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Abstract. Currently available application frameworks that target at the auto-
matic design of real-time embedded software are poor in integrating functional
and non-functional requirements for mobile and ubiquitous systems. In this work,
we present the internal architecture and design flow of a newly proposed frame-
work called Verifiable Embedded Real-Time Application Framework (VERTAF),
which integrates three techniques namely software component-based reuse, for-
mal synthesis, and formal verification. The proposed architecture for VERTAF is
component-based which allows plug-and-play for the scheduler and the verifier.
The architecture is also easily extensible because reusable hardware and soft-
ware design components can be added. Application examples developed using
VERTAF demonstrate significantly reduced relative design effort, which shows
how high-level reuse of software components combined with automatic synthesis
and verification increases design productivity.

Keywords: application framework, code generation, real-time embedded soft-
ware, formal synthesis, formal verification, scheduling, software components,
UML modeling.

1 Introduction

With the proliferation of embedded mobile and ubiquitous systems in all aspects of hu-
man life, we are making greater demands on these systems, including more complex
functionalities such as pervasive computing, mobile computing, and real-time embed-
ded computing. Currently, the design of real-time embedded software is supported par-
tially by modelers, code generators, analyzers, schedulers, and frameworks [1, 2, 3, 4,
5, 6, 7, 8]. Nevertheless, the technology for a completely integrated design and verifi-
cation environment is still immature. Furthermore, the methodologies for design and
for verification are also poorly integrated relying mainly on the experiences of embed-
ded software engineers. Motivated by the status-quo, this work demonstrates how the
integration of software engineering techniques such as software component reuse, for-
mal software synthesis techniques such as scheduling and code generation, and formal
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verification technique such as model checking can be realized in the form of an inte-
grated design environment targeted at the acceleration of real-time embedded software
construction.

Mobile and ubiquitous systems involve the dynamic reconfiguration of applications
in response to changes in their environments. Middlewares such as network layer mo-
bility support, transport layer mobility support, traditional distributed systems applied
to mobility, middleware for wireless sensor networks, context awareness based mid-
dleware, and publish-subscribe middleware are required for efficient development of
mobile and ubiquitous applications. A user can develop an application using such mid-
dlewares, however it can sometimes be too tedious and complex to consider all the
different possible environments and application features. Examples of environments in-
clude office and domestic spaces, educational and healthcare institutions and in general
urban and rural environments. Examples of applications include domestic and industrial
security applications, education and learning applications, healthcare applications, traf-
fic management, commercial advertising, games and arts, rescue operations, and mil-
itary. Given such complex combinations of environments and applications, one would
desire a higher level of reuse than that allowed by object-oriented design and middle-
wares. We are thus proposing an integrated design framework that allows such higher
level of reuse.

As described below, several issues are encountered in the development of an inte-
grated design framework.

1. To allow software component reuse, how do we define the syntax and semantics of
a reusable component?

2. What is the control-data flow of the automatic design and verification process?
3. What kinds of model can be used for scheduling and verification?
4. What methods are to be used for scheduling and for verification?
5. How do we generate portable code that not only crosses real-time operating systems

(RTOS) but also hardware platforms. What is the structure of the generated code?

Briefly, our solutions to the above issues can be summarized as follows.

1. Software Component Reuse and Integration: A subset of the Unified Modeling Lan-
guage (UML) [9] is used with restrictions for automatic design and analysis.

2. Control Flow: A specific control flow is embedded within the framework, where
scheduling is first performed and then verification because the complexity of veri-
fication can be greatly reduced after scheduling [3].

3. System Models: For scheduling, we use variants of Petri Nets (PN) [5] and for
verification, we use Extended Timed Automata (ETA) [10], both of which are au-
tomatically generated from UML models that follow restrictions and guidelines.

4. Design Automation: For synthesis, we employ quasi-static and quasi-dynamic
scheduling methods [5] that generate program schedules for a single processor. For
verification, we employ symbolic model checking [11] that generates a counterex-
ample in the original user-specified UML models whenever verification fails for a
system under design. For handling complexity, we applied model-based,
architecture-based, and function-based abstractions during verification.
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5. Portable Efficient Multi-Layered Code: For portability, a multi-layered approach
is adopted in code generation. To account for performance degradation due to
multiple layers, system-specific optimization and flattening are then applied to the
portable code. System dependent and independent parts of the code are distinctly
segregated for this purpose.

In summary, this work illustrates how an application framework may integrate all the
above proposed design and verification solutions. Our implementation has resulted in
a Verifiable Embedded Real-Time Application Framework (VERTAF) whose features
include formal modeling of real-time embedded systems through well-defined UML
semantics, formal synthesis that guarantees satisfaction of temporal and spatial con-
straints, formal verification that checks if a system satisfies all properties, and code
generation that produces efficient portable code.

The article is organized as follows. Section 2 described previous related work.
Section 3 describes the design and verification flow in VERTAF along with an illus-
tration example. Section 4 presents the experimental results of an application example.
Section 5 gives the conclusions with some future work.

2 Previous Work

The software in mobile and ubiquitous systems has both traditional features of real-
time embedded systems and also contemporary features such as adaptive resource man-
agement, proactive service discovery, context-aware coordination, multi-agents, and
models for heterogeneous platforms [12]. This is mainly due to the unique require-
ments of such systems including interoperability, heterogeneity, mobility, survivabil-
ity, security, adaptability, ability of self-organization, augmented reality, and scalable
content. Though there are numerous work on the software in mobile and ubiquitous sys-
tems, besides VERTAF, there is practically no design environment that can encompass
the whole design and verification flow of such systems. In the following, we briefly sur-
vey two main areas of research in this domain, including middleware and frameworks.

Middleware design is important for ubiquitous systems because it is through this
software that an application connects to the network and exchanges data with other
applications. Typical examples include the OSA+ middleware architecture [13], the
Reconfigurable Context-Sensitive Middleware (RCSM) [14], and the T-Engine archi-
tecture [15]. The OSA+ middleware facilitates the development of distributed real-
time applications in a heterogeneous environment. Some essential features of OSA+
include quality of service information requirement for each service, explicit support
for asynchronous communication, real-time memory services, and small memory foot-
print. OSA+ has been applied to e-health management services including patient iden-
tification, location monitoring, remote checking, and continuous accurate monitoring
of patient’s vital signs. The RCSM architecture facilitates the development of real-
time context-aware software in ubiquitous computing environments. This architecture
mainly combines CORBA and FPGA such that CORBA allows mobility and FPGA
allows dynamic reconfiguration (ubiquity). RCSM has been applied to sensor networks
such that object interactions are context-triggered. The T-Engine architecture is an open,
real-time embedded systems platform aimed at improving software productivity. The
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T-Engine consortium includes computer hardware and software vendors, telecommuni-
cation carriers, and computer-using companies. T-Engine adopts a layered architecture
including application, middleware, kernel, monitor, and hardware layers.

There are several either fixed architectures or variable frameworks that have been
proposed in the literature for mobile and ubiquitous systems. Typical examples include
the Connected Multimedia Services (CMS) framework [16], the Earl Gray JVM-based
Component (EGC) framework [17], and the Static Composition Framework (SCF) of
service-based real-time applications [18]. The CMS framework is based on SIP and
X.10 protocols and allows multimedia sessions to be preserved when a user moves
from one computing environment to another. The EGC framework analyzes component
dependencies using a component-based JVM called Earl Gray. The SCF framework al-
lows to announce services, to discover services, and to select services for an application.

3 Design and Verification Flow in VERTAF

As shown in Figure 1, VERTAF provides solutions to the various issues introduced
in Section 1. The control and data flows of VERTAF are represented by solid and
dotted arrows, respectively. Software synthesis is defined as a two-phase process: a
machine-independent software construction phase and a machine-dependent software
implementation phase. This separation helps us to plug-in different target languages,
middleware, real-time operating systems, and hardware device configurations. We call
the two phases as front-end and back-end phases. The front-end phase is further di-
vided into three sub-phases, namely UML modeling phase, real-time embedded soft-
ware scheduling phase, and formal verification phase. There are two sub-phases in the
back-end phase, namely component mapping phase and code generation phase. We
will now present the details of each phase illustrated by a running example called En-
trance Guard System with Mobile and Ubiquitous Control (EGSMUC). EGSMUC is a
real-time embedded system that controls any entrance with a programmable electronic
lock installed. Two ways of control accesses are allowed: (a) registered users can be
authenticated locally at the entrance itself, and (b) guest users may obtain a remote au-
thentication through master acknowledgment. Here, a master could be the owner of the
building to which the entrance system is protecting and he or she can have mobile and
ubiquitous control access to EGSMUC. The master can grant entry access to the guest
user irrespective of how he or she is connected to EGSMUC (mobile access) and also
irrespective of where he or she is located (ubiquitous access). We will model EGSMUC
and VERTAF will automatically synthesize and verify the code for the system.

3.1 UML Modeling

Three UML [9] diagrams are extended for real-time embedded software specification
as follows.

– Class Diagrams with Deployment: A deployment relation is used for specifying a
hardware object on which a software object is deployed. Two types of methods:
event-triggered and time-triggered are used for modeling real-time behavior.
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Fig. 1. Design and Verification Flow of VERTAF

– Timed Statecharts: UML statecharts are extended with real-time clocks that can be
reset and values checked as state transition triggers.

– Extended Sequence Diagrams: UML sequence diagrams are extended with control
structures such as concurrency, conflict, and composition, which aid in formalizing
their semantics and in mapping them to Petri net models for scheduling.

For our running EGSMUC example, the system class diagram with deployment is
shown in Figure 2. Other diagrams are omitted due to page limit.

3.2 Real-Time Embedded Software Scheduling

There are two issues in real-time embedded software scheduling, namely how are mem-
ory constraints satisfied and how are temporal specifications such as deadlines satisfied.
Based on whether the system under design has an RTOS specified or not, two different
scheduling algorithms are applied to solve the above two issues.
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Fig. 2. Class Diagram with Deployment for Entrance Guard System with Mobile and Ubiquitous
Control

– Without RTOS: Quasi-dynamic scheduling (QDS) [5] is applied, which requires
Real-Time Petri Nets (RTPN) as system specification models. QDS prepares the
system to be generated as a single real-time executive kernel with a scheduler.

– With RTOS: Extended quasi-static scheduling (EQSS) [19] with real-time schedul-
ing [20] is applied, which requires Complex Choice Petri Nets (CCPN) and set
of independent real-time tasks as system specification models, respectively. EQSS
prepares the system to be generated as a set of multiple threads that can be sched-
uled and dispatched by a supported RTOS such as MicroC/OS II or ARM Linux.

To apply the above scheduling algorithms, we need to map the user-specified UML
models into Petri nets, RTPN or CCPN, which are generated automatically from user-
specified UML sequence diagrams, through a case-by-case construction. It is out-of-
scope here. The set of RTPN or CCPN is then input to QDS or EQSS, respectively, for
scheduling. Details on the scheduling procedures can be found in [5], and [19].

For systems without RTOS, we need to automatically generate a scheduler that con-
trols the system according to the set of transition sequences generated by QDS. In
VERTAF, a scheduler is constructed as a separate class that observes and controls the
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status of each object in the system. Temporal constraints are monitored by the scheduler
class using a global clock.

For our running EGSMUC example, a single Petri net is generated from the user-
specified set of statecharts, which is then scheduled using QDS. In this example,
scheduling is required only for the timers associated with the actuator, the controller,
and the input object. After QDS, we found that EGSMUC is schedulable.

3.3 Formal Verification

VERTAF employs the popular model checking paradigm for formal verification of real-
time embedded software. In VERTAF, formal ETA models are generated automatically
from user-specified UML models by a flattening scheme that transforms each state-
chart into a set of one or more ETA, which are merged, along with the scheduler ETA
generated in the scheduling phase, into a state-graph. The verification kernel used in
VERTAF is adapted from State Graph Manipulators (SGM) [8], which is a high-level
model checker for real-time systems that operate on state-graph representations of sys-
tem behavior through manipulators, including a state-graph merger, several state-space
reduction techniques, a dead state checker, and a TCTL model checker. There are two
classes of system properties that can be verified in VERTAF: (1) system-defined prop-
erties including dead states, deadlocks, livelocks, and syntactical errors, and (2) user-
defined properties specified in the Object Constraint Language (OCL) as defined by
OMG in its UML specifications. All of these properties are automatically translated
into TCTL specifications for verification by SGM.

For our running EGSMUC example, the ETA for each statechart were generated
and then merged with the scheduler ETA. There are seven other ETA in this system
example. All ETA were input to SGM and AGR was applied. Reduction techniques
were then applied to each state-graph obtained from AGR. OCL constraints were then
translated into TCTL and verified by the SGM model checker kernel.

3.4 Component Mapping

This is the first phase in the back-end design of VERTAF and starts to be more hard-
ware dependent. All hardware classes specified in the deployments of the class diagram
are those supported by VERTAF and thus belong to some existing class libraries. The
component mapping phase then becomes simply the configuration of the hardware sys-
tem and operating system through the automatic generation of configuration files, make
files, header files, and dependency files. The corresponding hardware class API will be
linked in during compilation.

An issue in this phase is the possible conflicts among hardware devices specified in
a class diagram such as interrupts, memory address ranges, I/O ports, and bus-related
characteristics such as device priorities. Users are warned in this case.

3.5 Code Generation

There are basically three issues in this phase including hardware portability, software
portability, and temporal correctness. We adopt a multi-tier approach for code genera-
tion: an operating system layer, a middleware layer, and an application with scheduler
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Fig. 3. I/O Delegation, Invocation, and Polling

layer, which solves the above three issues, respectively. Currently supported underlying
hardware platforms include dual core ARM-DSP based, single core ARM, StrongARM,
or 8051 based, and Lego RCX-based Mindstorm systems. For hardware abstraction,
VERTAF supports MicroHAL and the embedded version of POSIX. For operating sys-
tems, VERTAF supports MontaVista Linux, MicroC/OS, Embedded Linux, and eCOS.
For middleware, VERTAF is currently based on the Quantum Framework [7]. For
scheduler, VERTAF creates a custom ActiveObject according to the Quantum API. In-
cluded in the scheduler is a temporal monitor that checks if any temporal constraints
are violated.

Each ETA that is generated either from UML statecharts or from the scheduled Petri
nets (sequence diagrams) is implemented as an ActiveObject in the Quantum Framework.
The user-defined classes along with data and methods are incorporated into the corre-
sponding ActiveObject. The final program is a set of concurrent threads, one of which is
a scheduler that can control the other objects by sending messages to them after observing
their states. For systems without an OS, the scheduler acts as a real-time executive kernel.

During code generation and the validation of automatically generated code, we dis-
covered a peculiar problem as described in the following. UML statecharts have run-to-
completion (RTC) semantics, that is, all actions within a state will complete execution,
even if a new event or signal is received, before transiting to another state. However, in
real-time embedded systems, I/O actions are usually infinite loops that poll hardware
devices for data. If such I/O related high-latency low-priority events are modeled into a
statechart with user-defined low-latency high-priority events, then due to RTC seman-
tics a class object will deadlock during execution if there is no data from an I/O device
that is polled. High-priority events cannot be handled. We observed this problem after
code was automatically generated for our running EGSMUC example. As solutions,
three methods are proposed for synthesizing the I/O interface between a user class and
an I/O device. The methods are illustrated in Figure 3 and described as follows.

1. I/O Delegation: The deadlock can be removed from a user-defined statechart by
introducing an additional statechart, as shown in the leftmost part of Figure 3, which
has only one state and one self-loop transition. I/O devices are polled in that state
and whenever data is available, an event or signal is broadcast. This statechart never
receives any events or signals from other statecharts. The original statechart only
waits for events from this statechart. However, while waiting, it can also handle
high-priority low-latency events. Thus, there is no deadlock and the RTC semantics
is also not violated.
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Table 1. Mapping Devices and I/O Handling Mechanisms

I/O Device OS support
Type Interrupt Buffer AIO BIO NBIO
WI Yes Yes D, I D D, P
WB No Yes N/A D D, P
NB No No N/A D D, P

AIO: Asynchronous I/O, BIO: Blocking I/O, NBIO: Non-Blocking I/O,

WI: With Interrupt, WB: With Buffering, NB: No Buffering, D: Delegation, I: Invocation, P: Polling.

2. I/O Invocation: If the operating system supports asynchronous I/O operations,
the infinite polling loops can be replaced by invoking asynchronous I/O opera-
tions through system calls, as shown in the middle part of Figure 3. After invoking
an asynchronous I/O operation, the statechart can continue with other operations.
When an I/O device has finished an invoked I/O operation, it interrupts the pro-
cessor. The corresponding interrrupt handler then broadcasts an event, which is
received by the original system statechart.

3. I/O Polling: This approach assumes that the I/O data will be stored in a fixed
memory location such as the buffers in a hardware controller or OS. We can use
a timer to poll the I/O device periodically instead of polling it in infinite loops, as
shown in the rightmost part of Figure 3. Thus, the statechart will not be blocked in
an infinite loop and can handle other events or signals between two timer periods.

One of the above proposed methods can be selected for automatic interface synthesis
during code generation by identifying the type of I/O device. In general, I/O devices can
be classified into three types: (1) WI: with buffering and interrupt support, (2) WB: with
buffering but no interrupt support, and (3) NB: with neither buffering nor interrupt sup-
port. Examples include hard disk drives with interrupt support, infra-red remote controller
with only buffering and no interrupt, and touch or light sensors with neither buffering nor
interrupt support. The I/O delegation, invocation, and polling methods that are applica-
ble for the three types of devices are given in Table 1 under different conditions of OS
support. Normally, an OS might support asynchronous I/O (AIO), blocking I/O (BIO),
and non-blocking I/O (NBIO). Table 1 can be read as follows. For example, for an I/O
device of the WI type, if the OS supports only BIO, then only the I/O delegation method
can be used to synthesize the interface between that device and a user-defined statechart.

As observed from Table 1, the I/O delegation method is a universally applicable
method, except for cases where no interface is possible such as AIO with WB and with
NB devices. For our running EGSMUC example, the interfaces for infra-red remote
controller, for the network adaptor, and for the keypad were all synthesized using the
I/O delegation method. We also implemented the I/O invocation and polling methods
for the network adaptor, which is of the WI type. All three implementations for the
network adaptor were functionally equivalent, except for performance differences.

For our running example, the final application code consisted of 9 activeobjects de-
rived from the statecharts and 1 activeobject representing the scheduler. Makefiles were
generated for linking in the API of the 8 hardware classes and configuration files were
generated for the ARM-DSP dual microprocessor platform called DaVinci from Texas
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Instruments with MontaVista Linux as its operating system on the ARM processor and
DSP/BIOS real-time kernel as the operating system on the DSP TMS6646DSP proces-
sor. There were totally 2,340 lines of C code for the full EGSMUC system, out of which
the system designers had to write only around 263 lines of C code, which is only 11.2%
of the full system code.

4 Analysis and Evaluation

For the running example EGSMUC, we now analyze why VERTAF is capable of gener-
ating a significant part of the system implementation code, thus alleviating the designer
from the tedious and error-prone task of manual coding. Due to its application frame-
work architecture, VERTAF supports software components that are commonly found
in mobile, ubiquitous, real-time, and embedded application domains. We classify the
components supported by VERTAF into the following.

– Storage and I/O Devices: This class includes all the storage and I/O devices that
are supported by VERTAF and required for implementing a real-time embedded
system. Examples from the EGSMUC system include FlashRom, Keypad, LCD,
Audio, LED, and Camera.

– Communication Interfaces: This class includes all the interface components that
allow connection with the external world, for example, wired and wireless net-
work connection, Bluetooth, and GSM/GPRS. Network adapter is an example from
EGSMUC system.

– Multimedia Processing: This class includes all the components providing API for
multimedia encoding and decoding through codecs specific to hardware platforms
such as the codecs provided by TI for DaVinci multimedia platform. The DSP class
in the EGSMUC system is an example.

– Control and Management Interfaces: This class includes all the components for
controlling and managing system components, such as the socket handler in the
EGSMUC example.

To implement mobile and ubiquitous control access in a real-time embedded system,
a user normally, without VERTAF, would have to install a web server, write multi-
media processing code, write network code, and integrate everything together, along
with application-specific context awareness or publish-subscribe middlewares. With
VERTAF, most of these tedious work are not required as long as the user configures
the correct components from the framework for use in his or her application.

For illustration purposes, we show how the Media Center class in the EGSMUC
example was implemented using VERTAF. The Media Center class is responsible for
getting acknowledgment from a mobile master ubiquitously, which means whenever a
guest wants to enter the building that the EGSMUC system is guarding, the Media Cen-
ter notifies the DSP class to use the Camera to capture an image of the guest and then
send the guest image to a master (the owner of the building or house). The master can
send an acknowledgment through the web after which the guest can enter the building.
A password is setup by a guest so that the guest can enter the building within the span
of time set by the master beforehand.
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The architecture of the code generated by VERTAF consists of three parts, namely
a web server, a QF activeobject, and an image processing interface. The web server
allows a master to connect to EGSMUC using a web browser that can run Java applets.
The applet opens a socket connection between the media center and the client machine
of the master. The image of the guest requesting entrance is captured and processed
through the image processing interface. When a master acknowledges, the guest is noti-
fied through the input class. The control and data flows of the media center are automat-
ically generated by VERTAF and the user has to merely specify the sequence diagrams
and deploy the related classes to hardware or software components in the class diagram
as shown in Figure 2. Hence, VERTAF can save a lot of coding and design efforts.

There were totally 18 objects in the final application generated by VERTAF, out
of which the user or designer had to only model 7 classes. The remaining 11 classes
included components from all the four categories as described at the start of Section
4. Empirical results obtained from comparing two different implementations of the
EGSMUC system, one using VERTAF, and one without using VERTAF, showed that
not only the user written code reduced to 11.2% and the number of objects reduced to
41%, but the total time required to develop the application also reduced by more than
60%. The average learning time for each designer using VERTAF was approximately
0.1 day. The experimental and empirical results all show that VERTAF is beneficial to
designers of real-time embedded software with mobile and ubiquitous control access.

By employing various construction guidelines for design and several reduction tech-
niques for verification as described in Section 3.3, VERTAF is scalable to large and
complex applications. Since VERTAF was constructed in a component-oriented way,
one can also easily extend its features by plug-and-play of new components. The flow
of VERTAF can also be easily modified to incorporate the changes.

5 Conclusions and Future Work

An object-oriented component-based application framework, called VERTAF, was pro-
posed for the development of real-time embedded system applications with mobile
and ubiquitous control access. It was a result of the integration of three different tech-
nologies: software component reuse, formal synthesis, and formal verification. Starting
from user-specified UML models, automation was provided in model transformations,
scheduling, verification, and code generation. VERTAF can be easily extended by inte-
grating new specification languages and scheduling algorithms.

Future extensions will include support for share-driven scheduling algorithms. VER-
TAF will be enhanced by considering more advanced features of real-time applications,
such as: network delay, network protocols, and on-line task scheduling. Performance re-
lated features such as context switch time and rate, external events handling, I/O timing,
mode changes, transient overloading, and setup time will also be incorporated.
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