
Lin CS, Lu CH, Lin SW et al. VERTAF/Multi-Core: A SysML-based application framework for multi-core embedded

software development. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 26(3): 448–462 May 2011. DOI

0.1007/s11390-011-1146-3

VERTAF/Multi-Core: A SysML-Based Application Framework for

Multi-Core Embedded Software Development

Chao-Sheng Lin1 (���), Chun-Hsien Lu1 (���), Shang-Wei Lin1 (���), Yean-Ru Chen2 (���)
and Pao-Ann Hsiung1 (���), Senior Member, ACM, IEEE

1Department of Computer Science and Information Engineering, “National Chung Cheng University”, Chiayi County 62102
Taiwan, China

2Department of Computer Science and Information Engineering, “National Taiwan University”
Taipei 10617, Taiwan, China

E-mail: {lcs94, lchs91u, linsw}@cs.ccu.edu.tw; d95943037@ntu.edu.tw; pahsiung@cs.ccu.edu.tw

Received March 28, 2010; revised March 19, 2011.

Abstract Multi-core processors are becoming prevalent rapidly in personal computing and embedded systems. Nev-
ertheless, the programming environment for multi-core processor-based systems is still quite immature and lacks efficient
tools. In this work, we present a new VERTAF/Multi-Core framework and show how software code can be automatically
generated from SysML models of multi-core embedded systems. We illustrate how model-driven design based on SysML can
be seamlessly integrated with Intel’s threading building blocks (TBB) and the quantum framework (QF) middleware. We
use a digital video recording system to illustrate the benefits of the framework. Our experiments show how SysML/QF/TBB
help in making multi-core embedded system programming model-driven, easy, and efficient.

Keywords multi-core, model-driven, parallel programming, framework, SysML, design pattern

1 Introduction

The emergence of multi-core architectures[1] is
mainly to tackle the issues posed by single-core pro-
cessors while trying to increase the operating frequency
to obtain the computing power, and the issues include
memory wall, instruction level parallelism (ILP) wall,
and power wall. Multi-core architectures today have
been proved to be ideal solutions to increasing the com-
puting power by being adopted in a wide range in the
marketing from the server, desktop, and laptop to the
embedded systems and digital signal processing design.
Though the multi-core has brought us the benefit in
increasing the computing power while operating in low
frequency and consuming less power, but it also creates
challenges for software engineers, especially for those
in embedded systems with rigid constraints.

To design an application in a multi-core system,
the engineers should first analyze how much computa-
tionally intensive work existing in an application. The
work is then to be decomposed into small tasks and
scheduled to the computing resources in a multi-core
system. Here the proper parallel algorithms are re-
quired to coordinate the decomposed work according to

their behavioral or structural nature in an application,
and also, these parallel algorithms need the underlying
parallelism control systems as engines to map the de-
composed work from logical computations to physical
ones. Such engines involve task or thread management
and scheduling. To design suitable management poli-
cies and scheduling algorithms for parallel algorithms
in a multi-core system is tedious to the software engi-
neers while considering the various architecture designs
of multi-core systems.

The current state-of-the-art technology in multi-core
programming to solve the issues arising from the design
of parallel algorithms, and task and thread scheduling,
is based on the use of language extensions or libraries,
such as OpenMP [2], Cilk [3] and Intel Threading Building
Blocks (TBB)[4]. These tools help software engineers
to design their applications by applying several paral-
lel algorithms to the decomposed work and managing
the tasks and threads for the engineers. Nonetheless,
the software engineers still have to get acquaintance
with these tools and require parallel computing exper-
tise when parallelizing their applications in multi-core
systems.

In order to accelerate the adoption of parallel

Regular Paper
�2011 Springer Science +Business Media, LLC & Science Press, China

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 449

programming technologies for the embedded soft-
ware designers, we extend our existing tool, Ver-
ifiable Embedded Real-Time Application Framework
(VERTAF)[5], for multi-core embedded software design.
The proposed VERTAF/Multi-Core (VMC) is based
on model-driven architecture in software engineering,
and takes SysML models as input which contains user-
specified model-level explicit parallelism for generating
corresponding multi-core embedded software code.

Several issues crop up when developing a model-
driven architecture for multi-core embedded software.
First of all, how much and what kinds of explicit
parallelisms must be specified by a software engineer
through system modeling. Second, how we can auto-
matically and correctly realize the user-specified mo-
dels into multi-core embedded software code. We try
to provide partial solutions to the above issues, which
are still open to more research work.

The main contributions of this paper are listed be-
low.

• A parallel model for parallel algorithm, namely
software pipeline (mixed solution of task parallelism
and data parallelism), is proposed by using a command
design pattern.

• The implementation method may violate the se-
mantics of the adopted system models, e.g., run-to-
completion (RTC) semantics in the SysML state ma-
chine. We illustrate our experience to the readers in
solving the issue at model level by a case study called
digital video recording (DVR) system.

• We analyze different thread-level implementations
for different purposes, including system behavior con-
trol and parallel computing.

• We proposed a code generation flow to show how
to implement both the system behavior control and in-
herent parallelism of an application from the system
models by integrating existing libraries, i.e., QF and
TBB.

The article is organized as follows. Section 2 de-
scribes the languages, libraries and framework, being
adopted in VMC, as well as existing related work. Sec-
tion 3 describes the proposed VMC framework. Section
4 describes the code generation process in VMC. Sec-
tion 5 uses a digital video recording system example to
illustrate how VMC achieves automatic multi-core pro-
gramming using TBB and QF. Finally, Section 6 gives
the conclusions with some future work.

2 Preliminaries and Related Work

VERTAF is a UML-based application framework
for embedded real-time software design and verifica-
tion. The original VERTAF is an integration of soft-
ware component-based reuse, formal synthesis, and

formal verification. It takes three types of extended
UML models[6], namely class diagrams with deploy-
ments, timed statecharts, and extended sequence di-
agrams. The sequence diagrams are translated into
Power-Aware Real-Time Petri Nets and then sche-
duled for low power design along with satisfaction of
memory constraints. The timed statecharts are trans-
lated into Extended Timed Automata (ETA) and model
checked using the SGM (State Graph Manipulators)
model checker. The class diagram and the statecharts
are used for code generation.

VERTAF uses the quantum framework (QF)[7] for
software code generation. QF is a framework for rapidly
implementing software in an object-oriented fashion. A
UML state machine is implemented by a QF active ob-
ject. Based on the programming principles and APIs
provided by QF, VERTAF translates a system modeled
by a user with UML state machines into C/C++ em-
bedded software code.

The main purpose of model-driven software deve-
lopment is to alleviate the problem of inherently high
complexity in software. In our target embedded sys-
tems, multi-core processor architectures not only dras-
tically increase the complexity of embedded software,
but also aggravate the whole issue of complexity due
to the incomprehensible interactions among multiple
threads[8]. Hence, the model-driven development pro-
cess is even more essential to multi-core embedded soft-
ware design. However, this requires adaptation of the
VERTAF flow to support multi-core embedded software
design as illustrated in Fig.1.

In this work, we are extending the code generation
of VERTAF using TBB, which as discussed earlier is a
C++ library that offers parallelism at higher levels. At
the highest level, parallelism exists either in the form
of data to operate in parallel, or in the form of tasks to
execute concurrently. TBB tasks that take advantage
of both data parallelism and task parallelism are most
useful for programming multi-core embedded systems.
We will use a digital video recording system as an ex-
ample to illustrate how the data and task parallelisms
are integrated into the embedded software code that is
generated from SysML models.

The Unified Modeling Language (UML)[9] is an in-
dustry de-facto standard language used for designing
software from various application domains, including
embedded systems. UML allows software designers to
visualize document models of their software. In or-
der to analyze, design, and verify complex systems, an
extension of UML called the OMG System Modeling
Language (SysML)[10] was recently proposed. SysML
reuses several components from UML and extends the
system requirements model by supporting more dia-
grams, such as requirement and parametric diagrams

450 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

Fig.1. VERTAF/multi-core design flow.

where the former is used for requirements engineering
and the latter is used for performance and quantitative
analysis. Thus, in this work, instead of using UML as
in VERTAF, we started to adopt SysML as our model-
ing language in VMC.

Commercial tools such as IBM Rational Rose and I-
Logix Rhapsody generate code automatically. Accord-
ing to the recent report from IBM software library[11],
they deploy the single-core applications to multicore
systems using modeling language UML 2.0 and pre-
dicting performance gains at system level by applying
the Amdahl’s law. In contrast to these commercial
tools, the code generated by VMC is both scheduled
and verified formally. The MoBIES (Model-Based In-
tegration of Embedded Systems) project[12-14] funded
by USAs DARPA and the DESS project funded by
Europes EUREKA-ITEA are all very large and 5-year
longterm research projects. Nevertheless, what VMC
has achieved has already surpassed the achievements
of both MoBIES and DESS, because MoBIES results
were all divided into several small projects in different
universities without time integration and DESS mainly
proposed theories (guidelines). In contrast, VMC has
successfully proposed the theory and implemented it

into a useful application framework.
In [15], the authors have provided a design environ-

ment for MPSoC based on the tool Gaspard2. The de-
sign methodology of Gaspard2 is based on model-driven
engineering, and it also adopts MARTE [16], which en-
hances the modeling capability of UML, to model the
software and the hardware of applications. The data
and system structures are modeled, and through trans-
formation, the computation is implemented in the exe-
cutable platform based on SystemC at timed program-
mer view level. Two main differences between VMC
and Gaspard2 include the goals of the system model-
ing and the target executable platform. Our framework
focuses on the parallel models for parallel algorithms,
as well as, the models of system behaviors. In addi-
tion, the code emulator and the testing environment
proposed in VMC are the physical hardware platform,
not a simulated environment.

Several researches also proposed solutions to the
problems which are posed by multi-core systems.
SWARM[17] project is also a framework for multi-
threaded programming for multi-core systems. The au-
thors proposed a model for the parallel shared memory
multi-processor models and algorithm analysis as well

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 451

as provided a library for multi-core programming. Dif-
ferent from SWARM, VMC models the multi-core em-
bedded software by SysML and generates code based
on the TBB task model and the QF active object
model which are higher-level programming paradigms.
Though the actual execution of TBB tasks and QF ac-
tive objects are all performed by the underlying user-
level and kernel-level POSIX threads, yet the more ab-
stract task/object level of code generation from sys-
tem design models avoid low-level bugs to creep into
the software and allow easier performance analysis.
For example, the run-to-completion (RTC) semantics of
UML/SysML are all preserved by TBB tasks and QF
active objects and thus it is not easy to violate these
constraints, while it is very easy to do so when using
pure POSIX thread programming. In particular, both
TBB and QF libraries have very small memory foot-
prints and are thus very much suitable for embedded
systems.

The project Cellss[18] supports simple and flexible
programming model for parallel and heterogeneous ar-
chitectures such as the Cell Broadband Engine (BE) ar-
chitecture. By maintaining the task-dependency graph
of the calls to functions at runtime, Cellss transfers
data from and to the Synergistic Processing Elements
(SPEs). Similar to OpenMP, Cellss is an alternative
programming model and proposes directives for code
annotations and functional decomposition. Instead of
OpenMP or Cellss, VMC adopts TBB for paralleliz-
ing data, task, and data flow, because these real-world
concurrency solutions are better implemented by TBB.

Similar to the TBB task stealing, Wagner et al.[19]

implemented task processing interface (TPI) scheduler
in the user-space of the operating system and proposed
a work stealing algorithm for load balancing in a multi-
core environment. VMC currently is based on the orig-
inal TBB random task stealing; however, it can always
be extended to adopt other task stealing algorithms.

3 VERTAF/Multi-Core Framework

VERTAF extended for multi-core programming is
now called VERTAF/Multi-Core (VMC). The control
and data flows of VMC are represented by solid and
dotted arrows, respectively, in Fig.1. From the perspec-
tive of system designer, software synthesis is defined
as a two-phase process: a software construction phase
called front-end and an implementation phase called
back-end. This separation helps VMC design to plug-in
different target languages, middleware, real-time oper-
ating systems, and hardware device configurations.

The front-end phase is divided into three sub-phases,
namely SysML modeling phase, real-time embedded
software scheduling phase, and formal verification

phase. In SysML modeling phase, VMC requires four
diagrams as an input of system specification mod-
els, namely requirements diagram, block definition di-
agram, interaction diagram, and state machine. In the
scheduling phase, Pthreads are scheduled by Linux OS,
and the TBB threads are scheduled by the TBB library
along with thread migration among different cores. In
the formal verification phase, timed automata models
generated from the SysML models are verified using
the SGM[20] model checker, along with the VMC built-
in models for real-time task scheduling, inter-core task
migration, and load balancing policies.

The back-end phase also consists of three phases,
namely architecture mapping, code generation, and
testing. The architecture mapping phase is the confi-
guration of the hardware system and operating system
through the automatic generation of configuration files,
make files, header files, and dependency files. We adopt
a multi-tier approach for code generation: an operat-
ing system layer (Linux), a middleware layer (QF), a
multi-core threading library layer (TBB), and an ap-
plication layer. The generated code is tested for sev-
eral issues, such as functional validation, non-functional
evaluation, and deadlock detection.

4 Multi-Core Code Generation

To alleviate the burden of application designers,
VMC supports model-driven development in two ways.
First, VMC provides abstract architecture models of
multi-core computing along with real-time task schedul-
ing and load balancing mechanisms. Second, VMC sup-
ports parallel design patterns such as parallel pipeline
to hide latency, parallel loop to reduce latency, and pa-
rallel tasks to increase throughput. These design pat-
terns correspond exactly to the three real-world con-
currency issues[21].

4.1 Task and Thread Models

A task in TBB is a basic unit of computation job,
while a thread is a basic unit of computation that can be
assigned a task to execute. An application can be rep-
resented by a task graph. The tasks that are ready are
assigned by a task scheduler for execution by threads
from a thread pool.

The task and thread models of TBB are quite generic
and are suitable for general-purpose computing. How-
ever, to satisfy real-time constraints in embedded sys-
tems, we need to have threads that are devoted to spe-
cific tasks such as input sensing, computation, and ac-
tuator outputs. The task/thread model in VMC con-
sists of the following three parts.

• User-Level Pthreads. The POSIX threads are de-
voted threads, that is, unlike TBB threads, they are

452 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

never reused for executing other tasks. There are two
uses of such Pthreads in VMC as follows: (a) to execute
the user-specified state machines (represented by QF
active objects), and (b) to execute conventional legacy
parallel tasks.

• User-Level TBB Threads. These are the threads
maintained by the TBB scheduler. They can be reused
and migrated across different cores. The TBB threads
are scheduled by the TBB threading library using a
non-preemptive unfair scheduling approach to trades-
off between depth first execution and breadth first ex-
ecution of tasks on the task graph, which are ready for
execution.

• Kernel-Level OS Threads. Each of the above user-
level threads, including POSIX and TBB, is mapped
to a kernel thread of the underlying OS such as Linux
in VMC. The kernel threads are scheduled by the OS
scheduler using a preemptive priority-based scheduling
algorithm.

4.2 Model-Level and Code-Level Parallelism

As introduced at the beginning of Section 4, the
three real-world concurrency issues[21] include latency
hiding, latency reduction, and throughput increasing.
The corresponding solutions are parallel pipeline, paral-
lel loop, and parallel tasks, respectively. TBB supports
all of these solutions with certain restrictions such as
the parallel loop is supported only in four forms, namely
parallel for, parallel reduce, parallel scan, and
parallel while. Since VMC generates code based on
QF and TBB APIs, all of the three corresponding so-
lutions are supported at the code level. However, the
main issue to be addressed here is how and what kinds
of parallelism to allow application designers to specify
at the model level.

The following approach is adopted in VMC. VMC
provides a UML profile to support parallel design pat-
terns such that users can apply stereotype tags to
SysML models. Currently, VMC users can apply the
following sets of stereotype tags:

1) �pipeline� to a transition in the state machine
model;

2) �serial� and �parallel� to classes in a
block definition diagram describing pipeline parallel
model;

3) �parallel for�, �parallel reduce�, �pa-
rallel scan�, and �parallel while� to a method
or a part of a method; and

4) �parallel tasks� to a method, and �task�
to a part of a method.

Fig.2 shows the definition of stereotypes for the
pipeline parallel model. The definition of stereotype
�pipeline� can be applied to a state transition of a
state machine. When the VMC code generator detects
this stereotype, it immediately checks the value Paral-
lelModel defined in stereotype �pipeline� and refers
to the dedicated pipeline parallel model. The parallel
model is described in a block definition diagram. When
code generator detects the stereotype �invoker�, it
generates the code to initialize the TBB library, instan-
tiate a TBB pipeline class, add all specified filters, and
execute the pipeline. Stereotypes to be applied to the
filter classes, namely �serial� and �parallel�,
are for the code generator to generate the serial and
parallel filters for the pipeline.

Using this parallel design pattern profile, VMC thus
bridges the gap between model-level and code-level par-
allelisms. Application designers are required to expli-
citly specify parallelism at the model level because the
designers know best what to parallelize and what not
to. VMC alleviates the burden of parallel programming
through automatic code generation. Designers have to
only tag the models with the above stereotypes and
VMC takes care of the rest.

4.3 Code Generation

In this subsection, we first introduce the code gen-
erating flow, and then describe the issues arising from
semantics violation at the model level. Finally, we de-
scribe how the parallel code are generated from the par-
allel models.

Fig.3 shows the flow of the VMC code generator.
The code generator consists of five main components

Fig.2. Stereotypes for pipeline design pattern.

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 453

Fig.3. Multi-core embedded software code generating flow.

including model parser, model compiler, parallelism im-
plementer, tree translator, and code emulator.

The model parser is responsible for extracting all
related information from user-specified SysML design
models, namely block definition diagrams and state ma-
chine diagrams which are described by the standard
XML schema. The model parser creates a semantics
tree structure for the model compiler.

The model compiler is in charge of constructing the
backbone of system behavior, that is, the state machine
behavior of each system component. The model com-
piler implements the state machine by the QF library,
and the generated snippets of code are inserted into the
semantics tree structure, resulting in a new tree struc-
ture called QF-annotated Tree.

The parallelism implementer is responsible for gene-
rating parallel multi-core code by invoking the TBB li-
brary. When a stereotype being associated with a paral-
lel model is processed by the model compiler, the model
compiler invokes the parallelism implementer. Sub-
sequently, the parallelism implementer generates the
parallel code according to the referred parallel model.
The generated code snippets are inserted into the QF-
annotated tree, which is then called TBB-annotated
tree.

The tree translator traverses the TBB-annotated
tree structure which contains both the QF code and
the TBB code. It generates code files for the code em-
ulator which in turn executes the compiled code to the
target platform to test its functional and non-functional
properties. A monitor system is implemented in the
code emulator, to collect feedback information from the

target platform.
VMC generates multi-core embedded software code

automatically from the user-specified SysML state ma-
chine models via two open-source, small and lightweight
libraries, namely QF and TBB. VMC realizes each
SysML state machine as a QF active object by gene-
rating code that invokes QF APIs for states, transi-
tions, and communication events. Each active object is
executed by a user-level Pthread that maps to a kernel
thread in Linux OS. Within an active object, each do
method that is executed in a state, is encapsulated as a
TBB task or a TBB task graph depending on the com-
plexity of the method and its ability to be parallelized.
Thus, there are basically two sets of user-level threads,
namely Pthreads and TBB threads.

The distinction between these two sets of threads is
mainly due to the requirement of UML state machines
to satisfy the run-to-completion (RTC) semantics. The
RTC semantics is required by both the do methods in
a QF active object and a TBB task. A QF active object
cannot be modeled as a TBB task because the active
object never terminates execution and thus will violate
the RTC semantics if it is a TBB task. Hence, a devoted
Pthread is used instead.

Another effect of the RTC semantics is that when-
ever there is an indefinite polling of some I/O devices
such as remote controller, the polling task cannot be a
QF method nor a TBB task. VMC addresses this issue
by modeling such polling tasks as an independent state
machine with a single state, a self-looping transition,
and a single triggering event such as data input. Such
a specific state machine waits on the single event and
thus there is no need to follow the RTC semantics.

Let us use an example to show several snippets of
code that are generated by VMC based on machine
models specified by designer. As shown in Fig.6, the
parallel video encoder (PVE) is a subsystem of digi-
tal video recording (DVR) system which will be de-
tailed later in our case study. The PVE subsystem
retrieves the raw video frame for the digital camera,
and this involves the issue of violation of RTC seman-
tics. We implemented the PVE subsystem by designing
two state machines, including video capture and video
encoding. Video capture has only one state, namely
Capture Frame. The state machine keeps polling the
I/O of digital camera devices and stores the raw video
frame in a buffer, and then notifies the state machine,
video encoding, to process the raw video frame. Thus,
the issue of violation of RTC semantics is solved. The
following segment of code illustrates the video encod-
ing state machine which comprises two states, namely
RF Notification and ENCODE OK.

class Video Encoding:public QActive{public:

454 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

PVEEncoding();

∼PVEEncoding();

protected:

void initial(QEvent const *e);

QSTATE RF Notification(QEvent const *e);

QSTATE ENCODE OK(QEvent const *e);

private:

/*member functions and data are declared

here*/

};
The class, Video Encoding, inherits the class

QActive which is provided by QF and can be used to
realize the state machine. The class, Video Encoding,
maintains two states, namely RF Notification and
ENCODE OK. The two states are realized by the QF class,
QSTATE.

In state machine Video Encoding, the transition
between states, RF Notification and ENCODE OK,
are applied three stereotypes on it, namely
�seral filter�, �parallel filter�, and
�pipeline�. When the code generator reaches these
stereotypes, the code generator refers to the class dia-
gram which is a command design pattern and provided
by users with respect to the stereotype. For example,
when reaching the stereotype, �pipeline�, the code
generator refers to the class diagram as shown in Fig.4.
In this example only two filters, GetRF and DCT, are
shown to illustrate the generated code.

The snippet of code for serial filter, GetRF, is shown
below.

class GetRF:public tbb::filter{
/*member data are declared here*/

public:

GetRF(usertype* ptrBuffer):

filter(serial){
/*initialize member data here*/

}
void* GetRF(void* item){

//user manual code

};
void* operator(void* item){
Token1* tokenOut =

<static case>(Token1*)GetRF(null);

return tokenOut;

}
};
The class, GetRF, inherits the filter class provided

by TBB, and its parent constructor is initialized by
keyword serial defined by TBB. Users have to write
the code in the member function GetRF to process data
according to their objectives for the filter. For the pa-
rallel filter, the parent constructor is initialized by the
keyword parallel.

As for the stereotype �pipeline�, the code gen-
erator generates the following code to initialize TBB
pipeline and adds filters to it.

tbb::task scheduler init init;

tbb::pipeline ppline;

GetRF GetRF(&container);

/*Declare and initialize

other filters here*/

ppline.add filter(GetRF);

/*add other filters here*/

ppline.run(numToken);

ppline.clear();

Firstly, the code generator initializes the TBB en-
vironment for the pipeline and then instantiates the
pipeline. Subsequently, the code generator instantiates
and initializes the filters that are specified in the state
machine, such as the GetRF and DCT filters, and then
adds these filters to the pipeline.

4.4 Validation

VMC validates models and code using different ap-
proaches. SysML models are flattened into timed

Fig.4. Parallel model for TBB pipeline.

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 455

automata models that are then integrated with VMC
provided architecture and computing models for the
multi-core processor environment with task migration
and scheduling. The SGM model checker[20] is then
used to verify the timed automata models against user-
specified properties. This part is out-of-scope here and
the details can be found in [22].

As far as the code validation is concerned, a testing
environment is used for validating if the multi-threaded
code execution satisfies user-given constraints that
are specified in SysML requirements diagram. User-
given constraints can be classified into two categories:
application-independent such as CPU utilization and
power consumption, and application-dependent such as
encoding rate and streaming rate in classical multime-
dia applications.

For application-independent constraints, we synthe-
size an additional active object, called Monitor, to col-
lect and record the CPU core utilizations by invoking
system calls provided by the underlying operating sys-
tem. The period of this invocation can be specified by
the user depending on the desired resolution of data
collection. The CPU core utilization statistics are writ-
ten into a log file for further analysis. The estimation
of power consumption by an application is evaluated
in Monitor according to the power model proposed by
Lien et al.[23], which is based on the CPU core utiliza-
tions of the application.

For application-dependent constraints, the infor-
mation-gathering task is left to the corresponding ac-
tive object to keep the relation loosely-coupled between
Monitor and other active objects. The more loosely-
coupled the relation is, the easier the Monitor code can
be synthesized in a general way. For example, an en-
coder active object should calculate its encoding rate by
itself because only it knows how many raw frames are
encoded in a certain time period. All that the Monitor
has to do is to ask the encoder active object about its
encoding rate and write it into a log file. Thus, every
active object of an application inherits a virtual func-
tion showInfo() from the abstract class Information
predefined by VMC code generator. In the inherited
virtual function showInfo(), each active object formu-
lates whatever information it wants to pass to Monitor
by encoding it into a character string. The Monitorwill
then invoke this function to get the information string
and write it to a log file once in each specified time
period. In addition, the Monitor maintains a list that
records all the active objects of which it should call
the corresponding showInfo() functions. Note that
Monitor does not understand the content of the in-
formation strings obtained from other active objects; it
just gets the strings and writes them to a log file. In

such a way, the Monitor active object can be generally
synthesized in VMC without manual handling.

With Monitor executing concurrently other active
objects of an application, all the dynamic information
about the application can be obtained in a log file. Sys-
tem designers can analyze the log file to validate the
application. If the constraints are not met by the gen-
erated multi-core embedded software, he/she can refine
the system model or constraints and then validate the
generated multi-core embedded software again until all
the specification constraints are met. For example, if
the power consumption is too high, this can be observed
from the log file and then the designer can try to re-
duce the number of cores and re-run the code genera-
tion process such that the new version of the code can
be executed along with Monitor to check if the power
consumption is reduced or not.

5 Digital Video Recording: A Case Study

We use a real-world example called digital video
recording (DVR) system to illustrate how VMC works
and the benefits of applying VMC to multi-core embed-
ded software development. DVR is a real-time multime-
dia system for online and on-demand video streaming.
The overall architecture of DVR is illustrated in Fig.5,
which shows that DVR has two subsystems, namely

Fig.5. Architecture of digital video recording system.

456 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

parallel video encoder (PVE) and video streaming server
(VSS). PVE is responsible for collecting videos from
multiple cameras and encoding them into more com-
pressed data format such as MPEG. VSS is respon-
sible for allowing connections from multiple remote
monitor clients (RMC), for servicing the clients with
status information, real-time video streams, and on-
demand video streams, and for storing the encoded
video streams in large video databases.

Encoded data buffer manager (EDBM) which is a
subsystem of VSS buffers the compressed data from
PVE. Each buffer corresponds to each digital camera
appearing in the DVR system. These buffers are ac-
cessed by database server and video streaming man-
ager (VSM). Database server is responsible for stor-
ing the compressed data into video storage, so that re-
mote monitor client (RMC) can request the on-demand
video for playback, and status manager lists all accessi-
ble videos for the users. VSM accesses the compressed
data form EDBM and streaming the buffered data to
RMC when there is real-time streaming request from
RMC.

In the rest of this section, we will describe how task
parallelism, data parallelism, and data flow parallelism,
i.e., parallel pipeline, are automatically realized in the
embedded software code generated from user-specified
models of the PVE. We will also describe how conven-
tional thread parallelism is integrated into the embed-
ded software code generated from user-specified models
of the VSS.

5.1 Parallel Video Encoder

The PVE subsystem is responsible for the captur-
ing of raw video data from all digital cameras, the en-
coding of the raw video from each camera into more
compressed data format for efficient network transmis-
sion and for smaller storage space requirement, and the
transmission of the encoded video data to the buffer
manager in the VSS subsystem. In this subsection, we
show how PVE is a very good illustration example for
the three real-world concurrency issues[21].

5.1.1 Task Parallelism

Capturing and processing video from each camera is
an independent task. However, due to the requirement
of RTC semantics in UML and QF, we need to segregate
the capture and the processing of the video into two dif-
ferent state machines as illustrated in Fig.6. The video
capture state machine is devoted to capturing video
from a camera, while the video encoding state machine
performs the real-time encoding of video. Thus, for a
set of n cameras, there are 2n QF active objects that

are executed by 2n Pthreads.

5.1.2 Data Parallelism

Since video data is composed of a large number of
frames and the encoding process is iteratively applied
to a data block of 8×8 pixels in a frame, there is a high
degree of data parallelism in video encoding. Further,
since the color model of the video in DVR is RGB, with
8-bits per pixel color, the encoding process can be para-
llelized into a multiple of 3, that is, one set of threads
for each of the three colors. For example, a frame size
of 640 × 480 pixels consists of 80 × 60 × 3 = 14400
data blocks. The degree of data parallelism can be
ranged from 3 to 14 400 blocks. Allowing high para-
llelization might consume too much system resources
and cause more timing overhead than the time saved
through parallelization. Thus, a tradeoff between para-
llelism and resource usage is required to achieve high
system efficiency. In the method for encoding, the
stereotypes �parallel for�, �parallel while�,
�parallel task�, �task� can all be used for pa-
rallelizing the encoding method.

5.1.3 Data Flow Parallelism

Besides the task parallelism for multiple camera
video inputs and the data parallelism for multiple data
blocks within each frame, we can also apply data flow
parallelism to PVE because the video encoding pro-
cess applied to each data block is itself a sequence
of functions. For most multimedia standards such as
MPEG, the sequence of functions consists of discrete
cosine transform (DCT), quantization (Q), and Huff-
man encoding (HE). This sequence of functions can be
parallelized as a pipeline to hide latency such that more
than one data block is processed at any time instant.

In Fig.6, note how data flow parallelism is spec-
ified through the three stereotypes: �pipeline�,
�serial filter�, and �parallel filter�.

Tagged values such as num tokens and num buffers
are specified, respectively, in the �parallel filter�
and �pipeline� stereotypes to represent the number
of tokens (the TBB terminology for degree of paral-
lelism in a parallel filter) and the maximum number of
buffers (the TBB terminology for the maximum degree
of parallelism in a system). The encoding pipeline in
PVE has two serial filters, namely GetRF that gets and
decomposes a raw frame for parallel processing by the
parallel filters and PutEF that collects all encoded data
blocks and composes an encoded frame for transmission
to the video buffer. The three parallel filters in PVE
pipeline are responsible for computing in parallel the
functions: DCT, quantization, and Huffman encoding.

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 457

Fig.6. State machines of the parallel video encoder.

5.2 Video Streaming Server

We use the video streaming server (VSS) subsystem
to illustrate how legacy multi-threaded software can be
integrated into VMC. As a result of the integration, the
threads in legacy multi-threaded software, the POSIX
threads for executing QF active objects, and the TBB
threads work together seamlessly. The main functions
of VSS include 1) accepting multiple connections from
remote clients, 2) streaming multiple real-time videos
and/or on-demand videos to the remote clients, 3) pro-
viding requested server status information to the re-
mote clients, and 4) recording the encoded videos into
storage devices. The architecture of the VSS subsys-
tem is shown in Fig.7 and the functionalities of each
component in VSS are described as follows.

Fig.7. Architecture of video streaming server.

5.2.1 Legacy Threads

Legacy threads are simply multiple threads that ex-
ist in legacy software. This is illustrated in connection
server (CS) and video streaming server (VSM) as fol-
lows.

The connection server is responsible for handling
connections and invoking services corresponding to
multiple client requests. Traditionally, this has almost
always been implemented as an iterative or concurrent
TCP server using either the select or the fork mecha-
nism. The state machine for the connection server is
shown in Fig.8. In the DISPATCH state, the server sim-
ply forks a new legacy thread for servicing a new re-
quest from a client. It is simply unreasonable to for-
sake well-established proven concurrent artifacts such
as a concurrent TCP server. This example shows that
the VMC framework does not force one to model every-
thing for TBB or QF. The reason for not applying the
TBB principle here is that the parallelism is explicitly
designed into the system and it is required for providing
real-time services to the clients.

Fig.8. State machine model of the connection server.

Fig.9. State machine model of the video streaming manager.

458 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

The video streaming manager is also a typical con-
current manager that creates new streams at runtime
to serve client requests. In DVR, because a minimum
QoS of 15 frames per second (fps) is required for video
streaming, VSM manages a pool of legacy threads. The
state machine of VSM is illustrated in Fig.9, where a
new thread is used for servicing each new request, ei-
ther for a real-time video streaming or an on-demand
video streaming.

5.2.2 TBB Tasks/Threads and QF Threads

The VMC framework uses TBB tasks mainly for two
reasons as follows: (a) a job is parallelizable, but there
is no real-time constraints, or (b) a job is paralleliz-
able, but the underlying hardware device is not. The
first case is illustrated by the status manager (SM) and
the second case by the database server (DS) and the
encoded data buffer manager (EDBM). Note that the
EDBM also utilizes multiple QF threads for executing
concurrent states.

The status manager retrieves the list of recorded
video files and the list of on-line digital video came-
ras from the database server and passes the informa-
tion to remote clients. Since the status requests do not
have real-time constraints, there is no need for devoted
threads, instead, VMC realizes these jobs as TBB tasks
to be executed by the TBB scheduler using a set of TBB
threads. The stereotype �parallel task� is used to
specify request servicing as a set of parallel TBB tasks.

The database server provides recorded video files to
VSM and allows storing of real-time video data from
EDBM. Multiple client requests and multiple camera
video inputs require the database server to be a con-
current one. However, since DVR considers a single

hard-disk for database storage, allowing multiple de-
voted threads for each read or write request is unnec-
essary because ultimately all the requests must be se-
rialized by the OS disk scheduler. Instead, VMC maps
such read and write jobs as TBB tasks. Parallelism
is still needed so that the disk accesses can be made
efficient through the OS disk scheduler.

The encoded data buffer manager (EDBM) is re-
sponsible for buffering the video streams including both
the real-time ones from PVE and the stored ones from
the database server. In the case of real-time videos,
EDBM buffers the video data, sends them to the
database for storage and future retrieval, and also sends
them to the remote clients through VSM. Since the
EDBM buffers are physically located in the main mem-
ory which usually has a single access port, all memo-
ry accesses are, in fact, serialized at the lowest level.
Thus, similar to the database server, multiple devoted
threads are also unnecessary and VMC realizes these
memory accesses as TBB tasks with TBB synchroniza-
tion mechanisms. However, unlike the single QF thread
for the database server, EDBM has a concurrent state,
as shown in Fig.10, and thus two QF threads are re-
quired: one for sending the real-time videos to the
database and the other for sending buffered videos to
VSM.

5.3 Remote Monitor Client

The remote monitor client (RMC) allows users to
interact with the DVR server through a graphical user
interface in the following ways: 1) acquiring the sta-
tus information of the DRV server, 2) real-time video
streaming, 3) on-demand video streaming, and 4) de-
bugging and testing. The RMC can also be used to

Fig.10. State machine model of the encoded data buffer manager.

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 459

gather the server performance statistics for improving
the video streaming QoS guarantees.

5.4 Experimental Results

We now measure the DVR system by several met-
rics, including performance, power consumption, and
load balancing, on two different multi-core platforms.
The first platform is Intel Core2 Quad CPU Q6600 with
clock frequency 2.4GHz, 8MB cache and 4 GB RAM.
The second platform is Intel Xeon Processor E5520 with
clock frequency 2.26GHz, 8MB cache, and 8GB RAM.
Note that each core has two hardware threads. The
first platform has one processor with four cores in it,
and the second one has two processors where each pro-
cessor consists of four cores.

We implemented three versions of the DVR system.
The first version is pure QF version, that is, this ver-
sion does not parallelize the PVE encoding flow, called
the QF version. For each macroblock of a raw frame,
it is encoded sequentially through DCT and Quanti-
zation, and finally all macroblocks are compressed by
Huffman encoding. The second version is implemented
with QF and TBB pipeline being applied to the en-
coding flow, called the TBB version. The implementa-
tion of the third version employs two tools, including
QF and OpenMP, called the OpenMP version. We use
OpenMP to optimize the encoding flow in two different
ways, including the coarse-grained, namely the entire
encoding flow, and the fine-grained, e.g., DCT opera-
tion which consumes most of the computation time of
the encoding flow.

In the first experiment, we observed the load bal-
ancing of each version. We compared the QF version
and TBB versions, in which the system configuration
was of four cores, one real-time streaming, two cameras,
and the capture rate ranging from 16 to 20 frames per
second (fps). The time unit of a system tick is 1/8000
seconds in all the experiments in this paper. The target
platform is Intel Core2 Quad CPU Q6600. As shown in
Fig.11, the TBB version achieves better load balancing
among cores due to the random task stealing between
the TBB threads.

In the second experiment, we measured the perfor-
mance of DVR in terms of the frame encoding rate in
frames per second (fps). The configuration of this ex-
periment is the same as in the first experiment. As
illustrated in Fig.12, the average encoding rate of QF
version is 12 fps, while the average encoding rate in the
TBB version is about 16 fps. The superior performance
in the TBB version is due to the TBB pipeline code
generated by VMC into the TBB version of DVR af-
ter the designer associated a pipeline stereotype to the
PVE state machine. In the TBB pipeline, concurrent

tasks are used to process (encode) more than one block
of a raw frame at the same time. Thus, TBB pipeline
reduces the time for encoding each raw image frame.

Fig.11. Comparison of load balance in Intel Core2 Quad CPU.

(a) QF version. (b) TBB version.

Fig.12. Performance of encoding rate in Intel Core2 Quad CPU.

(a) QF version. (b) TBB version.

We then experimented with different comparisons of
the second experiment such as reducing the number of
cores from four to two and three. We realized this by
limiting all the QF and TBB threads to using only two
or three cores through the Linux system call, that is
sched setaffinity. With three cores, the average en-
coding rate of the QF version was still 12 fps, but that
of the TBB version dropped to 6.13 fps. With two
cores, the encoding rate of the QF version dropped to
9.78 fps, and that of the TBB version was 6.58 fps.
We can observe that the less the number of cores used,
the worse the performance provided by TBB. Because
TBB introduces the overhead of splitting and merging

460 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

parallel tasks. The phenomenon is more obvious when
the number of cores is reduced. As for the streaming
rate in all experiments aforementioned, the streaming
rate is consistent with the encoding rate, because the
streaming tasks are I/O bound.

The third experiment shows the power consump-
tion of the QF and TBB versions. We evaluated the
power consumption according to the core utilization.
We adopted the power model which is illustrated by
Lien et al.[23], the following equation:

P = D + (M − D) · αUβ (1)

where P represents the average power consumption in
Watts, D represents base power in Watts when core
is idle, M represents the the full-load power consump-
tion in Watts, U is for the core utilization, α and β
are platform-specific parameters set to be 1 and 0.5,
respectively. We also set D to 69 Watts and M to 105.
The configuration of this experiment is the same as the
first one with four cores, one real-time streaming, two
cameras, and capture rate of 16 to 20 fps.

As shown in Fig.13, the TBB version consumes to-
tally 24 094 Watts during a period of 1800 system ticks
(0.22 seconds), while the QF version consumes only
20 140 Watts. The TBB version consumes 3954 Watts
more than the QF version. TBB keeps all CPU cores
busy while performing the load-balancing, thus it also
consumes more energy than the QF version. Neverthe-
less, the performance is also enhanced as shown in the
first experiment.

Fig.13. Comparison of power consumption in Intel Core2 Quad

CPU.

We now compare another different implementation
of the DVR system, namely the OpenMP version, to
the TBB version. The following experiments were per-
formed on Intel Xeon Processor E5520.

The first experiment shows several different opti-
mizations for the DVR system by OpenMP. We choose
the one with the best optimization to compare with
the TBB version. In the beginning, we focus on the op-
timization of the DCT function for each macroblock
(an eight by eight integer matrix). DCT processes

each macroblock by firstly transforming each column
and then transforming each row, and each transfor-
mation consists of 3-level of nested loops. We applied
the OpenMP pragma parallel for to the column or
row transformations separately or simultaneously, with
assigning different number of threads. The snippet of
code is as follows, where the number of threads is set
to 4.

//Column transform

#pragma omp parallel \
for private (i,j,k) num threads(4)

for(j=0;j<8;j++)

for (i=0; i<8; i++){
temp[i][j]=0;

for (k=0; k<8; k++)

temp[i][j]+=column[i][k]*pInput[k][j];

}
Another optimization is using task parallelism where

each task consists of entire encoding flow, including
DCT, quantization, and Huffman encoding, by apply-
ing the OpenMP directive #pragma omp sections.

The system configuration includes two digital came-
ras, one real-time streaming, and employing all cores.
We found that the 4-thread configuration has better
optimization than the others for the row and column
transformations in terms of the encoding rate in fps.

Fig.14 shows that the optimization of row transfor-
mation is better than that of column transformation,
because the optimization of raw transformation can

Fig.14. DCT and encoding flow optimization with OpenMP.

(a) OpenMP version (column transformation with four threads).

(b) OpenMP version (row transformation with four threads).

(c) OpenMP version (#pragma sections for encoding flow).

Chao-Sheng Lin et al.: VMC: Multi-Core Embedded Application Framework 461

reach an average encoding rate around 18 fps, while
the column transformation optimization results in only
16 fps. This is due to the cache locality, that is, the
raw transformation incurs fewer cache misses than the
column transformation. When implementing optimiza-
tions for both row and column transformations, the av-
erage encoding rate is still limited to 16 fps or less due
to the fact that the bottleneck of the DCT function is
in column transformation.

The bottom figure in Fig.14 shows the performance
of parallelizing entire encoding flow at the task level.
The average encoding rate is about 21 fps which is bet-
ter than that of optimized row transformation. The
reason is that the small task parallelism in row trans-
formation incurs higher scheduling overhead than the
task parallelism on the entire encoding flow level, which
task is large enough to benefit from the overhead.

Now let us consider the load balancing and perfor-
mance of the TBB version shown in Fig.15. We can
observe that the load balance is better than those im-
plemented by OpenMP, which only eight cores reach
100% CPU utilization in the optimized row and col-
umn transformation in DCT, and four cores reach 100%
CPU utilization in the optimized entire encoding flow.
The average encoding rate of the TBB version is about
30 fps which is better than any other experiments in
this paper. However, we must notice that the higher
the core utilization is, the more the power is consumed.

Fig.15. TBB pipeline implementation in Intel Xeon Processor

E5520. (a) TBB version (Intel Xeon Processor E5520). (b) TBB

version (Intel Xeon Processor E5520).

6 Conclusions

In this paper, we proposed a novel framework

VERTAF/Multi-Core (VMC) for the system designer
to easily design and test their application on multi-core
systems. We illustrate how we address the problems
(RTC semantics violation) arising from the gap between
model and implementation. A parallel model, namely
command design pattern, is proposed for the designer to
be able to reuse the model and exploit the computing
power of multi-core. Additionally, we also illustrated
how we designed the code generating flow to automat-
ically generate parallel code from models. In future
work, we will focus on the feedback and modification of
design flow, which are important issues in the software
engineering process.

References

[1] Akhter S. Multi-Core Programming: Increasing Performance
Through Software Multi-Threading. Intel Press, 2006.

[2] OpenMP. http://www.openmp.org/, 2008.
[3] Intel Inc. http://software.intel.com/en-us/articles/intel-cilk-

plus/, 2010.
[4] Reinders J. Intel Threading Building Blocks: Outfitting C++

for Multi-Core Processor Parallelism. O’Reilly Media, Inc.,
2007.

[5] Hsiung P A, Lin S W, Tseng C H, Lee T Y, Fu J M, See W B.
VERTAF: An application framework for the design and veri-
fication of embedded real-time software. IEEE Transactions
on Software Engineering, Oct. 2004, 30(10): 656-674.

[6] Rumbaugh J, Booch G, Jacobson I. The UML Reference
Guide. Addison Wesley Longman, 1999.

[7] Samek M. Practical StateCharts in C/C++. CMP Books,
2002.

[8] Lee E A. The problem with threads. IEEE Computer, May
2006, 39(5): 33-42.

[9] UML. http://www.omg.org/gettingstarted/what is uml.htm,
2010.

[10] SysML. http://www.omgsysml.org/, 2010.
[11] Model driven development–simplifying multicore systems de-

ployment. Technical Report, IBM Corporation Software
Group, October 2009.

[12] de Niz D, Rajkumar R. Time Weaver: A software-through-
models framework for embedded real-time systems. In Proc.
LCTES 2003, San Diego, USA, Jun. 11-13, 2003, pp.133-143.

[13] Kodase S, Wang S, Shin K G. Transforming structural model
to runtime model of embedded real-time systems. In Proc.
the Design Automation and Test in Europe Conference, Mu-
nich, Germany, Mar. 3-7, 2003, pp.170-175.

[14] Wang S, Kodase S, Shin K G. Automating embedded soft-
ware construction and analysis with design models. In Proc.
the International Conference of Euro-uRapid, Frankfurt, Ger-
many, Dec. 2-3, 2002, pp.A/5.1-A/5.6.

[15] Piel E, Ben Atitallah R, Marquet P, Meftali S, Niar S, Etien
A, Dekeyser J L, Boulet P. Gaspard2: From MARTE to sys-
temc simulation. In Workshop on Modeling and Analyzis of
Real-Time and Embedded Systems with the MARTE UML
Profile (DATE2008), March 2008.

[16] Rioux L, Saunier T, Gerard S, Radermacher A, de Simone
R, Gautier T, Sorel Y, Forget J, Dekeyser J L, Cuccuru A,
Dumoulin C, Andre C. MARTE: A new profile RFP for the
modeling and analysis of real-time embedded systems. In
Workshop UML for SoC Design (DAC 2005), June 2005.

[17] Bader D, Kanade V, Madduri K. SWARM: A parallel pro-
gramming framework for multi-core processors. In Proc.
IPDPS 2007, Long Beach, USA, Mar. 26-30, 2007, pp.1-8.

462 J. Comput. Sci. & Technol., May 2011, Vol.26, No.3

[18] Perez J, Bellens P, Badia R, Labarta J. Cellss: Making it
easier to program the cell broadband engine processor. IBM
Journal of Research and Development, 2007, 51(5): 593-604.

[19] Wagner J, Jahanpanah A, Traff J. User-land work stealing
schedulers: Towards a standard. In Proc. CISIS 2008,
Mar. 4-7, 2008, pp.811-816.

[20] Wang F, Hsiung P A. Efficient and user-friendly verification.
IEEE Transactions on Computers, January 2002, 51(1): 61-
83.

[21] Cantrill B, Bonwick J. Real-world concurrency. ACM Queue,
September 2008, 6(5): 16-25.

[22] Tsao C C. An efficient collaborative verification methodology
for multiprocessor SoC with run-time task migration [Mas-
ter’s Thesis]. “National Chung Cheng University”, July 2008.

[23] Lien C H, Bai Y W, Lin M B. Estimation by software for the
power consumption of streaming-media servers. IEEE Trans-
actions on Instrumentation and Measurement, October 2007,
56(5): 1859-1870.

Chao-Sheng Lin received the
B.S. degree in architecture and urban

design from Chinese Culture Univer-
sity, Taipei, China, in 1998, and the
M.S. degree in the Department of
Computer Science and Information
Engineering from “National Chung
Cheng University”, Chiayi, Taiwan,
China, in 2007. He is now working

toward the Ph.D. degree in the De-
partment of Computer Science and Information Engineer-
ing at “National Chung Cheng University”. He has two-year
working experience in software engineering and had been the
vice senior software engineer in Synchronous Communica-
tion Corp. His research interests include formal verification,

reconfigurable systems, and multi-core software engineering.

Chun-Hsien Lu received the
B.S. degree in computer science and
information engineering from the
“National Chung Cheng University”,
in 2006. Currently, he is a Ph.D.
candidate in computer science and

information engineering of “National
Chung Cheng University”, China.
His main research interests include
reconfigurable computing, network

on chip, multi-core embedded system.

Shang-Wei Lin received his B.S.
degree in management information

system in 2003 and his Ph.D. degree
in computer science and informa-
tion engineering in 2010 both from
“National Chung Cheng University”.
Currently, he is a post-doctoral re-
searcher at School of Computing, Na-
tional University of Singapore. His

research interests include formal ver-
ification, formal synthesis, scheduling, and object-oriented
software synthesis.

Yean-Ru Chen received the
B.S. degree in computer science and
information engineering from the
“National Chiao Tung University”,

Hsinchu, Taiwan, China in 2002.
From 2002 to 2003, she was em-
ployed as an engineer in SoC Tech-
nology Center, Industrial Technology
Research Institute, Hsinchu, Taiwan,
China. She received the M.S. degree

in computer science and information engineering from the
“National Chung Cheng University”, in 2006. She is cur-
rently a Ph.D. candidate in Graduate Institute of Electron-
ics Engineering of “National Taiwan University”, Taipei,
China. Her current research interests include model check-
ing, safety-critical systems, security-critical systems, elec-
tronic system level (ESL) design and multi-core embedded

software.

Pao-Ann Hsiung received his
B.S. degree in mathematics and his
Ph.D. degree in electrical engineering
from the “National Taiwan Univer-
sity”, in 1991 and 1996, respectively.

Since 2007, he has been a full profes-
sor in the Department of Computer
Science and Information Engineer-
ing, “National Chung Cheng Univer-
sity”. He has published more than

200 papers in international journals and conferences. He

was a recipient of the 2010 Excellent Research Award and
the 2004 Young Scholar Research Award, “National Chung
Cheng University”, and the 2001 ACM Taipei Chapter Kuo-
Ting Li Young Researcher award. He is a senior member of
the IEEE and the ACM, and a life member of the IICM. He
is on the editorial board of several international journals and
on the program committee of more than 80 international

conferences. His main research interests include reconfig-
urable computing and system design, multi-core program-
ming, cognitive radio architecture, embedded design and
verification, embedded software synthesis and verification,
real-time system design and verification, hardware-software
codesign and coverification, and component-based object-

oriented application frameworks.

