
Computer Languages, Systems & Structures 34 (2008) 153–169
www.elsevier.com/locate/cl

Automatic synthesis and verification of real-time embedded
software for mobile and ubiquitous systems

Pao-Ann Hsiung∗, Shang-Wei Lin
Department of Computer Science and Information Engineering, National Chung-Cheng University, Chiayi, Taiwan, ROC

Received 15 November 2006; accepted 1 June 2007

Abstract

Currently available application frameworks that target the automatic design of real-time embedded software are poor in integrating
functional and non-functional requirements for mobile and ubiquitous systems. In this work, we present the internal architecture
and design flow of a newly proposed framework called Verifiable Embedded Real-Time Application Framework (VERTAF), which
integrates three techniques namely software component-based reuse, formal synthesis, and formal verification. Component reuse
is based on a formal unified modeling language (UML) real-time embedded object model. Formal synthesis employs quasi-static
and quasi-dynamic scheduling with multi-layer portable efficient code generation, which can output either real-time operating
systems (RTOS)-specific application code or automatically generated real-time executive with application code. Formal verification
integrates a model checker kernel from state graph manipulators (SGM), by adapting it for embedded software. The proposed
architecture for VERTAF is component-based which allows plug-and-play for the scheduler and the verifier. The architecture is also
easily extensible because reusable hardware and software design components can be added. Application examples developed using
VERTAF demonstrate significantly reduced relative design effort as compared to design without VERTAF, which also shows how
high-level reuse of software components combined with automatic synthesis and verification increases design productivity.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Application framework; Code generation; Real-time embedded software; Formal synthesis; Formal verification; Scheduling; Software
components; UML modeling

1. Introduction

With the proliferation of embedded mobile and ubiquitous systems in all aspects of human life, we are making greater
demands on these systems, including more complex functionalities such as pervasive computing, mobile computing,
embedded computing, and real-time computing. Currently, the design of real-time embedded software is supported
partially by modelers, code generators, analyzers, schedulers, and frameworks [1–21]. Nevertheless, the technology for a
completely integrated design and verification environment is still relatively immature. Furthermore, the methodologies
for design and for verification are also poorly integrated relying mainly on the experiences of embedded software
engineers. Motivated by the above status-quo, this work demonstrates how the integration of software engineering

∗ Corresponding author. Tel.: +886 5 2720411; fax: +886 5 2720859.
E-mail addresses: hpa@computer.org, pahsiung@cs.ccu.edu.tw (P.-A. Hsiung).

1477-8424/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cl.2007.06.002

http://www.elsevier.com/locate/cl
mailto:hpa@computer.org
mailto:pahsiung@cs.ccu.edu.tw

154 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

techniques such as software component reuse, formal software synthesis techniques such as scheduling and code
generation, and formal verification technique such as model checking can be realized in the form of an integrated
design environment targeted at the acceleration of real-time embedded software construction.

Mobile and ubiquitous systems involve the dynamic reconfiguration of applications in response to changes in their
environments. Middlewares such as network layer mobility support, transport layer mobility support, traditional dis-
tributed systems applied to mobility, middleware for wireless sensor networks, context awareness-based middleware,
and publish-subscribe middleware are required for efficient development of mobile and ubiquitous applications. A user
can develop an application using such middlewares, however, it can sometimes be too tedious and complex to consider
all the different possible environments and application features. Examples of environments include office and domestic
spaces, educational and healthcare institutions and in general urban and rural environments. Examples of applications
include domestic and industrial security applications, education and learning type applications, healthcare applications,
traffic management, commercial advertising, games and arts, and more extreme applications, such as applications for
rescue operations and the military. Given such complex combinations of environments and applications, one would
desire a higher level of reuse than that allowed by object-oriented design and middlewares. We are thus proposing an
integrated design framework that allows such higher level of reuse.

Several issues are encountered in the development of an integrated design framework. First and foremost, we need
to decide upon an architecture for the framework. Since our goal is to integrate reuse, synthesis, and verification,
we need to have greater control on how the final generated application will be structured, thus we have chosen to
implement it as an object-oriented application framework [22], which is a “semi-complete” application, where users
fill in application specific objects and functionalities. A major feature is “inversion of control”, that is the framework
decides on the control flow of the generated application, rather than the designer. Other issues encountered in architecting
an application framework for real-time embedded software are as follows.

1. To allow software component reuse, how do we define the syntax and semantics of a reusable component? How
can a designer uniformly and guidedly specify the requirements of a system to be designed? How can the existing
reusable components with the user-specified components be integrated into a feasible working system?

2. What is the control-data flow of the automatic design and verification process? When do we verify and when do we
schedule?

3. What kinds of model can be used for each design phase, such as scheduling and verification?
4. What methods are to be used for scheduling and for verification? How do we automate the process? What kinds of

abstraction are to be employed when system complexity is beyond our handling capabilities?
5. How do we generate portable code that not only crosses real-time operating systems (RTOS) but also hardware

platforms. What is the structure of the generated code?

Briefly, our solutions to the above issues can be summarized as follows.

1. Software component reuse and integration: A subset of the Unified Modeling Language (UML) [23] is used with
minimal restrictions for automatic design and analysis. Precise syntax and formal semantics are associated with
each kind of UML diagram. Guidelines are provided so that requirement specifications are more error-free and
synthesizable.

2. Control flow: A specific control flow is embedded within the framework, where scheduling is first performed and
then verification because the complexity of verification can be greatly reduced after scheduling [4].

3. System models: For scheduling, we use variants of Petri nets (PN) [6,7] and for verification, we use Extended Timed
Automata (ETA) [7,24], both of which are automatically generated from user-specified UML models that follow our
restrictions and guidelines.

4. Design automation: For synthesis, we employ quasi-static and quasi-dynamic scheduling methods [6,7] that gen-
erate program schedules for a single processor. For verification, we employ symbolic model checking [25–27] that
generates a counterexample in the original user-specified UML models whenever verification fails for a system
under design. The whole design process is automated through the automatic generation of respective input mod-
els, invocation of appropriate scheduling and verification kernels, and generating reports or useful diagnostics. For
handling complexity, abstraction is inevitable, thus we apply model-based, architecture-based, and function-based
abstractions during verification.

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 155

5. Portable efficient multi-layered code: For portability, a multi-layered approach is adopted in code generation. To
account for performance degradation due to multiple layers, system-specific optimization and flattening are then
applied to the portable code. System dependent and independent parts of the code are distinctly segregated for this
purpose.

In summary, this work illustrates how an application framework may integrate all the above proposed design and
verification solutions. Our implementation has resulted in a Verifiable Embedded Real-Time Application Framework
(VERTAF) whose features include formal modeling of real-time embedded systems through well-defined UML se-
mantics, formal synthesis that guarantees satisfaction of temporal as well as spatial constraints, formal verification
that checks if a system satisfies user-given properties or system-defined generic properties, and code generation that
produces efficient portable code.

The article is organized as follows. Section 2 describes the design and verification flow in VERTAF along with an
illustration example. Section 3 presents the experimental results of an application example. Section 4 gives the final
conclusions with some future work.

2. Design and verification flow in VERTAF

Before going into the component-based architecture of VERTAF, we first introduce the design and verification flow.
As shown in Fig. 1, VERTAF provides solutions to the various issues introduced in Section 1.

In Fig. 1, the control and data flows of VERTAF are represented by solid and dotted arrows, respectively. Software
synthesis is defined as a two-phase process: a machine-independent software construction phase and a machine-
dependent software implementation phase. This separation helps us to plug-in different target languages, middleware,
RTOSs, and hardware device configurations. We call the two phases as front-end and back-end phases. The front-end
phase is further divided into three sub-phases, namely UML modeling phase, real-time embedded software scheduling
phase, and formal verification phase. There are two sub-phases in the back-end phase, namely component mapping
phase and code generation phase. We will now present the details of each phase in the rest of this section illustrated
by a running example called Entrance Guard System with Mobile and Ubiquitous Control (EGSMUC). EGSMUC is
a real-time embedded system that controls any entrance with a programmable electronic lock installed. Two ways of
control accesses are allowed: (a) registered users can be authenticated locally at the entrance itself, and (b) guest users
may obtain a remote authentication through master acknowledgment. Here, a master could be the owner of the building
to which the entrance system is protecting and he or she can have mobile and ubiquitous control access to EGSMUC.
The master can grant entry access to the guest user irrespective of how he or she is connected to EGSMUC (mobile
access) and also irrespective of where he or she is located (ubiquitous access). We will model EGSMUC and VERTAF
will automatically synthesize and verify the code for the system.

2.1. UML modeling

UML [23] is one of the most popular modeling and design languages in the industry. It standardizes the diagrams
and symbols used to build a system model. After scrutiny of all diagrams in UML, we have chosen three diagrams
for a user to input as system specification models, namely class diagram, sequence diagram, and statechart. These
diagrams were chosen such that information redundancy in user specifications is minimized and at the same time
adequate expressiveness in user specifications is preserved. UML is a generic language and its specializations are
always required for targeting at any specific application domain. In VERTAF, the three UML diagrams are both
restricted as well as enhanced along with guidelines for designers to follow in specifying synthesizable and verifiable
system models (just as synthesizable HDL code for hardware designs).

The three UML diagrams extended for real-time embedded software specification are as follows.

• Class diagrams with deployment: A deployment relation is used for specifying a hardware object on which a software
object is deployed. There are two types of methods, namely event-triggered and time-triggered that are used to model
real-time behavior.

• Timed statecharts: UML statecharts are extended with real-time clocks that can be reset and values checked as state
transition triggers.

156 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

UML Model

Extended Timed
Automata

Generation

Real-Time
Petri-net Generation

Schedulable

Scheduler
Generation

Yes

No

No

Class Diagram
with

Deployments

Timed
Statecharts

Extended
Sequence
Diagrams

Display un-
schedulability
information

Display counter-
example in UML

model

Front End

Back End

Yes

Model Check

Specification
satisfied

Schedule

Component
Mapping

Code Generation

Embedded
Real-Time
Software

Fig. 1. Design and verification flow of VERTAF.

• Extended sequence diagrams: UML sequence diagrams are extended with control structures such as concurrency,
conflict, and composition, which aid in formalizing their semantics and in mapping them to formal PN models that
are used for scheduling.

For our running EGSMUC example, the system class diagram with deployment is shown in Fig. 2, a timed statechart
for the system controller class is shown in Fig. 3, and an extended sequence diagram for one of the use cases dealing
with guest entry and master acknowledgment is shown in Fig. 4.

UML is well known for its informal and general-purpose semantics. The enhancements described above are an
effort at formalizing semantics preciseness such that there is little ambiguity in user-specified models that are input to

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 157

Input

CheckerDBMS

Display

Controller

-GetData1

-SendData1

-GetResult1

-SendResult1

Actuator

1

-Control1

-Display

1

1

1

-SendData 1

+reset() : bool
+init() : bool
+write() : bool
+clear() : bool

LCD

+reset() : bool
+init() : bool
+read() : int

Keypad

+reset() : bool
+init() : bool
+write() : bool

LED

+reset() : bool
+init() : bool
+soundAlarm() : bool
+stop() : bool
+read() : unsigned char*
+write() : bool

Audio

1

-DisplayData1

-control

11-control

1 1

1
1

11

+reset() : bool
+init() : bool
+read() : unsigned char*
+write() : bool

FlashRom

1

1

1

1

1

1

1

1

1

1

MediaCenter

GetData

SendData

+ImgEncode()
+ImgDecode()
+VidEncode()
+VidDecode()

DSP

1

1

+reset() : bool
+init() : bool

Network Adapter

1

1

Web Server

1

1

-GetData1

-SendData1

Camera

1

1

Fig. 2. Class diagram with deployment for Entrance Guard System with Mobile and Ubiquitous Control.

VERTAF. Furthermore, design guidelines are provided to a user such that the goal of correct-by-construction can be
achieved. Typical guidelines are given here.

• Hardware deployments are desirable as they reflect the system architecture in which the generated real-time embedded
software will execute and thus generated code will adhere to designer intent more precisely.

• If the behavior of an object cannot be represented by a simple statechart that has no more than four levels of hierarchy,
then decompose the object.

• To maximize flexibility, a sequence diagram can represent one or more use-case scenarios. Overlapping behavior
among scenarios often results in significant redundancy in sequence diagrams, hence either control structures may

158 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

Record

Read

[result == PWD_ERROR
&& ~ALARM_ON

]

[Error_count < MAX_ERROR] / Controller_Send_Input_SIG

Open_Door

[result == PWD_OK
&& ~ALARM_ON]

Show_MSG

Checker_Send_Controller_SIG

[result == ID_ERROR
&& ~ALARM_ON] / Controller_Send_Input_SIG

Start_Alarm

/ Controller_Send_Input_SIG

Close_Door
after: Door_TO

/ Controller_Send_Input_SIG

[Error_conut
>= MAX_ERROR]

[result == supervisor]

Stop_Alarm

Control

Selection

[ALARM_ON
&&

select == 1]
Request_ID

[select == 2 && ~ALARM_ON]

Read_PW

Store

after: Selection_TO

[(ALARM_ON && select == 2) || (~ALARM_ON && select == 1)]

[ALARM_ON
&& result != supervisor] / Controller_Send_Input_SIG

Select:
1. Stop alarm
2. Create a new ID
3. Exit

Clear

/ Controller_Send_Input_SIG

[select==3]

Fig. 3. Timed statechart for controller in Entrance Guard System with Mobile and Ubiquitous Control.

be used in a sequence diagram or a set of non-overlapping sequence diagrams may be inter-related with precedence
constraints.

• Ensure the logical correctness of the relationships between class diagram and statecharts and between statecharts
and sequence diagrams. The former relationship is represented by actions and events in statecharts that correspond
to object methods in class diagram. The latter relationship is represented by state-markers in sequence diagrams that
correspond to statechart states.

The set of UML diagrams input by a user, including a class diagram with deployments, a timed statechart correspond-
ing to each class, and a set of extended sequence diagrams, constitutes the requirements for the real-time embedded
software to be designed and verified by VERTAF. The formal definition of a system model is as follows.

Definition 1 (Real-time embedded software system model). Given a class diagram Dclass = 〈C, �〉, a statechart
Dschart (c) = 〈Q, q0, �〉 for each class c in C, and a set of sequence diagrams {Dseq |Dseq = 〈C′, M〉, C′ ⊆ C},

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 159

Top Package::GUEST

Input

Idle

Init

Push Call Bell

Checker

CallBellMode

sendChecker(pwd)

DBMS

sendDBMS(pwd)

MediaCenter

sendChecker(result)

ModifyGuestPWD

sendInput(result)

WaitMaster

sendMediaCenter(request)

sendImage

MasterOK
sendInput(result)

SendChecker
Modify

Top Package::Master

AskMaster

SIG_MasterAgree

Idle

Display

*[4] : SendByte(' * ')

[Input_TO] : Modify_TIMEOUT

{TIMEOUT < Input_TO}

Fig. 4. An extended sequence diagram for Entrance Guard System with Mobile and Ubiquitous Control.

where C is a set of classes, � is the mapping for inter-class relationships and deployments, Q is a set of states, q0 is
an initial state, � is a transition relation between states, and M is a set of messages, a real-time embedded software
system S is defined as a set of objects as specified in Dclass , the behavior of which is represented by the individual
statecharts Dschart (c), and which interact with each other by sending/receiving messages m ∈ M as specified in the
set of sequence diagrams {Dseq}. A formal behavior model of the system S is defined as the parallel composition of
the set of statecharts along with the behavior represented by the sequence diagrams. Notationally, Dschart (c0) × · · · ×
Dschart (c|C|)×B(D1

seq , . . . , Dk
seq) denotes the system behavior semantics, where B is the scheduler ETA as formalized

in Section 2.2.

2.2. Real-time embedded software scheduling

There are two issues in real-time embedded software scheduling, namely how are memory constraints satisfied and
how are temporal specifications such as deadlines satisfied. Based on whether the system under design has an RTOS
specified or not, two different scheduling algorithms are applied to solve the above two issues.

160 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

• Without RTOS: Quasi-dynamic scheduling (QDS) [6,7] is applied, which requires Real-Time Petri Nets (RTPN) as
system specification models. QDS prepares the system to be generated as a single real-time executive kernel with a
scheduler.

• With RTOS: Extended quasi-static scheduling (EQSS) [28] with real-time scheduling [29] is applied, which requires
Complex Choice Petri Nets (CCPN) and set of independent real-time tasks as system specification models, respec-
tively. EQSS prepares the system to be generated as a set of multiple threads that can be scheduled and dispatched
by a supported RTOS such as MicroC/OS II or ARM Linux.

In order to apply the above scheduling algorithms, we need to map the user-specified UML models into PN,
RTPN, or CCPN. RTPN enhances the standard PN with code execution characteristics associated with transitions.
Given a standard PN N = 〈P, T , �〉, where P is a set of places, T is a set of transitions, and � is a weighted
flow relation between places and transitions, NR = 〈N, �, �〉 is an RTPN, where � maps a transition t to its worst-
case execution time �t and deadline �t and � is the period for NR . CCPN allows non-free choices at transitions
[28], but does not allow the computations from a branch place to synchronize at some later place. Further, CCPN
only allows a loop that has at least a single token in some place along the loop. These restrictions imposed by
CCPN also apply to RTPN and are set mainly for synthesizability. Here, we briefly describe how RTPN and
CCPN models are generated automatically from user-specified UML sequence diagrams, through a case-by-case
construction.

1. A message in a sequence diagram is mapped to a set of PN nodes, including an incoming arc, a transition, an outgoing
arc, and a place. If it is an initial message, no incoming arc is generated. If a message has a guard, the guard is
associated to the incoming arc.

2. For each set of concurrent messages in a sequence diagram, a fork transition is first generated, which is then connected
to a set of places that lead to a set of message mappings as described in Step (1) above.

3. If messages are sent in a loop, the PNs corresponding to the messages in the loop are generated as described in Step
(1) and connected in the given sequential order of the messages. The place in the mapping of the last message is
identified with the place in the mapping of a message that precedes the loop, if any. This is called a branch place. The
loop iteration guard is associated with the incoming arc of the first message in the loop, which is also an outgoing
arc of the branch place. Another outgoing arc of the branch place points to a transition outside the loop, which
corresponds to the message that succeeds the loop.

4. Different sequence diagrams are translated to different PNs. If a PN has an ending transition which is the same as
the initial transition of another PN, they are concatenated by merging the common transition.

5. Sequence diagrams that are inter-related by precedence constraints are first translated individually into independent
PNs, which are then combined with a connecting place, that may act as a branch place when several sequence
diagrams have a similar precedent.

6. An ending transition is appended to each generated PN because otherwise there will be tokens that are never consumed
resulting in infeasible scheduling.

By applying the above mapping procedure, all user-specified sequence diagrams are translated and combined into
a compact set of PNs. All kinds of temporal constraints that appear in the sequence diagrams such as time-out, time
interval between two events (sending and receiving of messages), periods and deadlines associated with a message,
and timing guards on messages are translated into guard constraints on arcs in the generated PNs. This set of RTPN
or CCPN is then input to QDS or EQSS, respectively, for scheduling. Details on the scheduling procedures can be
found in [6,7], and [28]. The basic strategy is to decompose each PN into conflict-free components that are scheduled
individually for satisfaction of memory constraints. A conflict-free component is a reduction of a PN into one without
any branch place. This is EQSS. QDS applies EQSS first and then because the resulting memory satisfying schedules
may have some sequencing flexibilities, they are taken advantage of for satisfaction of temporal constraints. Finally,
we have a set of feasible schedules, each of which corresponds to a particular behavior configuration of the system. A
behavior configuration of a system is a feasible computation that results from the concurrent behaviors of the conflict-
free components of its constituent PNs. For example, a system with two PNs, N1 and N2, which have two conflict-free
components each, namely N11, N12, and N21, N22, can have totally at most four different behavior configurations:
N11‖N21, N12‖N21, N11‖N22, and N12‖N22.

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 161

For systems without RTOS, we need to automatically generate a scheduler that controls the system according to the
set of transition sequences generated by QDS. In VERTAF, a scheduler is constructed as a separate class that observes
and controls the status of each object in the system. Temporal constraints are monitored by the scheduler class using
a global clock. Further, for verification purposes, an extended timed automaton is also generated by following the set
of transition sequences. For uniformity, this scheduler automaton can be viewed as a timed statechart for the generated
scheduler class and thus the scheduler is just another object in the system. Code generation becomes a lot easier with
this uniformity.

For our running EGSMUC example, as shown in Fig. 5, a single PN is generated from the user-specified set of
statecharts, which is then scheduled using QDS. In this example, scheduling is required only for the timers associated
with the actuator, the controller, and the input object. After QDS, we found that EGSMUC is schedulable.

2.3. Formal verification

VERTAF employs the popular model checking paradigm for formal verification of real-time embedded software. In
VERTAF, formal ETA models are generated automatically from user-specified UML models by a flattening scheme
that transforms each statechart into a set of one or more ETA, which are merged, along with the scheduler ETA
generated in the scheduling phase, into a state-graph. The verification kernel used in VERTAF is adapted from State
Graph Manipulators (SGM) [20], which is a high-level model checker for real-time systems that operate on state-
graph representations of system behavior through manipulators, including a state-graph merger, several state-space
reduction techniques, a dead state checker, and a TCTL model checker. There are two classes of system properties that
can be verified in VERTAF: (1) system-defined properties including dead states, deadlocks, livelocks, and syntactical
errors, and (2) user-defined properties specified in the Object Constraint Language (OCL) as defined by OMG in
its UML specifications. All of these properties are automatically translated into TCTL specifications for verification
by SGM.

Automation in formal verification of user-specified UML models of real-time embedded software is achieved in
VERTAF by the following implementation mechanisms.

1. User-specified timed statecharts are automatically mapped to a set of ETA.
2. User-specified extended sequence diagrams are automatically mapped to a set of PN that are scheduled and then a

scheduler ETA is automatically generated.
3. Using the state-graph merge manipulator in SGM, all the ETA resulting from the above two steps are merged into a

single state-graph representing the global system behavior.
4. User-specified OCL properties and system-defined properties are automatically translated into TCTL specification

formulas.
5. The system state-graph and the TCTL formulas obtained in the previous two steps are then input to SGM for model

checking.
6. When a property is not satisfied, SGM generates a counterexample, which is then automatically translated into a

UML sequence diagram representing an erratic trace behavior of the system. This approach provides a seamless
interface to VERTAF users such that the formal models are all hidden and the users need to interact only with what
they have specified in UML models.

Design complexity is a major issue in formal verification, which leads to unmanageable and exponentially large
state-spaces. Both engineering paradigms and scientific techniques are applied in VERTAF to handle the state-space
size explosion issue. The applied techniques include the following.

• Model construction guidelines: The kind of specification models that a designer inputs to any tool always has a great
effect on how the tool performs, thus guidelines aid designers to get the most out of a tool. Some typical guidelines
that a VERTAF user is suggested to follow are:

1. reuse existing components as much as possible,
2. maximize the explicit definition of all hardware deployments in the class diagram,
3. a class should have only one statechart representing its behavior,
4. a statechart should have no more than four levels of hierarchy,
5. make explicit the relations among all sequence diagrams,

162 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

Push Button Send Byte (id)

[TIMEOUT == Input_TO]

Send_Display(Enter Password) Send_DBMS(id)Send_Checker(pw) Send_Controller(id,result)

End1ClearDisplay

Send_Display(Enter ID)

4

sendMediaCenter(request)

sendChecker(pwd) sendDBMS(pwd)

[TIMEOUT == AskMaster_TO]

ClearDisplay End2

[TIMEOUT == Input_TO]

4

Send_Display(Enter GUESt PWD)

4

Send_Controller(id,result) Send_Actuator(open_msg) End3

[result == PWD_OK]

Send_Display(open_msg)

[result == ID_ERROR]

[err_count >=

MAX_ERROR]

Send_Display(ID_err_msg) End4

Send_Display(PWD_err_msg2) End6

[select==1]
Send_Display(alarm_close_msg)

Send_Actuator(sound_alarm)
End8

Send_Actuator(stop_alarm)

[result == PWD_ERROR

&& err_id == send_id]

[TIMEOUT ==
Door_TO]

Send_Actuator(close_sig) End2

[result==PWD_ERROR &&

err_id != send_id]

Send_Display(PWD_err_msg1) End5

End7
Send_Actuator(stop_alarm)

[TIMEOUT ==
Alarm_TO]

[select==2]
Send_DBMS(store_msg)

Send_Display(create_new account_msg)

Send_Display(selection_msg)

Send_DBMS(request_ID_msg) Send_Controller(ID) return

[select==3]

ClearDisplay

End10ClearDisplay

[TIMEOUT ==

Selection_TO]

Send_Display(PWD_err_msg1)

[result ==
supervisor]

 err_count <

MAX_ERROR

Send_Input

Send_Input

Send_Input

Send_Input

Send_Input

Send_Input

Send_Input

Fig. 5. Petri net for Entrance Guard System with Mobile and Ubiquitous Control.

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 163

6. both event-triggered and time-triggered methods in each class should appear somewhere in its statechart or
sequence diagram.

• Architectural abstractions: An assume-guarantee reasoning (AGR) based approach is adopted, whereby a complex
verification task of a system is broken down into several smaller verification tasks of constituent subsystems. The
theory of AGR is beyond scope here, but details can be found in [30,31]. For the purpose of automation, we have
proposed and implemented the automatic generation of assumptions and guarantees for each ETA based on their
interface traces, which are then verified individually [5]. This divide and conquer approach overcomes the exponential
state-space size issue to a significant extent. The benefit of AGR becomes limited when we are trying to verify
properties that cross-cut the entire system. Thus, VERTAF users are suggested to decompose their properties into
several smaller parts. The formal verification of component-based software is made feasible through the hierarchical
decomposition of system properties into sub-properties for each software component [19]. Related issues such as
memory reference, object reference, and reentrance [32] are handled using a call-graph which records all component
invocations.

• Functional abstractions: The smaller tasks of verifying each module obtained in the architectural abstraction step
is further simplified through a series of user-guided functional abstractions, including communication abstraction
(communication methods such as protocols are individually verified), bit-width abstraction (instead of a 32-bit wide
bus, a 1-bit or 2-bits abstract model is used), transactor models (an abstract model of other components in the system is
used to verify a specific functionally detailed component), transaction-level verification (both hardware and software
signals are abstracted), and assertion-based verification (only interface assertions are verified).

• State-space reductions: Several of the state-space reduction manipulators provided by SGM have been either directly
applied to the ETA models generated in VERTAF or modified for adaptation to embedded systems. Since the scope
here does not allow us to go into details of the reduction techniques, we merely list the techniques available and
refer designers to related work [20]. The techniques applicable are: read-write reduction, discrete variable hiding
reduction, clock shielding reduction, internal transition bypassing, and timed symmetry reduction.

The above abstraction techniques are applied to a user-specified UML model as follows. While constructing the
UML models, users not following the guidelines are warned of the possible intricacies. Upon completion of model
construction, first PN models are generated, which are then scheduled to produce feasible system schedules that are
represented by a scheduler ETA. Then, for each ETA generated from the statecharts, its assumptions and guarantees
are generated. The guarantees of an ETA are verified by first merging the ETA with functional abstractions of the other
ETA in the system and then reducing the state-spaces of the merged state-graph using SGM reduction manipulators.
We can see that not only is verification automated but abstraction techniques such as AGR and state-space reductions
are also automatically performed, which makes VERTAF scalable to large applications.

For our running EGSMUC example, the ETA for each statechart were generated and then merged with the scheduler
ETA. For illustration, we show in Fig. 6 the ETA that is generated by VERTAF corresponding to the controller
statechart of Fig. 3. There are seven other ETA in this system example. All ETA were input to SGM and AGR was
applied. Reduction techniques were then applied to each state-graph obtained from AGR. OCL constraints were then
translated into TCTL and verified by the SGM model checker kernel.

2.4. Component mapping

This is the first phase in the back-end design of VERTAF and starts to be more hardware dependent. All hardware
classes specified in the deployments of the class diagram are those supported by VERTAF and thus belong to some
existing class libraries. The component mapping phase then becomes simply the configuration of the hardware system
and operating system through the automatic generation of configuration files, make files, header files, and dependency
files. The corresponding hardware class API will be linked in during compilation.

The main issue in this phase occurs when a software class is not deployed on any hardware component or not
deployed on any specific hardware device type, for example, the type of microcontroller to be used is not specified.
Currently, VERTAF adopts an interactive approach whereby the designer is warned of this lack of information and
he/she is requested to choose from a list of available compatible device types for the deployment. An automatic solution
to this issue is not feasible because estimates are not easy without further information about the non-deployed software
classes.

164 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

Controller

(Controll
er_Init)

Control_
Stop_
Alarm

Record

Start_
Alarm

Close_
Door

Open_
Door

Show_
MSG

Read

Checker_Send_
Controller_SIG

result==PWD_OK &&
~ALARM_ON,DoorTimer:=0

DoorTimer ==Door_TO

result==PWD_ERROR
&& ~ALARM_ON

error_count>=
MAX_ERROT

Error_count <
MAX_ERROR,

Controller_Send_
Input_SIG

, Controller_Send
_Input_SIG

Control_
Init

, Controller_Send
_Input_SIG

result==ID_ERROR
&& ~ALARM_ON,

Controller_Send_
Input_SIG

, Controller_Send_Input_SIG;
AlarmTimer := 0

Controller
Stop
Alarm

Selectio
n

Request
_ID

Read_P
W

Store

Clear

select==2 &&
~ALARM_ON

select==2) ll

(ALARM_ON

, Controller_Send_Input_SIG

ALARM_ON
&& select==1

State==Read

State==Control_Stop_Alarm

State==Selection

ALARM_ON
&&

result!=supervisor,
Controller_Send_

Input_SIG
select==3

ALARM_ON&&
AlarmTimer==Alarm_TO, State:=Show_MSG

ALARM_ON&&
AlarmTimer==Alarm_TO,

State:=Read

ALARM_ON&& AlarmTimer==Alarm_TO, State:=Control_Stop_Alarm

ALARM_ON&& AlarmTimer==Alarm_TO, State:=Selection

State==Show_MSG

result==supervisor,
SelectionTimer:=0

Checker_Send_
Controller_SIG

&&

select==1)

(~ALARM_ON
&&

Fig. 6. ETA for controller in Entrance Guard System with Mobile and Ubiquitous Control.

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 165

Hardware Platform

(TI DaVinci)

Processor : ARM9

MontaVista Linux

(OS)

Quantum Framework

(Middleware)

Scheduler Application

Hardware Platform

(TI DaVinci)

DSP : TMS6646DSP

DSP/BIOS

Real-time Kernel

Fig. 7. Multi-tier code architecture.

Another issue in this phase is the possible conflicts among hardware devices specified in a class diagram such as
interrupts, memory address ranges, I/O ports, and bus-related characteristics such as device priorities. Users are also
warned in case of such conflicts.

For our running EGSMUC example, all software classes in the class diagram given in Fig. 2 are deployed on one or
more hardware or software classes supported by VERTAF.

2.5. Code generation

There are basically three issues in this phase including hardware portability, software portability, and temporal
correctness. We adopt a multi-tier approach for code generation: an operating system layer, a middleware layer, and
an application with scheduler layer, which solves the above three issues, respectively. Currently supported underlying
hardware platforms include dual core ARM-DSP based, single core ARM, StrongARM, or 8051 based, and Lego
RCX-based Mindstorm systems. For hardware abstraction, VERTAF supports MicroHAL and the embedded version
of POSIX. For operating systems, VERTAF supports MontaVista Linux, MicroC/OS, Embedded Linux, and eCOS. For
middleware, VERTAF is currently based on the Quantum Framework [13]. For scheduler, VERTAF creates a custom
ActiveObject according to the Quantum API. Included in the scheduler is a temporal monitor that checks if any temporal
constraints are violated. A sample configuration is shown in Fig. 7, where the multi-tier approach decouples application
code from the operating system through the middleware and from the hardware platform through the operating system
layer.

Each ETA that is generated either from UML statecharts or from the scheduled PN (sequence diagrams) is imple-
mented as an ActiveObject in the Quantum Framework. The user-defined classes along with data and methods are
incorporated into the corresponding ActiveObject. The final program is a set of concurrent threads, one of which is
a scheduler that can control the other objects by sending messages to them after observing their states. For systems
without an OS, the scheduler also takes the role of a real-time executive kernel.

For our running example, the final application code consisted of seven ActiveObjects derived from the statecharts
and one ActiveObject representing the scheduler. Makefiles were generated for linking in the API of the eight hardware
classes and configuration files were generated for the ARM-DSP dual microprocessor platform called DaVinci from
Texas Instruments with MontaVista Linux as its operating system on the ARM processor and DSP/BIOS real-time
kernel as the operating system on the DSP TMS6646DSP processor. There were totally 2754 lines of C code for the
full EGSMUC system, out of which the system designers had to write only around 170 lines of C code, which is only
6.2% of the full system code.

3. Analysis and evaluation

For the running example EGSMUC, we now analyze why VERTAF is capable of generating a significant part of
the system implementation code, thus alleviating the designer from the tedious and error-prone task of manual coding.

166 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

Guest Entry
Request

Master Ack

Media

Center

Master (Web Browser)

Httpd
(Web Server)

Socket

Web Page /
Java Applet

Message /
Image Streaming

QF ActiveObject

Image Processing Interface

Input

Camera DSP

Image
capturing

Image
processing

Fig. 8. Code structure for media center in EGSMUC.

Due to its application framework architecture, VERTAF supports software components that are commonly found in
mobile, ubiquitous, real-time, and embedded application domains. We classify the components supported by VERTAF
into the following.

• Storage and I/O devices: This class includes all the storage and I/O devices that are supported by VERTAF and
required for implementing a real-time embedded system. Examples from the EGSMUC system include FlashRom,
Keypad, LCD, Audio, LED, and Camera.

• Communication interfaces: This class includes all the interface components that allow connection with the external
world, for example, wired and wireless network connection, Bluetooth, and GSM/GPRS. Network adapter is an
example from EGSMUC system.

• Multimedia processing: This class includes all the components providing API for multimedia encoding and decoding
through codecs specific to hardware platforms such as the codecs provided by TI for DaVinci multimedia platform.
The DSP class in the EGSMUC system is an example.

• Control and management interfaces: This class includes all the components for controlling and managing system
components, such as the web server in the EGSMUC example.

To implement mobile and ubiquitous control access in a real-time embedded system, a user normally, without
VERTAF, would have to install a web server, write multimedia processing code, write network code, and integrate ev-
erything together, along with application-specific context awareness or publish-subscribe middlewares. With VERTAF,
most of these tedious work are not required as long as the user configures the correct components from the framework
for use in his or her application.

For illustration purposes, we show how the media center class in the EGSMUC example was implemented using
VERTAF. The media center class is responsible for getting acknowledgment from a mobile master ubiquitously, which
means whenever a guest wants to enter the building that the EGSMUC system is guarding, the media center notifies

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 167

Initialize Capture
Device

Open Codec Engine

Create Encode
Algorithm

Issue main thread
image initialized

Wait for camera to
capture the picture

Device error Get raw data from
camera buffer

Put raw data into
encode engine

Write image to disk

ErrorCount ≥ 3

Show error message

Close DSP engine

Close camera device

yes

Time out Done

no

Fig. 9. Flow chart for media center code in EGSMUC.

the DSP class to use the camera to capture an image of the guest and then send the guest image to a master (the owner
of the building or house). The master can send an acknowledgment through the web after which the guest can enter
the building. A password is setup by a guest so that the guest can enter the building within the span of time set by the
master beforehand.

Fig. 4 shows gave the sequence diagram that a user needs to specify in order for VERTAF to generate corresponding
code. The architecture of the code generated by VERTAF is shown in Fig. 8, where QF ActiveObject is an active
object from the Quantum Framework. The code consists of three parts, namely a web server, a QF ActiveObject, and
an image processing interface. The web server allows a master to connect to EGSMUC using a web browser that can
run Java applets. The applet opens a socket connection between the media center and the client machine of the master.
The image of the guest requesting entrance is captured and processed through the image processing interface. When a
master acknowledges, the guest is notified through the input class. The control and data flows of the media center are
automatically generated by VERTAF and the user has to merely specify the sequence diagrams as shown in Fig. 4 and
deploy the related classes to hardware or software components in the class diagram as shown in Fig. 2. This is exactly
the reason why VERTAF can save a lot of coding and design efforts.

168 P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169

Fig. 9 shows the detailed flow of image capture and processing as implemented in the TI DaVinci platform, which
has several image and video codecs. After a capture device is initialized, a required codec engine is opened and an
algorithm created to run on the DSP. The camera is initialized and if the camera times out for three times, an error
message is shown and the program exits. Otherwise, the raw data from the camera buffer is read, input to encode engine
and finally the image is written to disk. The DSP engine and the camera device are then closed.

There were totally 16 objects in the final application generated by VERTAF, out of which the user or designer had to
only model 7 classes. The remaining nine classes included components from all the four categories as described at the
start of Section 3. Empirical results obtained from comparing two different implementations of the EGSMUC system,
one using VERTAF, and one without using VERTAF, showed that not only the user written code reduced to 6.2% and
the number of objects reduced to 44%, but the total time required to develop the application also reduced by more than
60%. The average learning time for each designer using VERTAF was approximately 0.1 day. The experimental and
empirical results all show that VERTAF is beneficial to designers of real-time embedded software with mobile and
ubiquitous control access.

4. Conclusion

An object-oriented component-based application framework, called VERTAF, was proposed for the development of
real-time embedded system applications with mobile and ubiquitous control access. It was a result of the integration
of three different technologies: software component reuse, formal synthesis, and formal verification. Starting from
user-specified UML models, automation was provided in model transformations, scheduling, verification, and code
generation. VERTAF can be easily extended since new specification languages, scheduling algorithms, etc. can easily
be integrated into it. Future extensions will include support for share-driven scheduling algorithms. More applications
will also be developed using VERTAF. VERTAF will be enhanced in the future by considering more advanced features
of real-time applications, such as network delay, network protocols, and on-line task scheduling. Performance related
features such as context switch time and rate, external events handling, I/O timing, mode changes, transient overloading,
and setup time will also be incorporated into VERTAF in the future.

References

[1] Amnell T, Fersman E, Mokrushin L, Petterson P, Yi W. TIMES: a tool for schedulability analysis and code generation of real-time systems. In:
Proceedings of the 1st international workshop on formal modeling and analysis of timed systems (FORMATS), September 2003.

[2] Douglass BP. Doing hard time: developing real-time systems with UML, objects, frameworks, and patterns. Reading, MA, USA: Addison
Wesley Longman, Inc.; 1999.

[3] Hsiung PA. RTFrame: an object-oriented application framework for real-time applications. In: Proceedings of the 27th international conference
on technology of object-oriented languages and systems (TOOLS’98). Silver Spring: IEEE Computer Soc Press; September 1998. p. 138–47.

[4] Hsiung PA. Embedded software verification in hardware–software codesign. Journal of Systems Architecture—the Euromicro Journal
2000;46(15):1435–50.

[5] Hsiung PA, Cheng SY. Automating formal modular verification of asynchronous real-time embedded systems. In: Proceedings of the 16th
international conference on VLSI design (VLSI’2003). Silver Spring: IEEE Computer Soc Press; January 2003. p. 249–54.

[6] Hsiung PA, Lin CY. Synthesis of real-time embedded software with local and global deadlines. In: Proceedings of the 1st ACM/IEEE/IFIP
international conference on hardware–software codesign and system synthesis (CODES + ISSS’2003). New York: ACM Press; October 2003.
p. 114–9.

[7] Hsiung PA, Lin CY, Lee TY. Quasi-dynamic scheduling for the synthesis of real-time embedded software with local and global deadlines.
In: Proceedings of the 9th international conference on real-time and embedded computing systems and applications (RTCSA’2003). February
2003.

[8] Knapp A, Merz S, Rauh C. Model checking timed UML state machines and collaboration. Proceedings of the 7th international symposium
on formal techniques in real-time and fault-tolerant systems. Lecture notes in computer science, vol. 2469. Berlin: Springer; September 2002.
p. 395–414.

[9] Kuan T, See WB, Chen SJ. An object-oriented real-time framework and development environment. In: Proceedings OOPSLA’95 workshop
#18, 1995.

[10] Kodase S, Wang S, Shin KG. Transforming structural model to runtime model of embedded software with real-time constraints. In: Proceedings
of design, automation and test in europe conference. March 2003. p. 170–5.

[11] Lavazza L. A methodology for formalizing concepts underlying the DESS notation. Software development process for real-time embedded
software systems, EUREKA-ITEA project; December 2001. 〈http://www.dess-itea.org/〉 D: 1.7.4.

[12] de Niz D, Rajkumar R. Time weaver: a software-through-models framework for embedded real-time systems. In: Proceedings of the international
workshop on languages, compilers, and tools for embedded systems, June 2003. p. 133–143.

[13] Samek M. Practical statecharts in C/C + + quantum programming for embedded systems. CMP Books; 2002.

http://www.dess-itea.org

P.-A. Hsiung, S.-W. Lin / Computer Languages, Systems & Structures 34 (2008) 153–169 169

[14] Schmidt D. Applying design patterns and frameworks to develop object-oriented communication software. In: Peter S, editor. Handbook of
programming languages, vol. I, MacMillan Computer Publishing; 1997.

[15] See WB, Chen SJ. Object-oriented real-time system framework. New York: Wiley; 2000 p. 327–38 [Chapter 16].
[16] Selic B. Modeling real-time distributed software systems. In: Proceedings of the 4th international workshop on parallel and distributed real-time

systems. 1996. p. 11–8.
[17] Selic B. An efficient object-oriented variation of the statecharts formalism for distributed real-time systems. In: Proceedings of the IFIP

conference on hardware description languages and their applications. 1993.
[18] Selic B, Gullekan G, Ward PT. Real-time object oriented modeling. New York: Wiley; 1994.
[19] T.Y. Shen, Assume-guarantee based formal verification of hierarchical software designs, Master’s thesis, Department of CSIE, National Chung

Cheng University; July 2003.
[20] Wang F, Hsiung PA. Efficient and user-friendly verification. IEEE Transactions on Computers 2002;51(1):61–83.
[21] Wang S, Kodase S, Shin KG. Automating embedded software construction and analysis with design models. In: Proceedings of international

conference of Euro-uRapid, December 2002.
[22] Fayad M, Schmidt D. Object-oriented application frameworks. In: Communications of the ACM, special issue on object-oriented application

frameworks, vol. 40, October 1997.
[23] Rumbaugh J, Booch G, Jacobson I. The UML reference guide. Reading: Addison-Wesley; 1999.
[24] Alur R, Dill D. Automata for modeling real-time systems. Theoretical Computer Science 1994;126(2):183–236.
[25] Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons using branching time temporal logic. Proceedings of the logics of

programs workshop, Lecture notes in computer science, vol. 131. Berlin: Springer; 1981. p. 52–71.
[26] Clarke EM, Grumberg O, Peled DA. Model checking. Cambridge: MIT Press; 1999.
[27] Queille JP, Sifakis J. Specification and verification of concurrent systems in CESAR. Proceedings of the international symposium on

programming, Lecture notes in computer science, vol. 137. Berlin: Springer; 1982. p. 337–51.
[28] Su FS, Hsiung PA. Extended quasi-static scheduling for formal synthesis and code generation of embedded software. In: Proceedings of the

10th IEEE/ACM international symposium on hardware/software codesign (CODES’02). New York: ACM Press; May 2002. p. 211–216.
[29] Liu C, Layland J. Scheduling algorithms for multiprogramming in a hard-real time environment. Journal of the Association for Computing

Machinery 1973;20:46–61.
[30] Henzinger TA, Qadeer S, Rajamani SK. Decomposing refinement proofs using assume-guarantee reasoning. In: Proceedings of the IEEE/ACM

international conference on computer-aided design (ICCAD’00), 2000. p. 245–52.
[31] Zulkernine M, Seviora RE. Assume-guarantee supervisor for concurrent systems. In: Prceedings of the 15th international parallel and distributed

processing symposium. April 2001. p. 1552–60.
[32] Szyperski C. Component software: beyond object-oriented programming. Reading: Addison-Wesley; 2002.

	Automatic synthesis and verification of real-time embedded software for mobile and ubiquitous systems
	Introduction
	Design and verification flow in VERTAF
	UML modeling
	Real-time embedded software scheduling
	Formal verification
	Component mapping
	Code generation

	Analysis and evaluation
	Conclusion
	References

