where each multimedia application first captures 5 to 50 images
from the camera, and then sequentially transfers the captured im-
ages to the cryptographic and hash hardware functions for data
processing. Fig. 4 shows that the average time required for pro-
cessing from 5 to 50 images using the logic virtualization and
using the conventional hardware reuse, where one of the RSA32,
RSA64, and RSA128 hardware functions is shared between two
different multimedia applications for image encryption. We can
observe that the time reduced by using the logic virtualization be-
comes more and more compared to that using the conventional
hardware reuse, when the numbers of the captured images in-
crease. Here, the reduced time is up to 26% of the time required
by using the conventional hardware reuse. This is because the
required cryptographic hardware function can be continuously
accessed by two different multimedia applications through dif-
ferent device nodes turn by turn, without being blocked with one
of the two multimedia applications, when the logic virtualiza-
tion is performed. Further, the time overheads for continuously
closing and opening the device node can be reduced.

In our second experiment, a multimedia application se-
quentially interacts with the cryptographic and hash hardware
functions, where it first captures 5 to 50 images from the
camera, and then transfers the captured images to the crypto-
graphic and hash hardware functions for data processing. Fig. 5
shows that the average time required for processing from 5 to 50
images using the hardware device virtualization and using the
conventional hardware reuse, where one of the RSA32, RSA64,
and RSA128 cryptographic hardware functions and one of
the CRC32, CRC64, and CRC128 hash hardware functions

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 22, 2009 at 23:44 from IEEE Xplore.  Restrictions apply. 



HUANG AND HSIUNG: HARDWARE RESOURCE VIRTUALIZATION FOR DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS 23

Fig. 5. Comparisons between conventional hardware reuse and one-to-many
hardware device virtualization.

are used for ensuring the security and integrity, respectively,
of the image transfers on the network. We can also observe
that the time reduced by using the hardware device virtual-
ization becomes more and more compared to that using the
conventional hardware reuse, when the numbers of the captured
images increase. Here, the reduced time is up to 6.5% of the
time required by using the conventional hardware reuse. This
is because the encrypted results can be directly transferred to
the hash hardware function for processing through the kernel
module without transferring back to the user space. Thus, the
time overheads for repeatedly transferring data between kernel
space and user space can be further reduced. The above exper-
imental results also demonstrate that not only the utilization
of reconfigurable hardware functions can be further increased,
but the system performance can be also significantly enhanced,
when the virtual hardware mechanism is used in an OS4RS.

VI. CONCLUSION

Instead of realizing reconfigurable hardware functions with
traditional hardware devices in an OS4RS [1], [5], we propose
a virtual hardware mechanism to further raise the utilization of
reconfigurable hardware functions. Furthermore, we also pro-
pose a unified communication mechanism to further enhance
the scalability of an OS4RS design, without losing the gener-
ality in accessing hardware designs. Our experimental results
also demonstrate that not only the utilization of reconfigurable
hardware functions can be further enhanced, but system perfor-
mance can be also further improved when the virtual hardware
mechanism is used in an OS4RS design.

REFERENCES

[1] A. Donato, F. Ferrandi, M. D. Santambrogio, and D. Sciuto, “Operating
system support for dynamically reconfigurable SoC architecture,” in
Proc. IEEE Int. SOC Conf., Sep. 2005, pp. 233–238.

[2] C.-H. Huang and P.-A. Hsiung, “UML-based hardware/software co-de-
sign for partially reconfigurable systems,” in Proc. 13th IEEE Asia-Pa-
cific Compute. Syst. Architect. Conf. (ACSAC), Aug. 2008, pp. 1–6,
10.1109/APCSAC.2008.4625436.

[3] PetaLogix, PetaLinux [Online]. Available: http://www.petalogix.com/
[4] H. K.-H. So and R. Brodersen, “A unified hardware/software run-

time environment for FPGA-based reconfigurable computers using
BORPH,” ACM Trans. Embedded Comput. Syst., vol. 7, no. 2, pp.
1–28, 2008.

[5] J. A. Williams and N. W. Bergmann, “Embedded Linux as a plat-
form for dynamically self-reconfiguring systems-on-chip,” in Proc. Int.
Conf. Eng. Reconfig. Syst. Algor., Jun. 2004, pp. 163–169.

[6] “Early Access Partial Reconfiguration User Guide—UG208,” Xilinx
Inc., Mar. 2006.

[7] “MicroBlaze Processor Reference Guide, Embedded Development Kit,
EDK 8.2i—UG081 (v6.3),” Xilinx Inc., Aug. 2006.

Authorized licensed use limited to: National Chung Cheng University. Downloaded on September 22, 2009 at 23:44 from IEEE Xplore.  Restrictions apply. 


