
Formal Design and Verification of Real-Time
Embedded Software

Pao-Ann Hsiung† and Shang-Wei Lin

Department of Computer Science and Information Engineering,
National Chung-Cheng University, Chiayi, Taiwan–621, ROC

†hpa@computer.org

Abstract. Currently available application frameworks that target at
the automatic design of real-time embedded software are poor in in-
tegrating functional and non-functional requirements. In this work, we
reveal the internal architecture and design flow of a newly proposed
framework called Verifiable Embedded Real-Time Application Framework
(VERTAF), which integrates three techniques namely software
component-based reuse, formal synthesis, and formal verification. Com-
ponent reuse is based on a formal UML real-time embedded object
model. Formal synthesis employs quasi-static and quasi-dynamic schedul-
ing with multi-layer portable efficient code generation, which can output
either RTOS-specific application code or automatically-generated real-
time executive with application code. Formal verification integrates a
model checker kernel from SGM, by adapting it for embedded software.
The proposed architecture for VERTAF is component-based which allows
plug-and-play for the scheduler and the verifier. The architecture is also
easily extensible because reusable hardware and software design com-
ponents can be added. Application examples developed using VERTAF
demonstrate significantly reduced relative design effort as compared to
design without VERTAF, which also shows how high-level reuse of soft-
ware components combined with automatic synthesis and verification
increase design productivity.

Keywords: application framework, code generation, real-time embed-
ded software, formal synthesis, formal verification, scheduling, software
components, UML modeling.

1 Introduction

With the proliferation of embedded systems in all aspects of human life, we are
making greater demands on these systems, including more complex function-
alities such as pervasive computing, mobile computing, embedded computing,
and real-time computing. Currently, the design of real-time embedded software
is supported partially by modelers, code generators, analyzers, schedulers, and
frameworks [2], [5], [8]-[12], [13]-[16], [19], [22]-[27], [29], [30]. Nevertheless, the
technology for a completely integrated design and verification environment is still

W.-N. Chin (Ed.): APLAS 2004, LNCS 3302, pp. 382–397, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Formal Design and Verification of Real-Time Embedded Software 383

relatively immature. Furthermore, the methodologies for design and for verifica-
tion are also poorly integrated relying mainly on the experiences of embedded
software engineers. Motivated by the above status-quo, this work demonstrates
how the integration of software engineering techniques such as software com-
ponent reuse, formal software synthesis techniques such as scheduling and code
generation, and formal verification technique such as model checking can be real-
ized in the form of an integrated design environment targeted at the acceleration
of real-time embedded software construction.

Several issues are encountered in the development of an integrated design
environment. First and foremost, we need to decide upon an architecture for
the environment. Since our goal is to integrate reuse, synthesis, and verifica-
tion, we need to have greater control on how the final generated application
will be structured, thus we have chosen to implement the environment as an
object-oriented application framework [6], which is a “semi-complete” applica-
tion, where users fill in application specific objects and functionalities. A major
feature is “inversion of control”, that is the framework decides on the control
flow of the generated application, rather than the designer. Other issues encoun-
tered in architecting an application framework for real-time embedded software
are as follows.

1. To allow software component reuse, how do we define the syntax and seman-
tics of a reusable component? How can a designer uniformly and guidedly
specify the requirements of a system to be designed? How can the existing
reusable components with the user-specified components be integrated into
a feasible working system?

2. What is the control-data flow of the automatic design and verification pro-
cess? When do we verify and when do we schedule?

3. What kinds of model can be used for each design phase, such as scheduling
and verification?

4. What methods are to be used for scheduling and for verification? How do we
automate the process? What kinds of abstraction are to be employed when
system complexity is beyond our handling capabilities?

5. How do we generate portable code that not only crosses real-time operating
systems (RTOS) but also hardware platforms. What is the structure of the
generated code?

Briefly, our solutions to the above issues can be summarized as follows.

1. Software Component Reuse and Integration: A subset of the Unified Mod-
eling Language (UML) [21] is used with minimal restrictions for automatic
design and analysis. Precise syntax and formal semantics are associated with
each kind of UML diagram. Guidelines are provided so that requirement
specifications are more error-free and synthesizable.

2. Control Flow: A specific control flow is embedded within the framework,
where scheduling is first performed and then verification because the com-
plexity of verification can be greatly reduced after scheduling [9].

384 P.-A. Hsiung and S.-W. Lin

3. System Models: For scheduling, we use variants of Petri Nets (PN) [11], [12]
and for verification, we use Extended Timed Automata (ETA) [1], [12], both
of which are automatically generated from user-specified UML models that
follow our restrictions and guidelines.

4. Design Automation: For synthesis, we employ quasi-static and quasi-dynamic
scheduling methods [11], [12] that generate program schedules for a single
processor. For verification, we employ symbolic model checking [3], [4], [20]
that generates a counterexample in the original user-specified UML mod-
els whenever verification fails for a system under design. The whole design
process is automated through the automatic generation of respective in-
put models, invocation of appropriate scheduling and verification kernels,
and generating reports or useful diagnostics. For handling complexity, ab-
straction is inevitable, thus we apply model-based, architecture-based, and
function-based abstractions during verification.

5. Portable Efficient Multi-Layered Code: For portability, a multi-layered ap-
proach is adopted in code generation. To account for performance degrada-
tion due to multiple layers, system-specific optimization and flattening are
then applied to the portable code. System dependent and independent parts
of the code are distinctly segregated for this purpose.

In summary, this work illustrates how an application framework may inte-
grate all the above proposed design and verification solutions. Our implementa-
tion has resulted in a Verifiable Embedded Real-Time Application Framework
(VERTAF) whose features include formal modeling of real-time embedded sys-
tems through well-defined UML semantics, formal synthesis that guarantees sat-
isfaction of temporal as well as spatial constraints, formal verification that checks
if a system satisfies user-given properties or system-defined generic properties,
and code generation that produces efficient portable code.

The article is organized as follows. Section 2 describes the design and verifi-
cation flow in VERTAF along with an illustration example. Section 3 presents
the experimental results of an application example. Section 4 gives the final
conclusions with some future work.

2 Design and Verification Flow in VERTAF

Before going into the component-based architecture of VERTAF, we first intro-
duce the design and verification flow. As shown in Figure 1, VERTAF provides
solutions to the various issues introduced in Section 1.

In Figure 1, the control and data flows of VERTAF are represented by solid
and dotted arrows, respectively. Software synthesis is defined as a two-phase
process: a machine-independent software construction phase and a machine-
dependent software implementation phase. This separation helps us to plug-in
different target languages, middleware, real-time operating systems, and hard-
ware device configurations. We call the two phases as front-end and back-end
phases. The front-end phase is further divided into three sub-phases, namely

Formal Design and Verification of Real-Time Embedded Software 385

UML Model

Extended Timed
Automata

Generation

Real-Time
Petri-net Generation

Schedulable

Scheduler
Generation

Yes

No

No

Class Diagram
with

Deployments

Timed
Statecharts

Extended
Sequence
Diagrams

Display un-
schedulability
information

Display counter-
example in UML

model

Front End

Back End

Yes

Model Check

Specification
satisfied

Schedule

Component
Mapping

Code Generation

Embedded
Real-Time
Software

Fig. 1. Design and Verification Flow of VERTAF

UML modeling phase, real-time embedded software scheduling phase, and for-
mal verification phase. There are two sub-phases in the back-end phase, namely
component mapping phase and code generation phase. We will now present the
details of each phase in the rest of this section illustrated by a running exam-
ple called Entrance Guard System (EGS). EGS is an embedded system that
controls the entrance to a building by identifying valid users through a voice
recognition IC and control software that runs on a StrongARM 1100 micropro-
cessor.

2.1 UML Modeling

UML [21] is one of the most popular modeling and design languages in the in-
dustry. It standardizes the diagrams and symbols used to build a system model.
After scrutiny of all diagrams in UML, we have chosen three diagrams for a
user to input as system specification models, namely class diagram, sequence
diagram, and statechart. These diagrams were chosen such that information re-
dundancy in user specifications is minimized and at the same time adequate
expressiveness in user specifications is preserved. UML is a generic language and
its specializations are always required for targeting at any specific application
domain. In VERTAF, the three UML diagrams are both restricted as well as
enhanced along with guidelines for designers to follow in specifying synthesiz-
able and verifiable system models (just as synthesizable HDL code for hardware
designs).

386 P.-A. Hsiung and S.-W. Lin

Input

CheckerDBMS

Display

Controller

-GetData1

-SendData1

-GetResult1

-SendResult1

Actuator

1

-Control1

-Display

1

1

1

-SendData 1

+reset() : bool
+init() : bool
+write() : bool
+clear() : bool

LCD

+reset() : bool
+init() : bool
+read() : int

Keypad

+reset() : bool
+init() : bool
+write() : bool

LED
+reset() : bool
+init() : bool
+soundAlarm() : bool
+stop() : bool
+read() : unsigned char*
+write() : bool

Audio

1

-DisplayData1

-control

11-control

1 1

1 1

* *

+reset() : bool
+init() : bool
+read() : unsigned char*
+write() : bool

FlashRom

*
*

+init() : bool
+reset() : bool
+write() : bool
+match() : bool

VoiceRecognizeIC

* *

End1

-End1

*

-End2

*

Fig. 2. Class Diagram with Deployment for Entrance Guard System

The three UML diagrams extended for real-time embedded software specifi-
cation are as follows.

– Class Diagrams with Deployment: A deployment relation is used for specify-
ing a hardware object on which a software object is deployed. There are two
types of methods, namely event-triggered and time-triggered that are used
to model real-time behavior.

– Timed Statecharts: UML statecharts are extended with real-time clocks that
can be reset and values checked as state transition triggers.

– Extended Sequence Diagrams: UML sequence diagrams are extended with
control structures such as concurrency, conflict, and composition, which aid
in formalizing their semantics and in mapping them to formal Petri net
models that are used for scheduling.

For our running EGS example, some of the above diagrams are shown in
Figures 2, 3, and 4, respectively.

UML is well-known for its informal and general-purpose semantics. The en-
hancements described above are an effort at formalizing semantics preciseness
such that there is little ambiguity in user-specified models that are input to
VERTAF. Furthermore, design guidelines are provided to a user such that the
goal of correct-by-construction can be achieved. Typical guidelines are given
here.

– Hardware deployments are desirable as they reflect the system architecture
in which the generated real-time embedded software will execute and thus
generated code will adhere to designer intent more precisely.

Formal Design and Verification of Real-Time Embedded Software 387

Fig. 3. Timed Statecharts for Controller in Entrance Guard System

– If the behavior of an object cannot be represented by a simple statechart
that has no more than four levels of hierarchy, then decompose the object.

– To maximize flexibility, a sequence diagram can represent one or more use-
case scenarios. Overlapping behavior among scenarios often results in signif-
icant redundancy in sequence diagrams, hence either control structures may
be used in a sequence diagram or a set of non-overlapping sequence diagrams
may be inter-related with precedence constraints.

– Ensure the logical correctness of the relationships between class diagram
and statecharts and between statecharts and sequence diagrams. The for-
mer relationship is represented by actions and events in statecharts that
correspond to object methods in class diagram. The latter relationship is
represented by state-markers in sequence diagrams that correspond to stat-
echart states.

The set of UML diagrams input by a user, including a class diagram with de-
ployments, a timed statechart corresponding to each class, and a set of extended
sequence diagrams, constitutes the requirements for the real-time embedded soft-
ware to be designed and verified by VERTAF. The formal definition of a system
model is as follows.

Definition 1. Real-Time Embedded Software System Model
Given a class diagram Dclass = 〈C, δ〉, a statechart Dschart(c) = 〈Q, q0, τ〉 for
each class c in C, and a set of sequence diagrams {Dseq|Dseq = 〈C ′, M〉, C ′ ⊆
C}, where C is a set of classes, δ is the mapping for inter-class relationships
and deployments, Q is a set of states, q0 is an initial state, τ is a transition
relation between states, and M is a set of messages, a real-time embedded soft-
ware system S is defined as a set of objects as specified in Dclass, the behavior
of which is represented by the individual statecharts Dschart(c), and which in-
teract with each other by sending/receiving messages m ∈ M as specified in the
set of sequence diagrams {Dseq}. A formal behavior model of the system S is
defined as the parallel composition of the set of statecharts along with the be-
havior represented by the sequence diagrams. Notationally, Dschart(c0) × . . . ×
Dschart(c|C|) × B(D1

seq, . . . , D
k
seq) denotes the system behavior semantics, where

B is the scheduler ETA as formalized in Section 2.2.

388 P.-A. Hsiung and S.-W. Lin

Input Checker DBMS Controller Actuator Display

Send_Checker(id, pw)

Send_DBMS(id)

Send_Checker(pw)
Send_Controller(id, result)

[result==Yes]: Send_Actuator(open_sig)

[result==Yes]: Send_Display(open_msg)

End User

Timer

ResetTimer

PushButton

IsTimeOut

[TimeOut]: InputTimeOut

PushNextButton

[not TimeOut and <4 bytes]: SendNextByte(id)

PushButton

[TimeOut]: ClearDisplay

GetNextByte(<4 bytes)

SendFirstByte(id)

isTimeUp

ResetTimer

[TimeUp]:InputTimeUp

[TimeUp]:SendTimeUpMessage

Fig. 4. An Extended Sequence Diagram for Entrance Guard System

2.2 Real-Time Embedded Software Scheduling

There are two issues in real-time embedded software scheduling, namely how
are memory constraints satisfied and how are temporal specifications such as
deadlines satisfied. Based on whether the system under design has an RTOS
specified or not, two different scheduling algorithms are applied to solve the
above two issues.

– Without RTOS: Quasi-dynamic scheduling (QDS) [11], [12] is applied, which
requires Real-Time Petri Nets (RTPN) as system specification models. QDS
prepares the system to be generated as a single real-time executive kernel
with a scheduler.

– With RTOS: Extended quasi-static scheduling (EQSS) [28] with real-time
scheduling [18] is applied, which requires Complex Choice Petri Nets (CCPN)
and set of independent real-time tasks as system specification models, re-
spectively. EQSS prepares the system to be generated as a set of multiple
threads that can be scheduled and dispatched by a supported RTOS such as
MicroC/OS II or ARM Linux.

In order to apply the above scheduling algorithms, we need to map the user-
specified UML models into Petri nets, RTPN or CCPN. RTPN enhances the
standard Petri net with code execution characteristics associated with transi-
tions. Given a standard Petri net N = 〈P, T, φ〉, where P is a set of places,

Formal Design and Verification of Real-Time Embedded Software 389

T is a set of transitions, and φ is a weighted flow relation between places and
transitions, NR = 〈N, χ, π〉 is an RTPN, where χ maps a transition t to its
worst-case execution time αt and deadline βt and π is the period for NR. CCPN
allows non-free choices at transitions [28], but does not allow the computations
from a branch place to synchronize at some later place. Further, CCPN only
allows a loop that has at least a single token in some place along the loop.
These restrictions imposed by CCPN also apply to RTPN and are set mainly
for synthesizability. Here, we briefly describe how RTPN and CCPN models are
generated automatically from user-specified UML sequence diagrams, through a
case-by-case construction.

1. A message in a sequence diagram is mapped to a set of Petri net nodes,
including an incoming arc, a transition, an outgoing arc, and a place. If it is
an initial message, no incoming arc is generated. If a message has a guard,
the guard is associated to the incoming arc.

2. For each set of concurrent messages in a sequence diagram, a fork transition
is first generated, which is then connected to a set of places that lead to a
set of message mappings as described in Step (1) above.

3. If messages are sent in a loop, the Petri-nets corresponding to the messages
in the loop are generated as described in Step (1) and connected in the
given sequential order of the messages. The place in the mapping of the
last message is identified with the place in the mapping of a message that
precedes the loop, if any. This is called a branch place. The loop iteration
guard is associated with the incoming arc of the first message in the loop,
which is also an outgoing arc of the branch place. Another outgoing arc of
the branch place points to a transition outside the loop, which corresponds
to the message that succeeds the loop.

4. Different sequence diagrams are translated to different Petri-nets. If a Petri
net has an ending transition which is the same as the initial transition of
another Petri net, they are concatenated by merging the common transition.

5. Sequence diagrams that are inter-related by precedence constraints are first
translated individually into independent Petri nets, which are then com-
bined with a connecting place, that may act as a branch place when several
sequence diagrams have a similar precedent.

6. An ending transition is appended to each generated Petri-net because oth-
erwise there will be tokens that are never consumed resulting in infeasible
scheduling.

By applying the above mapping procedure, all user-specified sequence dia-
grams are translated and combined into a compact set of Petri nets. All kinds
of temporal constraints that appear in the sequence diagrams such as time-out,
time interval between two events (sending and receiving of messages), periods
and deadlines associated with a message, and timing guards on messages are
translated into guard constraints on arcs in the generated Petri nets. This set
of RTPN or CCPN is then input to QDS or EQSS, respectively, for scheduling.
Details on the scheduling procedures can be found in [11], [12], and [28]. The

390 P.-A. Hsiung and S.-W. Lin

basic strategy is to decompose each Petri net into conflict-free components that
are scheduled individually for satisfaction of memory constraints. A conflict-free
component is a reduction of a Petri net into one without any branch place. This is
EQSS. QDS applies EQSS first and then because the resulting memory satisfying
schedules may have some sequencing flexibilities, they are taken advantage of for
satisfaction of temporal constraints. Finally, we have a set of feasible schedules,
each of which corresponds to a particular behavior configuration of the system.
A behavior configuration of a system is a feasible computation that results from
the concurrent behaviors of the conflict-free components of its constituent Petri
nets. For example, a system with two Petri nets, N1 and N2, which have two
conflict-free components each, namely N11,N12, and N21, N22, can have totally
at most four different behavior configurations: N11||N21, N12||N21, N11||N22, and
N12||N22.

For systems without RTOS, we need to automatically generate a scheduler
that controls the system according to the set of transition sequences generated
by QDS. In VERTAF, a scheduler is constructed as a separate class that observes
and controls the status of each object in the system. Temporal constraints are
monitored by the scheduler class using a global clock. Further, for verification
purposes, an extended timed automaton is also generated by following the set
of transition sequences. For uniformity, this scheduler automaton can be viewed
as a timed statechart for the generated scheduler class and thus the scheduler
is just another object in the system. Code generation becomes a lot easier with
this uniformity.

For our running EGS example, a single Petri net is generated from the user-
specified set of statecharts, which is then scheduled using QDS. In this exam-
ple, scheduling is required only for the timers associated with the actuator, the
controller, and the input object. After QDS, we found that EGS is schedula-
ble.

2.3 Formal Verification

VERTAF employs the popular model checking paradigm for formal verification
of real-time embedded software. In VERTAF, formal ETA models are generated
automatically from user-specified UML models by a flattening scheme that trans-
forms each statechart into a set of one or more ETA, which are merged, along
with the scheduler ETA generated in the scheduling phase, into a state-graph.
The verification kernel used in VERTAF is adapted from State Graph Manipu-
lators (SGM) [29], which is a high-level model checker for real-time systems that
operate on state-graph representations of system behavior through manipula-
tors, including a state-graph merger, several state-space reduction techniques, a
dead state checker, and a TCTL model checker. There are two classes of sys-
tem properties that can be verified in VERTAF: (1) system-defined properties
including dead states, deadlocks, livelocks, and syntactical errors, and (2) user-
defined properties specified in the Object Constraint Language (OCL) as defined
by OMG in its UML specifications. All of these properties are automatically
translated into TCTL specifications for verification by SGM.

Formal Design and Verification of Real-Time Embedded Software 391

Automation in formal verification of user-specified UML models of real-time
embedded software is achieved in VERTAF by the following implementation
mechanisms.

1. User-specified timed statecharts are automatically mapped to a set of ETA.
2. User-specified extended sequence diagrams are automatically mapped to a

set of Petri nets that are scheduled and then a scheduler ETA is automati-
cally generated.

3. Using the state-graph merge manipulator in SGM, all the ETA resulting
from the above two steps are merged into a single state-graph representing
the global system behavior.

4. User-specified OCL properties and system-defined properties are automati-
cally translated into TCTL specification formulas.

5. The system state-graph and the TCTL formulas obtained in the previous
two steps are then input to SGM for model checking.

6. When a property is not satisfied, SGM generates a counterexample, which
is then automatically translated into a UML sequence diagram representing
an erratic trace behavior of the system. This approach provides a seamless
interface to VERTAF users such that the formal models are all hidden and
the users need to interact only with what they have specified in UML models.

Design complexity is a major issue in formal verification, which leads to un-
manageable and exponentially large state-spaces. Both engineering paradigms
and scientific techniques are applied in VERTAF to handle the state-space size
explosion issue. The applied techniques include (1) Model Construction Guide-
lines, (2) Architectural Abstractions, (3) Functional Abstractions, and (4) State-
Space Reductions. Due to page-limit, we have not elaborated on the individual
techniques.

For our running EGS example, the ETA for each statechart were generated
and then merged with the scheduler ETA. For illustration, we show in Figure 5
the ETA that is generated by VERTAF corresponding to the controller statechart
of Figure 3. The other 6 ETA are omitted due to page-limit. All ETA were
input to SGM and AGR was applied. Reduction techniques were then applied
to each state-graph obtained from AGR. OCL constraints were then translated
into TCTL and verified by the SGM model checker kernel.

2.4 Component Mapping

This is the first phase in the back-end design of VERTAF and starts to be more
hardware dependent. All hardware classes specified in the deployments of the
class diagram are those supported by VERTAF and thus belong to some ex-
isting class libraries. The component mapping phase then becomes simply the
configuration of the hardware system and operating system through the auto-
matic generation of configuration files, make files, header files, and dependency
files. The corresponding hardware class API will be linked in during compilation.

The main issue in this phase occurs when a software class is not deployed on
any hardware component or not deployed on any specific hardware device type,

392 P.-A. Hsiung and S.-W. Lin

Fig. 5. ETA for Controller in EGS

for example the type of microcontroller to be used is not specified. Currently,
VERTAF adopts an interactive approach whereby the designer is warned of this
lack of information and he/she is requested to choose from a list of available
compatible device types for the deployment. An automatic solution to this issue
is not feasible because estimates are not easy without further information about
the non-deployed software classes.

Another issue in this phase is the possible conflicts among hardware devices
specified in a class diagram such as interrupts, memory address ranges, I/O
ports, and bus-related characteristics such as device priorities. Users are also
warned in case of such conflicts.

2.5 Code Generation

There are basically three issues in this phase including hardware portability,
software portability, and temporal correctness. We adopt a 3-tier approach for
code generation: a hardware abstraction layer, an OS with middleware layer, and
a scheduler with temporal monitor, which solves the above three issues, respec-
tively. Currently supported underlying hardware platforms include ARM-based,
StrongARM-based, 8051-based, and Lego RCX-based Mindstorm systems. For
hardware abstraction, VERTAF supports MicroHAL and the embedded ver-
sion of POSIX. For OS, VERTAF supports MicroC/OS, Linux, and eCOS. For

Formal Design and Verification of Real-Time Embedded Software 393

Fig. 6. Multi-Tier Code Architecture

middleware, VERTAF is currently based on the Quantum Framework [38]. For
scheduler, VERTAF creates a custom ActiveObject according to the Quantum
API. Included in the scheduler is a temporal monitor that checks if any tem-
poral constraints are violated. As shown in Figure 6, this multi-tier approach
decouples application code from the OS through the middleware and from the
hardware platform through the OS and hardware abstraction layer.

Each ETA that is generated either from UML statecharts or from the sched-
uled Petri nets (sequence diagrams) is implemented as an ActiveObject in the
Quantum Framework. The user-defined classes along with data and methods are
incorporated into the corresponding ActiveObject. The final program is a set of
concurrent threads, one of which is a scheduler that can control the other objects
by sending messages to them after observing their states. For systems without
an OS, the scheduler also takes the role of a real-time executive kernel.

For our running example, the final application code consisted of 6 activeob-
jects derived from the statecharts and 1 activeobject representing the scheduler.
Makefiles were generated for linking in the API of the 6 hardware classes and
configuration files were generated for the StrongARM microprocessor with Mi-
croC/OS II and embedded Linux. There were totally 2,300 lines of C code, out
of which the designer had to write only around 300 lines of code.

3 AICC Cruiser Application

An application developed with VERTAF is AICC (Autonomous Intelligent Cruise
Controller) system application [7], which had been developed and installed in a
Saab automobile by Hansson et al. The AICC system can receive information
from road signs and adapt the speed of the vehicle to automatically follow speed
limits. Also, with a vehicle in front cruising at lower speed the AICC adapts
the speed and maintains safe distance. The AICC can also receive information
from the roadside (e.g. from traffic lights) to calculate a speed profile which will
reduce emission by avoiding stop and go at traffic lights. The system architec-
ture consisting of both hardware (HW) and software (SW) is shown in Figure
7. The software development methodology used in [7] is based on sets of inter-
connected so-called software circuits. Each software circuit has a set of input
connectors where data are received and a set of output connectors where data

394 P.-A. Hsiung and S.-W. Lin

Fig. 7. AICC System Architecture

are produced. We model the software circuits in [7] as active application domain
objects in VERTAF.

As shown in Figure 8, there are five domain objects specified by the designer of
AICC for implementing a Basement system. Basement is a vehicle’s internal real-
time architecture developed in the Vehicle Internal Architecture (VIA) project
[7], within the Swedish Road Transport Informatics Programme. As observed in
Figure 8, each object may correspond (map) to one or more tasks. The tasks
and the Call-Graph are as shown in Table 1 and Figure 8, respectively. There
are totally 12 tasks performed by 5 application domain objects. There were 21
application framework objects specified by the designer. Totally, 26 objects were
in the final program code generated. The average integration time per object was
0.5 day and the average learning time was amortized as 0.1 day for each designer
using the framework. Without using the framework, the average integration time
was 2 days for each object. This application took 5 days for 3 real-time system
designers using VERTAF. The same application took the same designers 20 days
to complete development a second time. The significant decrease in design time
was due to the high degree of automation in VERTAF.

4 Conclusion

An object-oriented component-based application framework, called VERTAF,
was proposed for real-time embedded systems application development. It was a
result of the integration of three different technologies: software component reuse,
formal synthesis, and formal verification. Starting from user-specified UML mod-
els, automation was provided in model transformations, scheduling, verification,
and code generation. VERTAF can be easily extended since new specification
languages, scheduling algorithms, etc. can easily be integrated into it. Future
extensions will include support for share-driven scheduling algorithms. More ap-
plications will also be developed using VERTAF. VERTAF will be enhanced in
the future by considering more advanced features of real-time applications, such
as: network delay, network protocols, and on-line task scheduling. Performance

Formal Design and Verification of Real-Time Embedded Software 395

Table 1. AICC Tasks

Index Task Description Object p e d

1 Traffic Light Info SRC 200 10 400
2 Speed Limit Info SRC 200 10 400
3 Proceeding Vehicle Estimator ICCReg 100 8 100
4 Speed Sensor ICCReg 100 5 100
5 Distance Control ICCReg 100 15 100
6 Green Wave Control ICCReg 100 15 100
7 Speed Limit Control ICCReg 100 15 100
8 Coordination & Final Control Final Control 50 20 50
9 Cruise Switches Supervisor 100 15 100
10 ICC Main Control Supervisor 100 20 100
11 Cruise Info Supervisor 100 20 100
12 Speed Actuator EST 50 5 50

SRC: Short Range Communication, ICCReg: ICC Regulator, EST: Electronic Servo Throttle,

p: period, e: execution time, d: deadline

Fig. 8. AICC Call-Graph

related features such as context switch time and rate, external events handling,
I/O timing, mode changes, transient overloading, and setup time will also be
incorporated into VERTAF in the future.

References

1. R. Alur and D. Dill, “Automata for modeling real-time systems,” Theoretical Com-
puter Science, Vol. 126, No. 2, pp. 183-236, April 1994.

2. T. Amnell, E. Fersman, L. Mokrushin, P. Petterson, and W. Yi, “TIMES: a tool for
schedulability analysis and code generation of real-time systems,” in Proceedings
of the 1st International Workshop on Formal Modeling and Analysis of Timed
Systems (FORMATS, Marseille, France), September 2003.

396 P.-A. Hsiung and S.-W. Lin

3. E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skele-
tons using branching time temporal logic,” in Proceedings of the Logics of Pro-
grams Workshop, LNCS Vol. 131, pp. 52-71, Springer Verlag, 1981.

4. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 1999.
5. B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,

Objects, Frameworks, and Patterns, Addison Wesley Longman, Inc., Reading, MA,
USA, November 1999.

6. M. Fayad and D. Schmidt, “Object-oriented application frameworks,” Communi-
cations of the ACM, Special Issue on Object-Oriented Application Frameworks,
Vol. 40, October 1997.

7. H. A. Hansson, H. W. Lawson, M. Stromberg, and S. Larsson, “BASEMENT: A
distributed real-time architecture for vehicle applications,” Real-Time Systems,
Vol. 11, No. 3, pp. 223-244, 1996.

8. P.-A. Hsiung, “RTFrame: An object-oriented application framework for real-time
applications,” in Proceedings of the 27th International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS’98), pp. 138-147, IEEE
Computer Society Press, September 1998.

9. P.-A. Hsiung, “Embedded software verification in hardware-software codesign,”
Journal of Systems Architecture - the Euromicro Journal, Vol. 46, No. 15, pp.
1435-1450, Elsevier Science, November 2000.

10. P.-A. Hsiung and S.-Y. Cheng, “Automating formal modular verification of asyn-
chronous real-time embedded systems,” in Proceedings of the 16th International
Conference on VLSI Design, (VLSI’2003, New Delhi, India), pp. 249-254, IEEE CS
Press, January 2003.

11. P.-A. Hsiung and C.-Y. Lin, “Synthesis of real-time embedded software with
local and global deadlines,” in Proceedings of the 1st ACM/IEEE/IFIP In-
ternational Conference on Hardware-Software Codesign and System Synthesis
(CODES+ISSS’2003, Newport Beach, CA, USA), pp. 114-119, ACM Press, Oc-
tober 2003.

12. P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee, “Quasi-dynamic scheduling for the synthe-
sis of real-time embedded software with local and global deadlines,” in Proceedings
of the 9th International Conference on Real-Time and Embedded Computing Sys-
tems and Applications (RTCSA’2003, Tainan, Taiwan), February 2003.

13. A. Knapp, S. Merz, and C. Rauh, “Model checking timed UML state machines
and collaboration,” in Proceedings of the 7th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, LNCS Vol. 2469, pp. 395-
414, Springer Verlag, September 2002.

14. T. Kuan, W.-B. See, and S.-J. Chen, “An object-oriented real-time framework and
development environment,” in Proceedings OOPSLA’95 Workshop #18, 1995.

15. S. Kodase, S. Wang, and K. G. Shin, “Transforming structural model to runtime
model of embedded software with real-time constraints,” in Proceedings of Design,
Automation and Test in Europe Conference, Munich, Germany, pp. 170-175, March
2003.

16. L. Lavazza, “A methodology for formalizing concepts underlying the DESS nota-
tion,” Software Development Process for Real-Time Embedded Software Systems,
EUREKA-ITEA project (http://www.dess-itea.org), D 1.7.4, December 2001.

17. W.-S. Liao and P.-A. Hsiung, “FVP: A formal verification platform for SoC,” in
Proceedings of the 16th IEEE International SoC Conference, Portland, Oregon,
USA, IEEE CS Press, September 2003.

Formal Design and Verification of Real-Time Embedded Software 397

18. C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-
real time environment,” Journal of the Association for Computing Machinery, Vol.
20, pp. 46-61, January 1973.

19. D. de Niz and R. Rajkumar, “Time Weaver: A software-through-models framework
for embedded real-time systems,” in Proceedings of the International Workshop on
Languages, Compilers, and Tools for Embedded Systems, San-Diego, California,
USA, pp. 133-143, June 2003.

20. J.-P. Queille and J. Sifakis, “Specification and verification of concurrent systems in
CESAR,” in Proceedings of the International Symposium on Programming, LNCS
Vol. 137, pp. 337-351, Springer Verlag, 1982.

21. J. Rumbaugh, G. Booch, and I. Jacobson, The UML Reference Guide, Addison
Wesley Longman, 1999.

22. M. Samek, Practical Statecharts in C/C++ Quantum Programming for Embedded
Systems, CMP Books, 2002.

23. D. Schmidt, “Applying design patterns and frameworks to develop object-oriented
communication software,” Handbook of Programming Languages, Vol. I, 1997.

24. W.-B. See and S.-J. Chen, “Object-oriented real-time system framework,” in
Domain-Specific Application Frameworks (M. E. Fayad and R. E. Johnson, eds.),
ch. 16, pp. 327-338, John Wiley, 2000.

25. B. Selic, “Modeling real-time distributed software systems,” in Proceedings of the
4th International Workshop on Parallel and Distributed Real-Time Systems, pp.
11-18, 1996.

26. B. Selic, “An efficient object-oriented variation of the statecharts formalism for
distributed real-time systems,” in Proceedings of the IFIP Conference on Hardware
Description Languages and Their Applications, 1993.

27. B. Selic, G. Gullekan, P. T. Ward, Real-time Object Oriented Modeling, John
Wiley and Sons, Inc., 1994.

28. F.-S. Su and P.-A. Hsiung, “Extended quasi-static scheduling for formal synthesis
and code generation of embedded software,” in Proceedings of the 10th IEEE/ACM
International Symposium on Hardware/Software Codesign (CODES’02, Colorado,
USA), pp. 211-216, ACM Press, May 2002.

29. F. Wang and P.-A. Hsiung, “Efficient and user-friendly verification,” IEEE Trans-
actions on Computers, Vol. 51, No. 1, pp. 61-83, January 2002.

30. S. Wang, S. Kodase, and K. G. Shin, “Automating embedded software construction
and analysis with design models,” in Proceedings of International Conference of
Euro-uRapid, Frankfurt, Germany, December 2002.

	Introduction
	Design and Verification Flow in VERTAF
	UML Modeling
	Real-Time Embedded Software Scheduling
	Formal Verification
	Component Mapping
	Code Generation

	AICC Cruiser Application
	Conclusion

