The Journal of Systems and Software 82 (2009) 1627-1641

Contents lists available at ScienceDirect

The Journal of Systems and Software

i

journal homepage: www.elsevier.com/locate/jss

Modeling and verification of real-time embedded systems with urgency

Pao-Ann Hsiung?, Shang-Wei Lin?, Yean-Ru ChenP, Chun-Hsian Huang?,
Chihhsiong Shih ¢, William C. Chu ©*
2 National Chung Cheng University, Chiayi-62102, Taiwan, ROC

b National Taiwan University, Taipei-10617, Taiwan, ROC
€ Tunghai University, Taichung 40704, Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history:
Available online 19 March 2009

Real-time embedded systems are often designed with different types of urgencies such as delayable or
eager, that are modeled by several urgency variants of the timed automata model. However, most model
checkers do not support such urgency semantics, except for the IF toolset that model checks timed auto-

KeyW"Td5~' mata with urgency against observers. This work proposes an Urgent Timed Automata (UTA) model with
Modeling . zone-based urgency semantics that gives the same model checking results as absolute urgency semantics
Formal verification [.

Urgency of other existing urgency variants of the timed automata model, including timed automata with dead-

lines and timed automata with urgent transitions. A necessary and sufficient condition, called complete
urgency, is formulated and proved for avoiding zone partitioning so that the system state graphs are sim-
pler and model checking is faster. A novel zone capping method is proposed that is time-reactive, pre-
serves complete urgency, satisfies all deadlines, and does not need zone partitioning. The proposed
verification methods were implemented in the SGM CTL model checker and applied to real-time and
embedded systems. Several experiments, comparing the state space sizes produced by SGM with that

by the IF toolset, show that SGM produces much smaller state-spaces.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A popular model for real-time embedded systems is Timed Auto-
mata (TA) (Alur and Dill, 1994), for which several model checkers
such as SGM (Wang and Hsiung, 2002), RED (Wang, 2001), UPPAAL
(Bengtsson et al., 1995), and Kronos (Yovine, 1997) have been
developed to verify them formally. However, timed automata mod-
els assume a lazy semantics, that is, an enabled state transition
need not be taken as long as the invariant condition of the state
is not violated. Lazy transition semantics are too general to model
the urgent behavior found in many real-world systems such as
medical devices, home appliances, robotics, and others. Thus, the
TA model was extended with urgency semantics such as the Timed
Automata with Deadlines (TAD) (Bornot et al., 1997), Timed Auto-
mata with Urgent Transitions (TAUT) (Barbuti and Tesei, 2004),
Timed 1/O Automata with Stopping Condition (Kaynar et al., 2003),
and Timed 1/0O Automata with Urgency (Gebremichael and Vaandr-
ager, 2005). These extended variants incorporate different syntax
for accurately modeling urgency. However, system verification
using such extended variants has not received as much attention
in the area of Computation Tree Logic (CTL) model checking (Clarke
and Emerson, 1981). This work focuses on proposing a class of TA

* Corresponding author.
E-mail address: cchu@thu.edu.tw (W.C. Chu).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.03.013

with urgencies called Urgent Timed Automata (UTA), its corre-
sponding zone-based urgency semantics, and how an urgent timed
system state graph can be model checked against CTL properties.

Before urgency semantics were defined for timed automata,
state invariants were used to model urgent behavior by forcing a
TA to transit to successor states before the invariants are violated
due to time elapse. However, the invariant-based method was only
applicable to hard deadlines, where the stopping of time due to ur-
gency and the non-existence of any transition to take when time is
stopped resulted in a timelock. Stopping conditions associated with
timed I/O automata also result in similar timelocks. Different
methods were proposed to avoid timelocks such as associating a
transition with a deadline predicate (Bornot and Sifakis, 2000; Bor-
not et al., 1997; Sifakis and Yovine, 1996), with an urgency predi-
cate (Gebremichael and Vaandrager, 2005), or with a positive
rational parameter representing deadline (Barbuti and Tesei,
2004). However, there is very little research on how such models
with urgent semantics are to be verified using CTL model checking
(Clarke and Emerson, 1981). There is also no CTL model checker
that can directly model check these models without workarounds.
The IF toolset (Bozga et al., 1999) can model check timed automata
with urgency against properties written as observers, which are IF
processes that monitor and guide simulation.

The expressiveness of deadline predicates, urgency predicates,
and deadline parameters are all same (Gebremichael and

mailto:cchu@thu.edu.tw
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

1628 P.-A. Hsiung et al./The Journal of Systems and Software 82 (2009) 1627-1641

Vaandrager, 2005; Barbuti and Tesei, 2004). Further, it has also
been shown that deadline predicates can be simplified into ur-
gency types, namely lazy, delayable, and eager. We thus decided
that we need only address the model checking of timed automata
having transitions associated with urgency types. We call this
model as Urgent Timed Automata (UTA). The major issue in this
work is how we restrict time progress so that the enabled urgent
transitions are taken as required by their semantics and the models
can be model checked.

The issues to be resolved in this work are as follows. The first is
a soundness issue, which means we need to determine an urgency
semantics for UTA models that is consistent with the conventional
TA model checking. As a solution, we propose a zone-based urgency
semantics that gives the same model checking results as the ur-
gency semantics of TAD and TAUT. The second is a completeness is-
sue, which means we need to determine the class of UTA that can
be model checked by a conventional TA model checker. As a solu-
tion, we found that UTA under the proposed complete urgency
restriction can be model checked. The third is a construction issue,
which means we need to find a method for enforcing urgencies
while guaranteeing time-reactivity, preserving complete urgency,
satisfying all deadlines, and not needing zone partitioning. As a
solution, we propose a novel zone-capping operation that is proved
to possess all the above characteristics.

In summary, our major contribution in this work is the proposal
of solutions to the above three issues, the theoretical proofs and
analysis of the solutions, and their implementation in the SGM
model checker along with application to several examples from
the real-time and embedded systems domain. The proposed solu-
tions mainly include the UTA model, the zone-based urgency
semantics, the complete urgency restriction, and the zone capping
operation, which result in time-reactive state graphs, satisfying all
deadlines, and without the need for zone partitioning.

The article is organized as follows. Section 2 describes previous
work related to urgency modeling and verification. Basic defini-
tions used in our work are given in Section 3. Section 4 will formu-
late the solutions to solve the above described issues in model
checking UTA. Section 5 describes the algorithm, the theoretical
analysis, and its application to several examples. The article is con-
cluded and future research directions are given in Section 6.

2. Related work

Most works that extend the timed automata model with ur-
gency semantics (Barbuti and Tesei, 2004; Bornot and Sifakis,
2000; Bornot et al., 1997; Gebremichael and Vaandrager, 2005;
Sifakis and Yovine, 1996) are focused on the modeling aspects such
as expressiveness and compositionality. Except for the IF toolset
(Bozga et al., 1999), little attention has been paid to the verification
of systems modeled by these urgency extended models. In this sec-
tion, we first discuss the differences among the various model
extensions and then summarize on the state-of-the-art verification
techniques for these models.

Timed automata with deadlines (TAD) (Bornot and Sifakis, 2000;
Bornot et al., 1997; Sifakis and Yovine, 1996) proposed by Sifakis
et al. was among the first models that extended TA with urgency.
An urgent transition was associated with a deadline predicate,
which represents the condition when time progress must stop to
allow for the urgent transition to be taken. Once the urgent transi-
tion is taken, time progress can continue. TADs are time-reactive or
timelock-free, that is, the system never comes to a complete halt
due to the violation of a deadline and some enabled transition
can always be taken when time progress is stopped. Semantically,
a TAD state s is associated with a time progress condition (TPC)
¢s = =V, di, where d; is the deadline predicate of transition i € I

and [is the set of all outgoing transitions from state s (Bornot
et al,, 1997). However, TPC is not suitable for model checking be-
cause it results in non-convex clock zones which require further
processing such as zone partitioning (Lin et al., 2005). It was also
shown that any TAD can be transformed into an equivalent TAD
with only eager and lazy transitions (Bornot et al., 1997).

An extension is called Timed Automata with Urgent Transitions
(TAUT) (Barbuti and Tesei, 2004), which associates with a TA a
small rational number called deadline parameter, | € 2.4, such that
urgent transitions must be taken within [time units after they are
enabled. The expressiveness of TAUT is the same as that of TAD, but
TAUT allows shorter deadline specifications. Another improvement
is that TAUT allows right-closed TPC, which cannot be handled by
TAD. A right-closed TPC is derived when we have an eager transi-
tion with a left-open deadline predicate and since time is dense we
do not know when to take that eager transition in a TAD; however,
with a deadline parameter [we can take the eager transition at
X + 1, where x; is the lower bound of the deadline predicate and
l € 2.4 is made as small as possible.

The deadline predicates have also been applied to Timed I/O
Automata (TIOA) (Kaynar et al., 2003) which originally had a stop-
ping condition for specifying deadlines. Similar to state invariants,
stopping conditions may also result in timelocks. This extension of
TIOA associated urgent transitions with an urgency predicate,
which made them time-reactive by construction and closed under
composition. Invariant properties are proved by constructing time
progress predicates for each urgent transition and then taking the
conjunction of these time progress predicates as the condition for
time progress. However, a time progress predicate is the negation
of urgency predicate, which would result in non-convex clock
zones and thus make model checking difficult as it further requires
complex zone partitioning to keep them convex. The authors of
(Gebremichael and Vaandrager, 2005) remarked that by restricting
the clock zones in urgency predicates one can avoid non-convex
time progress predicates, however this is too strict a restriction.

From the above descriptions, we can observe that TAD and TIOA
with urgency use time progress conditions (predicates) that can re-
sult in non-convex clock zones, while TAUT adopts a TA transfor-
mation approach. Our work is similar to the transformation
approach of TAUT, however we do not need the deadline parame-
ter | and our approach is much simpler in terms of conformance
with the original TA model and region semantics. Similar to TAUT,
we allow zones with left-open transition enabling time intervals,
which are not allowed by TAD and TIOA with urgency. Further, un-
like all the other models, TAD, TAUT, and TIOA with urgency, we
separate prioritization from urgency, which constitutes a more
general and useful semantics. Our previous work on prioritization
of TA transitions (Lin et al., 2005) is applicable to the UTA model in
this work.

Support for modeling urgency in systems and verifying them
has been incorporated in tools such as IF (Bozga et al., 1999) and
UPPAAL (Bengtsson et al., 1995). The IF toolset is an environment
for modeling and validation of heterogeneous real-time systems
using TAD. It consists of two parts: a syntactic transformer, which
provides language level access to IF descriptions and has been used
to implement static analysis and optimization techniques, and an
open exploration platform, which gives access to the graph of pos-
sible executions. IF has been connected to some state-of-the-art
model checkers and test-case generators. IF can also model check
directly using observers. UPPAAL uses urgent channels that are ta-
ken as soon as they are enabled, however time constraints cannot
be associated with urgent channels. We pose no such restriction on
urgent transitions.

Fig. 1 shows how an eager transition is enforced using invari-
ants, TPC, and the newly proposed zone capping. We find that only
zone capping succeeds in associating the model with a correct and

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641 1629

z=5

(z=>3)¢
An Urgent Using
Transition Invariants

(e: eager transition)

z=5

(z=3)¢
Using After Zone
TPC Capping

Fig. 1. Enforcing urgency using different methods.

intuitive semantics, in terms of time-reactivity and model check-
ing, as explained in the following. If a user specified an invariant
of z < 3 to enforce the eager transition with trigger z > 3 to be ta-
ken as soon as enabled, then we might end up with some runs
being eliminated because if the mode clock zone is z > 5, then
when conjuncted with the invariant z < 3, would be false. Thus,
invariants fail to enforce correct urgency semantics. Since a TPC
is constructed from the deadline predicates in transition triggers,
in this example, the TPC would be z < 3. However, when time stops
progressing at z = 3, the mode is not yet entered so there is a time-
lock. Originally, TPC guaranteed time-reactivity only under the
condition that when time stops the transition is enabled. We have
violated this assumption to produce a timelock. Zone capping takes
the mode clock zone z > 5 also into consideration when stopping
time progress (bounding or capping the zone), thus no such
assumption is required. Zone capping thus provides a correct and
intuitive urgency semantics.

Several other work related to deadline specification include the
use of probabilistic timed automata to verify soft deadlines (Kwiat-
kowska et al., 2000), the timed extension for AltaRica - a language
for specifying constraint automata (Cassez et al., 2002), and the
timed extensions for SDL (Bozga et al., 2001), for MSC (Hogrefe
et al., 2001), and for TTCN (Hogrefe et al., 2001) specification lan-
guages in the INTERVAL project (INTERVAL, 1999). These are only
extensions in specification syntax and semantics, without address-
ing the verification of systems specified by those timed extensions.

3. Preliminaries

We first introduce the basic definitions required for the pro-
posed work. Given a set C of clock variables and a set D of discrete
variables over integers, a mode predicate 1 over C and D is defined
as: n := false|{ A B, where (is a clock constraint over C and f is a
Boolean constraint over D. A clock constraint (is defined
as (=x~cx—y~c|l{i ALy, where x,yeCrce /' ~e{<<,
=, >,>}, and {;,(, are all clock constraints. A Boolean constraint
p is defined as B:=d ~ c|fA B.|—p3, where d € D and Sy, ,, B3
are discrete variable constraints. Let B(C,D) represent the set of
all mode predicates over C and D.

Definition 1 (Urgent Timed Automaton). An Urgent Timed Autom-
aton (UTA) is a tuple .« = (M,m° C,D,L, ,T, Q) such that: M is a
finite set of modes. m® € M is the initial mode. C is a set of clock
variables. D is a set of discrete variables. L is a set of synchroni-
zation labels, and o« € L is a special label that represents asynchro-
nous behavior (i.e. no need of synchronization). y : Mi—B(C, D) is an

invariance function that labels each mode with a condition true in
that mode. TC MxM is a set of mode transitions.
Q:T—(L,B(C,D),{%,6,¢},y) is a description of T. For ease of
notations, we use the following short forms: Q(t) = (¥(t), t(t),
u(t), p(t)), where t € T. y : T—L associates a synchronization label
with a transition. 7 : T—B(C,D) defines the transition triggering
conditions, where 7(t) = () A By is the conjunction of a clock
zone and a Boolean condition associated with the transition.
w:T—{4,6,&} associates an urgency type with a transition,
including lazy, delayable, and eager, respectively, whose semantics
are as follows. An enabled lazy transition needs not to fire as long
as the invariant condition y(m) of the transition’s source mode m is
not violated. An enabled delayable transition must fire before it
becomes disabled due to time elapse. An eager transition must fire
as soon as it is enabled. p : Ty, where 7y is a partial function
mapping (CUD) to .+, restricted to O for clocks in C, i.e., p is an
assignment function associated with each transition with clock
resetting.

The semantics of a UTA can be defined by its state and compu-
tation run as follows.

Definition 2 (State and run). A pair s = (m, V) is called a state of a
UTA «/; = (M;,m?,C;,D;,L;, x;, Ti, ;) if me M; and v maps each
clock from C; to a non-negative real number in #.¢ and each
discrete variable from D; to an integer in .4” such that v satisfies the
invariant y;(m). A sequence of state-transition pairs (so 351 ...Sn)
is called a run if s;.; is a successor state of s; due to a mode
transition t; = (s;,S;41) € T; or due to a time transition that repre-
sents the elapse of time without changing mode. A state s is said to
be reachable if there exists a computation run (sp ;"51 ...S), where
so = (m?, vo) is an initial state of .«;.

Definition 3 (Time progress and time reactivity). Given a state
s=(m,v), if 3t € #,t > 0 such that s, = (m,v+t) is a reachable
state from s, then we say that time progress is possible in s, where
v + t maps each clock x to v(x) + t. If time progress is not possible
in s and there is no mode transition enabled in s, then we say that
there is a time lock in s. When there is no time lock in a UTA, we say
it is time reactive.

States can be grouped into zones and the infinite number of
states can be classified into a finite number of regions as defined
in the following.

Definition 4 (Region). Let cnq be the maximal constant integer
appearing in any clock constraint. Two states s = (m,v) and

1630 P.-A. Hsiung et al./The Journal of Systems and Software 82 (2009) 1627-1641

s’ = (m, V') are said to be in the same region if either v(x) > cmq and
V'(x) > cmax for all x e C; or [v(x)| = [V/(x)] and (v(x) — [v(X)] >
YY) — VW) < (V) — [V > V) - V), for all xyeC,
and v(d) = v/(d), for all d € D;. Let [s] denote the region to which s
belongs.

Definition 5 (Clock zone and zone). A convex union of regions is
called a clock zone. Given a mode m, a clock zone ¢, and a Boolean
constraint ,,, the tuple (m, {,,, 8,,) is called a zone if both {,,, and g,,
satisfy the invariant of m. A state s=(m,v) is in a zone
z = (m,{y, Bn) if v satisfies both {,, and B,,,.

In most model checkers, the clock constraints are represented
by Difference Bound Matrices (DBM) (Dill, 1989).

Definition 6 (Difference Bound Matrix (DBM)). A clock zone { that
represents a clock constraint on n clocks in C; = {X1,X2,...,Xn} can
be implemented as a (n+1)x(n+1) matrix 4, where
A(i,j) = (~,¢), ~e{<,<},c € & U{oo}, represents the constraint
X; —X; ~ ¢, 0 <i,j<n. Here, xo =0.

Example 1 shows how a clock zone is represented by a DBM.
Example 1. Given two clock zones z; and 2z, such that

=X>3)AY>HNANKKEAYSKEAX-Y<2)AY-Xx<1)
and ==2DAY=21DAX<STHIANYST)IAX-Y<3)A
(y —x < 3). The two DBMs 4,, and 4,, representing z; and z,
respectively, are as follows.

0 X y 0 X y

-3 -1
0
3

—_

Vi PR

) AZ.

)t

N NN O

0 0 <-3 <
X 6 <0 <
y 6 <1 <

NN N

0
X
y

A NN
A
non N

2 3
0 0

Given a DBM 4 representing a clock zone {, 4(0,1) and A4(i, 0) are
respectively the lower and upper bounds for clock x;. Given two
DBM elements 4(i,j) = (~,¢) and 4(i',j') = (~, '), we can compare
them by saying A4(i,j) < 4(i',j') if either (1) ¢ < ¢’ or (2) ¢ = ¢’ and
~ is < and ~'is <. The other relational comparisons between
A(i,j) and A(7',j') can be similarly defined.

Given two lower bound DBM elements 4(0,j) = (~,c) and
A'(0,j) = (~',c'), a difference operator between the two DBM ele-
ments can be defined as follows:

¢ —c if ~ and ~' are the same,
dlff(A(O,J)A/(OJ/)) = (C/ - C)+ lf ~ € {<}7 ~ e {g}
(c—c if ~e{<}, ~e{<}

Here the exponents + and — are used to represent infinitesimally
larger and smaller numbers than those in the brackets, respectively.

For aninteger c, we have the following relation: c- < ¢ < c¢*. Sim-
ilarly, given two upper bound DBM elements 4(i,0) = (~,c) and

A'(i',0) = (~/, '), a difference operator can be defined as follows.
c—c if ~ and ~' are the same,

diff(4(1,0),4'(7,0)) =< (c—c)t if ~e{<}, ~e{<},
(c—c) if ~e{<}, ~e{<}

Similarly, given an upper bound DBM element 4(i,0) = (~,c) and a
lower bound DBM element 4'(0,j') = (~',¢’), a difference operator
can be defined as follows:

diff(4(1,0), 4'(0.j)) = {Ec-:dc’)’

if ~e{<}and ~ € {<},
otherwise.

Example 2 illustrates the relational comparisons between two DBM
elements.

Example 2. For the two DBMs 4,, and 4z, in Example 1, we can
calculate the following:

diff(4;,(0,1),4,(0,1)) = diff(4;,(0,2), 4,,(0,2)) =27,
diff(4;,(1,0), 4,(1,0)) = dif (Aa(0),4;(2,0)) = -1
and diff(4,,(1,0), 4,(0,2)) = 5.

Since clocks progress at the same speed, the difference oper-
ator between two lower bound DBM elements represents the
time lag between entering the two zones represented by the
DBMs and the difference operator between two upper bound
DBM elements represent the time lag between leaving the two
zones. The difference operator between an upper and a lower
bound DBM elements represent the time lag between exiting
the first zone and entering the second zone. The difference defi-
nitions consider only a single clock at a time, so for actually
entering or leaving a zone, we need to define zone lags that con-
sider all clocks. Before defining zone lags, we need to ensure that
they are well defined, thus a deadline restriction is enforced as
given in Definition 7.

Definition 7 (Deadline restriction). Given two clock zones z; and
Z, over the same set of clocks C, represented by DBMs 4,, and 4,,,
respectively, we say the deadline of z; is not later than that of z,,
denoted by z; <z, if for each clock x; e C,diff(4;(i,0),
44,(1,0)) < 0.

To successfully apply our proposed zone capping method, there
is a deadline restriction on the clock zones associated with delay-
able transitions. The set of clock zones specified on delayable tran-
sitions in a UTA model should be a partially ordered set of zones, as
defined in Definition 8.

Definition 8 (Partially ordered set of zones). Given a set of clock
zones Z = {zy,23,...,2Zn}, We say Z is a partially ordered set of zones
if for every two zones z;,z; € Z, either z; < z; or z; < z;. Thus, there
exists a partial order among the zones such as z;, <z, <--- <z,
where iy, ..., i € {1,...,n}.

The deadline restriction ensures that we can use the deadline of
a transition to cap the zone of a mode, without the need to calcu-
late the intersection of two transition deadlines.

The difference operators will be used to define zone lags in
Definition 9, which are well-defined due to the deadline
restriction.

Definition 9 (Zone entry lag, zone exit lag, and zone entry/exit
lag). Given two clock zones ¢; and ¢; for clocks in C, represented by
DBMs 47 and 4, respectively, the zone entry lag, zone exit lag, and
zone exit/entry lag between the two zones are denoted, respec-
tively, by enlag({q,(;), exlag({,(;), and eelag({;,(5), and are
defined as follows:

enlag((y, &) = max {diff(41(0,j), 42(0,j))},

exlag((1.2) = min {diff(41(1.0). 42(1.0))}

eelag(ly, () = min {diff (4

(,0), 42(0,1))}.

When enlag(¢{;, {,) is positive, it means {; is entered later than
{,; when zero, it means they are entered at the same time; and
when negative, it means {; is entered earlier than {,. When ex-
lag((q, () is positive, it means {; is exited later than {,; when zero,
it means they are exited at the same time; and when negative, it
means {; is exited earlier than {,. When eelag({y, {,) is positive, it
means (; is exited after {, is entered; when zero, it means they
are exited and entered at the same time; and when negative, it
means (; is exited before ¢, is entered. Note that there is no need
for the clock zones to intersect.

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641 1631

Example 3.In Example 1, enlag(z;,z)=(-1-(-3)" =

2" exlag(zy,z) =6—-7=—-1, and eelag(z;,z;) =6+ (-1) =5,
which shows that z; is entered later than z, by at most 2* time
units, z; is exited earlier than z, by at least 1 time unit, and z; is
exited after z; is entered by at most 5 time units.

For defining zone-based urgency semantics of a set of concur-
rent UTA, we first define complete urgency, which is a type of com-
position of UTA models.

Definition 10 (Complete urgency). During the composition of UTA
models that obey the deadline restriction, if an urgent transition
outgoing from a mode is eventually enabled, then complete urgency
requires that it is not disabled due to time elapse in the mode or in
any predecessor mode of that mode.

Definition 11 (Urgent timed system state graph (model composi-
tion)). Given an urgent timed system . with n components mod-
eled by UTA «7; = (M;,m?,C;, D, Li, y;, Ti, i), where 1 <i<n, the
system model is defined as a state graph represented by
A1 XX oy =Ay =(M,m° CD,L y,T,Q), where

e M =M; x M, x --- x My is a finite set of system modes such that
m=mm,...m, is a system mode in M corresponding to UTA
modes m; € M;,1 <i<n,

o m®=mImJ...m% € M is the initial system mode,

e C= U,-Ci,

e D=JD;,

o L=JL

e ¥ : M—B(C,D) gives the invariant of a system mode such that
x(m) = Aijy;(m;), where m=mym,...my, € M,

e TCM x M is a set of system transitions that preserves complete
urgency and is segregated into two types:

1. asynchronous transitions: a transition e € T is asynchronous iff
Ji,1 <i< n,e €T; such that e; = e, and

2. synchronized transitions: a transition e € T is synchronous iff
Jij,1<i# <necTieeT; such that y(e)=y;(e) =
leLinL;, ecT is the synchronization of ETA transitions e;
and e;, denoted as e = e;||e;, with conjuncted triggering condi-
tions and union of all transitions assignments as defined later
in this definition.

o Q: T(LB(U,Ci,UDy). {4, 6}, 2U ULy s a description of
T. For ease of notations, we use the following short forms:
Q(t) = (Y(t), T(t), u(t), p(t)), where t € T. Q is defined as follows:
- ¢ : T—L associates a synchronization label with a system tran-

sition such that y(e) = y;(e) for e = e; or e = gjle;,

- 7: T—-B(U;Ci, U;D;) gives the triggering condition of a system
transition such that t(e) = 7;(e;) for an asynchronous transi-
tion e = ¢; and t(e) = Ti(e;) A Tj(e;) for a synchronized transi-
tion e = ej|e;,

- pu:T—{2,90,¢&} gives the urgency type of a system transition,
such that p(e) = y;(e;) for an asynchronous transition e = e;
and u(e) is as defined in Table 1 for a synchronized transition
e = eille;,

- p: T—y, where 7 is a partial function mapping |J;(C; UD;) to
A7, gives the assignments on a system transition such that
p(e) = p;(e;) for an asynchronous transition e=e; and
p(e) = pi(ei) U p;(e;) for a synchronized transition e = e;f|e;.

Table 1

Urgency resolution for synchronized transitions.

1i(ei) A A $ A) &
wie) 2 B B & & &
ue) A)) & & £

Complete urgency, in other words, also means that there is no
urgent transition that could have been enabled, but was disabled
due to time elapse in an ancestor mode of the source mode of that
urgent transition. For example, suppose there is a lazy transition
with trigger x > 0 going from mode m to m’ and suppose m’ has
an outgoing delayable transition with deadline x < 8, then we
must take the lazy transition and enter m’ no later than x =8,
otherwise complete urgency restriction will not hold.

One might wonder if complete urgency is a very strict restric-
tion. We argue that though complete urgency is a restriction;
however, real system models often obey this restriction because
if deadline violations are to be handled then they are explicitly
modeled by a user. All the examples in Section 5.4 satisfy the
complete urgency restriction. Complete urgency holds for delay-
able transitions because the violation of a deadline (reaching
the source mode after the deadline of the transition has passed)
can always be modeled as a branching transition in some prede-
cessor mode of the source mode. Fig. 2 shows how the satisfac-
tion and the violation of a deadline can be modeled under the
complete urgency. Thus, we need only consider the satisfaction
of the deadline in the source mode, which basically is complete
urgency. Further, complete urgency also holds for eager transi-
tions because eagerness is similar to the as soon as possible
semantics, which means no behavior beyond the enabling time
of the eager transition need to be considered and this is what
complete urgency covers.

In Section 4, our zone-based urgency semantics will be pro-
posed on the system model that satisfies both the complete ur-
gency and the deadline restrictions, as described above. For
simplicity, henceforth we will assume the deadline restriction al-
ways holds, and simply talk about complete urgency.

Our model checking procedures for urgent timed automata are
implemented in the State-Graph Manipulators (SGM) model check-
er (Hsiung and Wang, 1998; Wang and Hsiung, 2002), which is a
high-level compositional model checker for real-time systems.
SGM model checks extended timed automata against temporal lo-
gic properties. For verifying an urgent timed system modeled by a
set of urgent timed automata, the system properties can be speci-
fied in some temporal logic. SGM uses the Computation Tree Logic
(Alur et al., 1990) as its logical formalism.

Definition 12 (Computation tree logic (CTL)). A computation tree
logic formula has the following syntax: ¢ ::= n|EG¢'|Ep'U¢"|#
¢'|¢' v ¢”, where 1 is a mode predicate, ¢’ and ¢” are CTL formulae.
EG¢’' means there is a computation from the current state, along

(x<0Ay<0)
x=0p=0;

(x<0Ay<0)

x<2Ayp<2)

Fig. 2. Modeling under complete urgency.

1632

which ¢’ is always true. E¢'U¢” means there exists a computation
from the current state, along which ¢’ is true until ¢” becomes
true. Shorthands like EF, AF,AG,AU, A, and — are standard (Henz-
inger et al.,, 1992).

Definition 13 (Model checking). Given an urgent timed system
state graph .o/, that represents an urgent timed system .#, a sys-
tem state (m,v), and a CTL formula, ¢, expressing some desired
specification, model checking verifies if .7, satisfies ¢ at (m,v),
denoted by (<74, m, V) = ¢. Model checking can be either explicit
using a labeling algorithm on the system state graph or symbolic
using a fixpoint algorithm on BDDs and DBMs.

4. Model checking urgent timed systems

Our target problem is to model and verify urgent timed systems
such as real-time embedded systems. A set of urgent timed auto-
mata is used to model such a system and model checking is used
to verify if the urgent timed system state graph, obtained by merg-
ing the set of UTA, satisfies user-given CTL properties. In this sec-
tion, we will propose solutions to the issues that were
introduced in Section 1. A precise definition of the semantics of ur-
gent timed automaton will be given in Section 4.1. A major exten-
sion to the conventional semantics involves setting the upper
bound of clock zones and its implementation using DBMs, which
is called zone capping, will be covered in Section 4.2. In Section
4.3, we will show how to cap mode zones for different composi-
tions of urgent outgoing transitions.

4.1. Absolute semantics of urgent timed automata

As defined in Definition 1, the urgency of a transition t is classi-
fied as lazy (u;(t) = 1), delayable (u;(t) = o), and eager (p;(t) = é&).
According to the definition of these transition urgencies in Defini-
tion 11, we formalize their absolute semantics in this subsection. As
shown in Fig. 3, consider a non-initial mode m € M; of an urgent
timed automaton .7; = (M;,m?,C;, Dy, L;, y;, Ti, ©;), which has an
incoming mode transition t; and an outgoing mode transition
tour. For simplicity, we first assume that m has a single incoming
and a single outgoing transition. From the two computation runs
in Fig. 3, we can make the following observations, where each state
sj = (mj, vj).

State sequence (S, ...,Sx_1) leads to zone z = (m,{y, fn)- Sk 1S
the first reachable state in zone z, that is, m;m,Vj,0 <j < k and
m, = m. S, is the first reachable state in zone z in which transition
tou iS enabled. Transition t,, may be taken anytime starting from
state s, before it is disabled, as in run 7/, and s, is the first reachable
state in zone z in which transition t,, is disabled before it is taken,
as in 7.

A, tin

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641

In Fig. 3, there are two kinds of computation runs 7 and 7’ as
follows.

then disabled, without

k+1 les1

e Transition t,, is enabled and

. £ t; t,
I?emg . taken:7w = (So—>S1 -+ -3 Sp —> Sks1 2 + -+ Se —> Ser1 — -+ Sg
X501 & --.), where starting from state s, all states are in the zone

z=(m,{p, B), thatis, v;(C;) — ¢ and vj(D;) — B, forallj > k. Let
IT be set of all such computation runs 7, where t,, is never taken.

e Transition t,, is enabled and is taken before being disabled:
= (50251 s Sy o se Eseyy s), where
the states s,...,s.; are in the zone z = (m,{,, B,). Let IT' be
the set of all such computation runs, where t,, is enabled and
taken before being disabled.

Since there are infinite number of states in which transition
towe May be enabled and taken, let us consider clock regions as
defined in Definition 4. Given a region R, let [T, CIT' be the
subset of computation runs where t,, is taken in region R, that
is, s €R.

The semantics of the transition behavior differ according to the
urgency K (tou) associated with the transition as follows.

e Lazy transition (2): If o, is a lazy transition, that is, f;(tour) = 4,
then the set of reachable computation runs that passes through
mode m is I1(m, toy,) = IT U IT, which means all runs, where t,;
after being enabled is either taken or not taken before being dis-
abled, are reachable.

e Delayable transition (9): If t,, is a delayable transition, that is,
Wi(towr) =06, then the set of runs through mode m is
II(m, to,) = II', which means all runs where t,, after being
enabled is taken no later than being disabled.

e Eager transition (¢): If to, is an eager transition, that is,
Wi(tour) = €, then the set of reachable computation runs that
passes through mode m is II(m,toy) = gl R = [Se], where
[Se] is the region in which t,, is enabled.

From above since | J;IT; C IT' C IT U IT', we can observe that ea-
ger transitions are the most restrictive ones and lazy transitions
are the most lenient ones, while the delayable transitions are in-
between.

4.2. Capping zones

The absolute semantics for urgency, as described in Section
4.1, are not practical for model checking. We propose a novel
zone-based urgency semantics that enforces urgency based on
the symbolic representation of clock constraints, namely clock
zones. As proved later in Section 5.2, zone-based urgency
semantics give the same model checking results as the TAD
or TAUT semantics. We will define a zone capping operation

tout
Y

T
. 4
to tl oooﬂ»@k—y ooo@e—pooo (XY}
Nt —— _

S

z=(m, G, Bn)

72-’ — A -
tO tl ...ﬂb@tk—b ...@te—b... @Lﬂ‘ (X X}

Fig. 3. Computation runs.

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641 1633

on the zones associated with modes that have urgent outgoing
transitions in an urgent timed system state graph. Under the
complete urgency restriction, our method is completely compat-
ible with the conventional TA model checking, thus any model
checker can be easily extended to model checking urgent timed
systems, without the need for zone partitioning (proved in
Section 5.3).

When a system is in a zone z = (m, {,, B,,) such that the clock
zone has no upper bound, that is, 4,(i,0) = (<,oc0) for all clocks
x; € C, or the upper bound allows the system to stay in the mode
m beyond that allowed by a delayable or an eager transition out-
going from the mode m, then we need to restrict the upper bound
of the zone. This kind of restriction is called zone capping. By cap-
ping a zone, a system is forced to exit the mode before the upper
bound is violated due to time elapse, otherwise the behavior of
the system will be undefined. Before defining zone capping, since
the upper bounds for delayable and eager transitions are differ-
ent, we need to first define the subzones that will be used as
upper bounds for zone capping. In the following, we define earli-
est subzone and final subzone that correspond to the upper
bounds for taking the eager transition and the delayable transi-
tion, respectively.

Definition 14 (Earliest subzone). Given a clock zone {, represented
by a DBM 4, the earliest subzone ESub({) is a subspace of { such
that the DBM 4, representing ESub({) is defined as follows:

(£,0) if 4(0,i) = (<,—c), i>0,
4.(1,0) = ¢ (<,c+1) if 4(0,i) = (<,—c), i>0,
AE(07]) = A(07])5 _’ > 07
A0(1,j) = (<,0), i>0,j>0.

Definition 15 (Final subzone). Given a clock zone ({, represented
by a DBM 4, the final subzone FSub({) is a subspace of { such that
the DBM 4; representing FSub({) is defined as follows:

(£,-0) if 4(j,0) = (<,c), j>0,

L) (<, =c+1) if 4(,0) = (<,0), j>0,

40D=13 40 if A4(j,0) = (<,00), j>0,
4:(3,0) = 4(1,0), i >0,

A (i,J) = (£,0), i>0,j>0.

Note that the DBMs for both ESub and FSub must be canon-
icalized before using them in further operations, which may
change the DBM elements besides the ones given in the above
definitions. A zone is called a subzone when it is the earliest
subzone or the final subzone for some clock zone. Zone capping
can be defined using a subzone as upper bound for a clock
zone.

Definition 16 (Zone capping). Given a clock zone { and a subzone
{s, represented respectively by DBMs 4 and 4, the zone { can be
capped by {; into a new zone denoted by ZCap({,{;) which is
defined by its DBM 4., as follows:

Ae(i,0) = min(4(i, 0), 4,(1,0)), Vi,
Aoy (i) = 4(3,j), Vj=0.

Examples and intuitive illustrations of earliest subzone, final
subzone, and zone capping are given in Fig. 4. It must be noted here
that after zone capping, we need to canonicalize the DBM A,
before they can be used for further processing in model
checking.

(1)

4.3. Enforcing urgencies

We now show how urgency is enforced in UTA by applying the
zone capping operation using the earliest and final subzones. Given
a mode m with zone (m, {,,, 8,,) and outgoing transitions classified
into three sets: a set of p delayable transitions T} = {tq|u(tqs) = 3},
a set of q eager transitions T, = {t.|u(t.) = €}, and zero or more
lazy transitions, urgency is enforced by modifying the clock zone
{m into a newly capped zone {'(m) as shown in Egs. (2)-(5), where
p.qe A,p=|T7|, and q=|T,|. If there is no urgent transition
(p = g =0), then the mode clock zone ¢,, is not modified, which
is shown in Eq. (2):

Casep=q=0:
Casep>0,q=0:
(i = ZCap(Lm, FSUD(Cm N Crey)s
for some t4 € {tqlexlag({m N Loy)s Cm N Cm&)) <0Vt eTy}, (3)

Cn = Cms 2)

Casep=0,q>0:

(i = ZC€ap(Ln, ESUb(Cm N oey))s

for some t. € {telenlag({m N &)y {m N o) <O,V € TR}, (4)
Casep>0,qg>0:

ZCap({m, ESub(Cn N Cory)))
. if eelag({m N oy {m N Gay) = 0,
™] ZCap({m, FSub (G N eey))
otherwise,

where t; € {tslexlag({m N ey, {m N ém)) <0Vt e T3}

and te € {tE‘enlag(Cm n gr(te)7 Cm n C‘c(té)) < O,Vf/e € TZI} (5)

Yy

The intuitions behind the zone capping definitions are as follows.
When there is only one delayable transition t4, we need to force
the system to leave mode m no later than the last subzone (before
ty becomes disabled) and this is the final subzone (FSub) of the
intersection of {,, and {,, which is FSub({y N {y,)). This final
subzone is used to cap {,. However, for multiple delayable transi-
tions, we need to select the one that becomes disabled the earliest,
which is the one with non-positive zone exit lag with all other
delayable transitions in Tj. This case is shown in Eq. (3).

When there is only one eager transition t., we need to force the
system to leave mode m no later than the first subzone (when t,
becomes enabled), which is the earliest subzone (ESub) of the
intersection of {,, and (r,), that is, ESub({n N {c,)). This earliest
subzone is used to cap {,,. However, for multiple eager transitions,
we need to select the one that becomes enabled the earliest, which
is the one with non-positive zone entry lag with all other eager
transitions in T,'. This case is shown in Eq. (4).

When there are delayable and eager transitions, in order to en-
sure time-reactivity or to avoid timelocks, we need to find a tran-
sition that is either disabled or enabled the earliest. The condition
eelag({m N ey)r Cm N {ry) = 0 implies the earliest enabled eager
transition t, becomes enabled not later than the earliest disabled
delayable transition t;. If the condition holds, we use ESub to cap
{m. Otherwise, we use FSub. This case is shown in Eq. (5).

As an illustration of the various definitions used in zone cap-
ping, Fig. 4 shows the results of computing the final subzone and
the earliest subzone of a zone z; and then these two subzones
are used to cap another zone z,. Fig. 4b clearly shows how the
zone-based urgency semantics differs from the absolute urgency
semantics in TAUT because the eager transition is allowed to be ta-
ken as late as in the earliest subzone of z;, while it must be taken
by (x <3 +1) A (y <3 +1), where I is the deadline parameter. Note
that TAD does not allow left open time intervals, hence cannot han-
dle this case.

1634
<0 <-1 <-1
n:| €7 <0 <3
<7 <3 <0
VA
FSub(z,)
h?.(.':lp(:; FSub{z,))

ESub(z;)

" 2Cap(zs, ESubl=)

ESub(z;) : <4 <0 <0
<4 <0 <0
<0 £-1 <-1]

ZCap(zz,ESub(z;)): | <4 <0 <3
<4 <3 <0

P.-A. Hsiung et al./The Journal of Systems and Software 82 (2009) 1627-1641

<0 <-3 <-3

z71:] £6 <0 <2
<6 <1 <0
[<0 <-6 <-6]
FSub(z;) : <6 <0 <0
| <6 <0 <0
| <0 <-1 <-1]
ZCap(z», FSub(z))) : <6 <0 <3
| <6 <3 <0

(a) Zone capping 2> with final subzone FSub(z;)

(b) Zone capping z» with earliest subzone ESub(z;)

Fig. 4. Illustration of zone capping.

5. Implementation, analysis, and application examples

The proposed method for model checking urgent timed systems
modeled by UTA has been implemented in the State-Graph Manipu-
lators (SGM) model checker (Wang and Hsiung, 2002), which is a
high-level compositional model checker for real-time systems. The
implementation of the algorithm for processing urgencies in a state
graph using zone capping is described in Section 5.1. UTA can be in-
put to SGM and model checked automatically against user-specified
CTL properties. Theoretical results such as semantics equivalence
and time reactivity are proved in Section 5.2. The proof of complete
urgency with deadline restriction being a sufficient and necessary
condition for avoiding zone partitioning is given in Section 5.3. It
is also shown how zone capping preserves complete urgency and
hence avoids zone partitioning, while satisfying all deadlines. Sev-
eral application examples given in Section 5.4 show how our ap-
proachis superior to the existing state-of-the-art methods and tools.

This is the first known implementation and handling of urgency
for timed automata in a CTL model checker itself. Other tools such
as UPPAAL does not support the urgency semantics described in
this work, while the IF toolset (Bozga et al., 1999) supports model-
ing of urgency, exhaustive simulation, and model checking using
observers only. Labeled transition systems (LTS) generated by IF
could blow up in size and even not terminate, as detailed in Section
5.4.

5.1. Urgency processing algorithm
The algorithm for processing urgency assumes that we already

have a system state graph, which represents the concurrent behav-
ior of a set of UTA and can be obtained by the merge manipulator in

SGM. The urgency processing algorithm as shown in Algorithm 1
works as follows. For each mode m in M, we count the number
of delayable and eager outgoing transitions (Steps 3 and 4). Then,
using the zone exit lag computation between two delayable transi-
tions, we find the delayable transition t;,x that will become dis-
abled the earliest (Steps 5-12). Similarly, using the zone entry
lag computation between two eager transitions, we also find the
eager transition tpm;. that becomes enabled the earliest (Steps
13-20). If both tyinx and tmie exist, then we compute the zone
exit/entry lag between them. If the lag is non negative, it means
Z;,.. 1s entered as late as when Z; , is exited, in which case the
mode zone is capped using tmi,.. Otherwise, the mode zone is
capped using tminx (Steps 21-31). The zone operations ZCap, ESub,
FSub, Intersect are used to modify the mode clock zone Z,
according to Egs. (2)-(5).

Algorithm 1. Process urgencies in a state graph

input State Graph: G//Definition 11:
G=(M,m°C,D,L,y,T,Q)
Eminx = tmine = NULL;
for each mode m e M
num_delayable = count delayable(m);
num_eager = count_eager(m);
if num_delayable > 0 then

Eminx = td, 3
for each élelayable transition ty#t,im, outgoing from m do
if exlag(Intersect)(Zm,Zt,,), Intersect
(Zm,Zt,) > 0) then
Eminxy = ta5

10 end

OO WUl b WN =

{e]

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641 1635

11 end

12 end

13 if num_eager > 0 then

14 Emine = Leys

15 for each eager transition te#t,,. outgoing from m do

16 if (enlag(Intersect(Zm,Zt,,,).

Intersect(Zm,Z;,)) > 0) then

17 tmine = le;

18 end

19 end

20 end

21 if num_delayable > 0 then

22 if num_eager > 0 and

eelag(Intersect(Zm,Zs,,,) Intersect(Zm,”Zt,,,)) = 0
then

23 m = ZCap(Zm,ESub(Intersect(Zm, Zt,y.))):

24 end

25 else

26 Zm = 2Cap(Zm, FSub(Intersect(Zm, Zt,,,)))s

27 end

28 end

29 else if num_eager > 0 then

30 Zm = ZCap(Zm,ESub(Intersect(Zm, Zt,.))):

31 end

32 end

33 return 0;//Result: stategraph G is modified through zone
capping

For an urgent system state graph, the complexity of the algo-
rithm is ¢(JM| x |T| x |C|*). For each mode in M, we need to calcu-
late the zone exit lag for each outgoing delayable transition and the
zone entry lag for each outgoing eager transition. The zone lag
computations have ¢(|C|) time complexity. However, the zone cap-
ping, the subzone computation, and the intersection operations all
require @(|C)?) time complexity. Hence, the complexity of the algo-
rithm is @(|M| x |T| x |C|*). Note that the state graph must be
pruned after zone capping because some outgoing transitions
may become invalid. As a result, the graph becomes smaller in size
and thus accelerates model checking.

5.2. Theoretical analysis

We give some theoretical results pertaining to our proposed
zone capping method for enforcing zone-based urgency semantics.
We first state that zone-based urgency semantics is equivalent to
absolute urgency semantics as advocated by the previous work
on urgency modeling (Barbuti and Tesei, 2004; Bornot et al.,
1997; Gebremichael and Vaandrager, 2005). Next, we state that
our method preserves time-reactivity for urgent timed automata.

Theorem 1 (The same model-checking results). The zone-based
urgency semantics of UTA and the absolute urgency semantics of TAD
and TAUT give the same model checking results, whenever the models
allow urgency semantics.

Proof. The proposed zone-based urgency semantics, as given in
Eqgs. (2)—(5), uses the operations of earliest subzone, final subzone,
and zone capping from Definitions 14-16, respectively. One can
easily observe that the mode zone capping operation is performed
individually for each clock and each clock difference. This is valid
because the clock zones are geometrically convex polytopes and
capping amounts to restricting its bounding cells (hyperplanes)
individually. Hence, we need only discuss the proof for a basic
clock constraint such as x ~ c or x — y ~ ¢, where x,y are clocks, ¢
is an integer, and ~ € {<, <, >,>}.

For delayable transitions, the zone-based urgency semantics
described in Section 4.1 includes only those computation runs that
enforce all enabled delayable transitions to be taken before being
disabled, that is, mode zones are bounded by the final subzones of
the outgoing delayable transition that is disabled earliest. From the
definition of final subzone (Definition 15), one can observe that all
upper bounds are not changed, which shows that the zone-based
urgency semantics are the same as the absolute urgency semantics
for right open (x < ¢) and right closed (x < c) time intervals.

For eager transitions, the zone-based urgency semantics
described in Section 4.1 includes only those computation runs
that enforce an eager transition to be taken within the earliest
subzone in which it is enabled. For a left closed time interval, x > c,
the zone capping is performed at x = ¢, which is semantically
equivalent to the absolute urgency semantics. However, for a left
open time interval, x > c, there is significant difference among UTA,
TAD, and TAUT urgency semantics. UTA urgency semantics
requires an eager transition with a left open time interval x > ¢
to be taken within the zone that is bounded by (c, c + 1) for clock x,
that is, the eager transition can be taken as early as x = ¢ + J or as
lateasx = ¢+ 1 — 6, where 6 > 0 is an infinitesimally small amount
of time. As far as TAD urgency semantics are concerned, left open
time intervals are not allowed on eager transitions. TAUT urgency
semantics require an eager transition with a left open time interval
X > c to be taken within the zone that is bounded by (c,c + 1) for
clock x, where [€ 2.4 is the deadline parameter associated with
the TAUT. Since [is made as small as possible in the TAUT urgency
semantics, [<1 always holds. Because (c,c+1) C (c,c+ 1), the
zone in which an eager transition is taken in the TAUT semantics is
a subzone of the zone in which the same transition is taken in the
UTA semantics. This means that all computation runs of a TAUT are
also runs of UTA. The UTA semantics include some more runs that
allow the eager transition to be taken in the zone with
x € [c+1,c+1). However, it is well-known that the CTL model
checking results are the same for all states in the same region (Alur
and Dill, 1994). Since all states in (c,c+1) and in [c+l,c+1)
belong to the same region (c, c + 1), the model checking results will
be the same for UTA and TAUT semantics. Notationally,
(Lura,m) E ¢ <= (Aaur,m) E ¢ and (Lura, M) F ¢ =
(o/1aur, M) E ¢, where o/yrs and «/7ayr are the same model under
UTA and TAUT semantics, respectively, m and nmv are respectively
the source and destination modes of an eager transition with a left
open time interval, and ¢ is a CTL property.

We have proved that the zone-based urgency semantics of
the proposed UTA model is the same as the absolute urgency
semantics of TAD and TAUT for right open, right closed, and left
closed time intervals. For left open time intervals, we have also
proved that the zone-based urgency semantics of UTA and the
urgency semantics of TAUT give the same model checking
results. Thus, the model checking results are the same for both
semantics. O

Theorem 2 (Time-Reactivity). The proposed zone capping method
for enforcing zone-based urgency semantics preserves time-reactivity
for urgent timed automata.

Proof. We prove by contradiction. Suppose UTA is not time reac-
tive. By Definition 3, there exists at least one state s with time lock,
which means time progress is not possible in s at some time t.
Under the zone-based urgency semantics, modes without urgent
transitions do not have upper bounded clock zones, which means
time progress is always possible in such modes. For a mode with
one or more urgent transitions, the clock zone is capped by either
a final subzone or an earliest subzone. In a final subzone,
FSub({, N {z,), the delayable transition t, is enabled and is taken
before being disabled. In an earliest subzone, ESub((n N (), the

1636 P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641

eager transition t. is enabled and taken. Thus, the zone capping
operation always ensures that at least one transition is enabled
at the time ¢t when time progress is stopped in state s. However,
this results in a contradiction because according to Definition 3,
no transition is enabled when time progress is stopped in s. Thus,
there is no such state s with time lock in UTA. Hence, the proposed
zone capping method for enforcing zone-based urgency semantics
preserves time-reactivity for UTA. O

5.3. Zone capping vs. zone partitioning

It is a common belief that model checking timed systems with
urgency requires zone partitioning (Gebremichael and Vaandrager,
2005) because model checking requires clock zones to be convex,
while the urgency processing (satisfaction) of deadline predicates
generates non-convex zones due to disjunction (#\/;d;). Zone par-
titioning transforms a non-convex zone into a set of convex zones.
It was suggested in a previous work (Gebremichael and Vaandrag-
er, 2005) that we should restrict clock zones in urgency predicates
to avoid generating non-convex time progress predicates (zones).
It was neither shown how the restrictions should be performed
nor how complex the process could be. For urgent timed systems
with complete urgency, it is shown here how the proposed zone
capping method avoids non-convex zones and thus neither needs
zone partitioning nor any restrictions on urgency predicates.

We use a simple example to illustrate our claims and then gen-
eralize upon the results. Given three concurrently enabled transi-
tions as shown in Fig. 5, two of which are delayable transitions
and one lazy transition. The set of deadline predicates of the two
delayable transitions is {x=2Ay=2,x=3 Ay =3}. To satisfy
the deadline predicates, zone partitioning constructs five disjoint
partitions of the 2-clock #-¢ x Z-0 zone space, for example,
{Xx<2AYy<2,2<x<3Ay<3,2<y< 3AXx<2,3<y,x>3A
y < 3} is one possible way of partitioning and is illustrated in
Fig. 6.

To satisfy the same set of deadline predicates, zone capping
bounds mode zones into three types of zones, namely {x < 2A
y<2,x<3Ay<3,x > 0AYy > 0}. The urgent timed system state
graph of the three concurrent transitions in Fig. 5 is shown in Fig. 7,
where the mode predicates are the results of zone capping. From
Theorem 2, we know that the graph is time-reactive and we can
also easily observe that all deadline predicates are satisfied. This
shows that zone capping allows all deadline predicates to be satis-
fied without zone partitioning or zone restriction.

Further, as illustrated in Fig. 8, if we construct a state graph
based on zone partitioning, it has 42 modes. The state graph is
much larger in size than that produced by zone capping applied
to a state graph, which has only 16 modes. This shows that zone
capping is not only computationally less expensive by avoiding
zone partitioning, but is also more memory efficient by producing
smaller state graphs. This difference in state graph sizes occurs
mainly due to the different composition semantics adopted in zone

x<2Ay<2)y® (x<3Ayp<3)’ (x<0Aay<O)

Fig. 5. Example for comparing zone partitioning and zone capping.

PN
4
Z4
=3
3
Z3
x<2A2<y<3
2 Zs
Z5 X>3
2<x<3] Ay<3
1 AY<3
1 1 TE2ZAPED
1 2 3 4

Fig. 6. Zone partitioning for deadlines {x =2Ay=2,x=3 Ay =3}.

capping and in zone partitioning. Under the complete urgency
composition restrictions, zone capping produces smaller state
graphs that are time reactive and satisfies all deadlines. The smal-
ler state graphs, in turn, make model checking more time and
memory efficient. If we also enforce the complete urgency restric-
tion on the zone partitioning based state graph (Fig. 8), in fact, we
get a graph that is similar to the one obtained by zone capping
(Fig. 7).

In general, we prove in Theorem 3 that complete urgency with
deadline restriction is a necessary and sufficient condition for
avoiding zone partitioning. Further, we prove in Theorem 4 that
zone capping preserves and is the only operation required to pre-
serve the complete urgency restriction and thus does not need
zone partitioning. Further, it is also shown in Theorem 5 that zone
capping satisfies all deadline predicates.

Theorem 3. Necessary and sufficient condition for avoiding zone
partitioning

Zone partitioning can be avoided during the composition of urgent
timed automata if and only if complete urgency composition restric-
tion is maintained.

Proof. We first prove the sufficiency and then the necessity.

Sufficient: Deadline predicates can be represented by zones,
thus depending on the urgency type we can use the earliest or final
subzones to generate a partial order for the deadline predicates.
Without loss in generality, assume d; < d, < --- < d; for a mode m
with k urgent outgoing transitions t;, deadline predicates d;, and =<
denoting the precedence relation.

To satisfy the first deadline predicate d, the corresponding
zone within which t; must be taken is z; =ZCap
(Cms SUb({m N &e(ry))), where Sub could be ESub or FSub depending
on the urgency type of t;. Due to complete urgency, the satisfaction
of all other deadline predicates d;,i > 1, can be considered later in
the runs starting from m, thus currently besides z;, we need not
consider the remaining part of the zone (p, i.e., {;; —z;, which is
beyond z; in time. Hence, we do not need zone partitioning, which
is generally used to convert {,;, — z; into a set of convex zones. The
satisfaction of d;,i > 1 will be considered later in the runs from m.

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641

x<2/\y<2)%

J"

£ 2 (xSQ/ﬁ\
y=3) i y=2y
(x=<3n
¥ y<3) ?

1637

-

(x<2A (x<3 A

li y<2)® y<3)
(x<2A x<3A (x<2A
<2y’ y<3) ys2)P

Fig. 7. State graph of comparison example after zone capping.

(x<2a) (x<3na
y<2)P® \ y<3)P® x<3,\ A)
x<3 1y xgz,\(xﬁfﬁ/"\ (x<3A (x<3A (x<‘7/\ (x<3na (x<3,\
i E Lys2)ﬁ y<3)’ y<3® 3y <2y’ Z E \(A y<3)6 A r<I
(x<3/\ x£3/\ (x=2A (x=<2a
y<3y y<3y® y<2) r<2)f

Z1=x22Ay<2

s=x>3Ay<3 Z=z1UnVUz

2=2<x<3Ay<3

23=2<y<3Axg2
E=XxS2Ay>2

zn=3<y
Z1=x>2

Fig. 8. State graph of comparison example using zone partitioning.

Necessary: Suppose complete urgency does not hold, that is,
there exists at least one urgent transition t; in a computation run,
which was disabled due to time elapse in some mode m. We thus
need to consider the possibly non-convex zone (p — (), where
the zone subtraction operator - in general requires zone partition-
ing. Hence, complete urgency is necessary for avoiding zone
partitioning. O

Theorem 4 (Complete urgency semantics). Zone capping preserves
the complete urgency restriction in an urgent timed system state

graph.

Proof. From Eqgs. (2)-(5), we observe that the proof is trivial
because all zone capping is performed at the deadline of the earli-
est disabled delayable transition or of the earliest enabled eager
transition. This means that no enabled urgent transition is disabled
due to time elapse in a mode, in other words, complete urgency
restriction is preserved. O

Theorem 5 (Deadline satisfaction). Zone capping method allows all
deadline predicates to be satisfied.

Proof. We prove by contradiction. Suppose there exists a deadline
predicate x ~ ¢ in some urgent timed system state graph that is not
satisfied after zone capping is applied to the state graph. For delay-
able transitions, deadline violation means the transition is enabled
and is not taken before it is disabled due to time progress. From
Egs. (3) and (5) (with p > 0), we can see that if there is a delayable
transition, the source mode zone is capped either at the final subz-
one of the clock trigger of the earliest disabled transition or at the
earliest subzone of an eager transition if the eager transition is
enabled before the earliest disabled delayable transition is disabled
(the eelag() condition). This means zone capping does not allow
any delayable transition’s deadline to be violated due to time pro-
gress. Hence, there is no such delayable transition. For eager tran-
sitions, deadline violation means the transition is enabled and is
not taken within the subzone in which it is enabled. Similarly, from

1638

Egs. (4) and (5) (with g > 0), we can observe that if there is an
eager transition, the source mode zone is capped either at the ear-
liest subzone of the clock trigger of the earliest enabled transition
or at the final subzone of a delayable transition if the delayable
transition is disabled before the earliest enabled eager transition
is enabled. This means zone capping does not allow any eager tran-
sition’s deadline to be violated due to time progress. Hence, there is
also no such eager transition.

From the above analysis, we can observe that there is neither a
delayable nor an eager transition, whose deadline is violated by
zone capping. Hence, our assumption is false, and all deadline
predicates are satisfied after zone capping is applied. O

Corollary 1. Zone capping produces time-reactive state graphs that
satisfy all deadlines, preserves complete urgency, and does not need
zone partitioning.

Proof. The results can be trivially derived from Theorems 2-5. O

5.4. Application examples

Besides SGM, there are no other known CTL model checkers that
have implemented the proposed urgency semantics. The closest
work that we have found is the IF toolset (Bozga et al., 1999),

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641

which performs model checking using observers. The UPPAAL
model checker has implemented urgent channels and committed
locations, however these cannot be used to model the urgency
semantics described in this work. We first show why urgent chan-
nels and state invariants cannot model the urgency semantics.
Then, we compare SGM with IF using six examples from the
embedded real-time systems domain, which show that our ap-
proach as implemented in SGM always terminates and is more
efficient.

We found two problems while modeling urgency in UPPAAL, as
follows: (1) an eager transition with time constraints could not be
modeled by an urgent channel because an urgent channel cannot
be associated with any time constraint, (2) a delayable transition
when forced out of a state using invariants in UPPAAL could result
in timelocks, and (3) the priority on transitions and processes can-
not force a model to exit a state as required by delayable or eager
transitions. Out of the six examples we tried, as shown in Table 2,
only one could be modeled in UPPAAL using state invariants with-
out resulting in timelocks, namely periodic processes, because
there was no communication between the periodic processes.

We compared our urgency semantics implementation in SGM
with that in IF using six typical examples as summarized in Table
2, which have various combinations of eager and delayable transi-
tions. For each example, we also specified a few CTL properties to
verify the urgency semantics, which could not have been possible

Table 2

Application examples.

No. System n(Mi|/|Ti)) Urgency) >4q
1 Water sprinkler 2(2/2,2/2) Single delayable 1 0
2 Heating apparatus 2(2/2,2/2) Concurrent eager 0 4
3 Error checker 2 (2/3,2/2) Branching eager 0 4
4 Priority arbiter 3 (3/4, 3/4, 3/4) Branching eager/delayable 1 9
5 Periodic processes 2 (3/3, 3/3) Single eager/delayable 2 4
6 Lip synchronization (VF) 4 (2/2,1/1, 5/5, 4/5) Complex eager/delayable 1 10
7 Lip synchronization (SF) 3 (1/1, 2/2, 6/7) Complex eager/delayable 2 7

n: # of UTA, VF: Video first, SF: Sound first, " p: # delayable trans,)" q: # eager trans, models and input files: http://embedded.cs.ccu.edu.tw/~esl_web/Project/Ch/SGM/.

SoundStr
t6=0

(flag = 0)°
t6:=0
sync sready1

(3<=t7<=5)°
t7:=0
flag:=0
sync vready

(t6=1)
t6:=0
vmins := vmins -1
sync sready2

VideoSync
t1=0

SoundSync

t1:=0

. €
(vmins<0) sync vready

(0 <= vmins <= 11)8
vmins := vmins + 4

))\

(t2<2
sync sready1

Video First

SoundStr VideoStr
t6 =0, flag =0, t7:=0
vmins = 10
s02
(flag = 1)°
t7:=0
sync vready1
(t6=1)° (3<=1t7<=5)0
t6:=0 t7:=0
vmins := vmins -1 sync vready2
flag:=1

VideoSync
t1:=0

t1:=0

sync vready1 sync vready?

(0 <= vmins <=11)
vmins := vmins+4

Sound First

Fig. 9. Lip synchronization algorithm.

http://embedded.cs.ccu.edu.tw/~esl_web/Project/Ch/SGM

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641

if we used UPPAAL or any other model checker without urgency
semantics. Due to page-limits, only the most complex example,
namely Lip Synchronization, is illustrated and described here,
while the models and input files of all examples are available on
the web (Table 2). A toy example is used to illustrate the differ-
ences between SGM, UPPAAL, and IF.

The Lip Synchronization algorithm was first described in the
synchronous language Esterel (Stefani et al., 1992). Then specifica-
tions in a number of different formalisms were presented. The lip
synchronization algorithm tries to synchronize audio and video
streams as long as their arrival times are within certain time inter-
vals. It is a typical real-time protocol for distributed multimedia
systems. Bowman et al. (Bowman et al., 1998) verified the lip syn-
chronization algorithm using the UPPAAL model checker. However,
they also described the limitations in UPPAAL in detecting time-
locks and in the “hand-wired” construction of timeout operators
and watchdog timers, which could easily lead to timelocks. Since
the lip synchronization algorithm distinguished between the initial

1639

arrival of video or sound, it was easy to partition the algorithm into
two parts for verification. The models for initial arrival of video and
that of sound are given in Fig. 9. The main job of lip synchroniza-
tion is to compute vmins, the difference between the rate of the
sound stream and the video stream. If vmins is out of some prede-
fined range, it means that the streams are out of synchronization.
We verified the following CTL property, where mode »07 repre-
sents out of synchronization: AG('mode(VideoSync) = v07).

In Fig. 9, we can see that it is much straightforward to model
systems with urgency using UTA in SGM, compared to the con-
struction of timeout operators and of watchdog timers, using UP-
PAAL committed locations and urgent channels as in (Bowman
et al., 1998). As shown in Table 3, we experimented with different
video input streams for the lip synchronization algorithm, by
restricting the video input clock such as t7 € [3,4], that is a video
frame comes every 3 to 4 time units. The results of comparing
SGM with IF for the six examples are given in Table 3. We can ob-
serve that the state-graphs with urgency handling as generated by

Table 3
State graph sizes produced by SGM and IF.
Example 1 2 3 4 5 6 7
t7 € [3,4] t7 € [3,5] t7 € [3,4] t7 € [3,5]

Size M M T M (T M [T M| T M| T M| T M| T M| T
IF® 31 65 12 17 8 14 N/T 341 759 N/T N/T N/T N/T
IF° 17 28 10 13 7 11 N/T 339 673 N[T N/T N/T N/T
SGM® 9 11 8 9 4 5 200 327 116 194 178 184 700 892 155 165 506 594
t7: Video Clock.

@ Using DBM and DFS traversal with partial order reduction (-dfs -po).

> Using DBM and -tf -dfs -po parameters.

¢ No reduction, N/T: non-terminating.
Table 4
Experiment execution time (s).
Example 1 2 3 4 5 6 7

t7 € [3,4] t7 € [3,5] t7 € [3,4] t7 € [3,5]

IF® 0.04 0.02 0.01 N/T 0.08 N/T N/T N/T N/T
IF° 0.01 0.01 0.01 N/T 0.03 N/T N/T N/T N/T
SGM® 0.02 0.02 0.01 6.16 0.27 2.14 4.55 2.58 3.36
t7: Video clock.

2 Using DBM and DFS traversal with partial order reduction (-dfs -po).

> Using DBM and -tf -dfs -po parameters.

¢ No reduction, N/T: Non-Terminating.

x=0,h=0 x=0,h=0
(x=6)" (x = 6)"
h:=1 AB h:=1
6<=x<=20 x<=5 >
(x<=20 A h = 1)0 Cannot be
h=0x:=0 enabled
SGM Zone Capping UPPAAL Invariant
(x=6)"h:=1)
(x =6y time

h:=

(x<=20 Ah=1)° h:=0;x:=0;

IFLTS

Fig. 10. Comparing between zone capping, state invariant, and IF LTS.

1640 P.-A. Hsiung et al./The Journal of Systems and Software 82 (2009) 1627-1641

SGM are all smaller in size than the labeled transition systems
generated by IF. For the larger examples such as the priority arbiter
and the lip synchronization algorithm, the exhaustive simulation
in IF does not terminate, while SGM can generate manageable state
graphs that can be model checked. Table 4 shows the running time
of all the experiments.

To show how the LTS generated by IF differs from our zone-based
urgency handling in SGM, we use a small example, as illustrated in
Fig. 10, where the delayable transition with trigger x < 20 when sim-
ulated in IF, using -t f -dfs -po parameters, results in an LTS with
five states and eight transitions (the initial state and initial transition
are also taken into account by IF). In comparison, the urgency seman-
tics in SGM produces a state-graph with only two states and three
transitions. Moreover, using state invariants in UPPAAL results in
only a single initial state due to timelock as shown in Fig. 10.

From the above experiments, we can observe that our zone-
based urgency semantics as implemented in SGM has the following
advantages. First, compared to the state-of-the-art CTL model
checkers, modeling and verifying systems with urgency semantics
has become feasible, straightforward, flexible, and consistent with
model checking. Second, compared to the IF toolset, the urgency
handling is more symbolic and the sizes of the state graphs are
thus much reduced, which makes model checking more efficient.
Third, timelocks are naturally avoided due to the UTA semantics
and urgency handling, thus we need not use invariants for enforc-
ing urgency now. A limitation of the proposed zone-based urgency
semantics in SGM is that only one type of composition (complete
urgency) is proposed and implemented for urgent transitions.

6. Conclusions

We have proposed the verification of urgent timed systems,
modeled by urgent timed automata (UTA), using a zone-based ur-
gency semantics for CTL model checking. We have proposed a no-
vel zone capping operation, which enforces the semantics of
urgency types in UTA and produces time-reactive state graphs that
satisfy all urgency deadlines. A necessary and sufficient condition,
called complete urgency, is also proved for avoiding zone partition-
ing. It is shown that complete urgency is preserved by the newly
proposed zone capping method. Several application examples
illustrate how our method for verifying real-time embedded sys-
tems with urgency is more symbolic and efficient compared to
the state-of-the-art model checkers such as IF. In the future, we
will consider different types of urgency compositions.

References

Alur, R, Dill, D.L., 1994. A theory of timed automata. Theoretical Computer Science
126 (2), 183-235.

Alur, R, Courcoubetis, C., Dill, D.L., 1990. Model-checking for real-time systems. In:
Proceedings of the 5th Annual Symposium on Logic in Computer Science, IEEE
Computer Society Press, pp. 414-425.

Barbuti, R., Tesei, L, 2004. Timed automata with urgent transitions. Acta
Informatica 40 (5), 317-347.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Wang, Y., 1995. UPPAAL: a tool
suite for automatic verification of real-time systems. In: Proceedings of
Workshop on Verification and Control of Hybrid Systems III, LNCS, vol. 1066,
pp. 232-243.

Bornot, S., Sifakis, J., 2000. An algebraic framework for urgency. Information and
Computation 163 (1), 172-202.

Bornot, S., Sifakis, J., Tripakis, S., 1997. Modeling urgency in timed systems. In:
Proceedings of the International Symposium on Compositionality: The
Significant Difference, LNCS, vol. 1536, Springer-Verlag, pp. 103-129.

Bowman, H., Faconti, G., Katoen, J.-P., Latella, D., Massink, M., 1998. Automatic
verification of a lip synchronisation algorithm using UPPAAL. In: Proceedings of
the 3rd International Workshop on Formal Methods for Industrial Critical
Systems, pp. 97-124.

Bozga, M., Fernandez, J.Cl., Ghirvu, L., Graf, S., Krimm,].P., Mounier, L., 1999. IF: an
intermediate representation and validation environment for time asynchronous
systems. In: Proceedings of the Formal Methods Conference (FM), September
1999, pp. 307-327.

Bozga, M., Graf, S., Mounier, L., Ober, I, Roux, J.-L., Vincent, D., 2001. Timed
extensions for SDL. In: Proceedings of the 10th SDL Forum, LNCS, vol. 2078,
Springer-Verlag, pp. 223-240.

Cassez, F., Pagetti, C., Roux, O., 2002. A timed extension for AltaRica. Research
Report R 12002-13, IRCCyN/CNRS, Nantes, France. <http://[www.irccyn.ec-
nantes.fr>.

Clarke E.M., Emerson. E.A., 1981. Design and sythesis of synchronization skeletons
using branching time temporal logic. In: Proceedings of the Logics of Programs
Workshop, LNCS, vol. 131, Springer-Verlag, pp. 52-71.

Dill, D.L, 1989. Timing assumptions and verification of finite-state concurrent
systems. In: Proceedings of Workshop on Automatic Verification Methods for
Finite State Systems, LNCS, vol. 407, Springer-Verlag, pp. 197-212.

Gebremichael, B., Vaandrager, F., 2005. Specifying urgency in timed I/O automata.
In: Proceedings of the 3rd IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pp. 5-9.

Henzinger, T.A., Nicollin, X,, Sifakis, J., Yovine, S., 1992. Symbolic model checking for
real-time systems. In: Proceedings of the IEEE International Conference on
Logics in Computer Science (LICS), pp. 394-406.

Hogrefe, D., Koch, B., Neukirchen, H., Some implications of MSC, SDL, and TTCN
timed extensions for computer aided test generation. In: Proceedings of the
10th SDL Forum, LNCS, vol. 2078, Springer-Verlag, pp. 168-181.

Hsiung, P.-A., Wang. F., 1998. A state-graph manipulator tool for real-time system
specification and verification. In: Proceedings of the 5th International
Conference on Real-Time Computing Systems and Applications (RTCSA).

INTERVAL Consortium, 1999-2001. Interval project: formal design, validation and
testing of real-time telecommunication systems, (definition of the timed
extensions to SDL, MSC, TTICN). IST-1999-11557. <http://www-
interval.imag.fr>.

Kaynar, D.K,, Lynch, N., Segala, R., Vaandrager, F., 2003. Timed I/O automata: a
mathematical framework for modeling and analyzing real-time systems. In:
Proceedings of the 24th IEEE International Real-Time Systems Symposium
(RTSS), IEEE CS Press, pp. 166-177.

Kwiatkowska, M., Norman, G., Segala, R., Sproston, J., 2000. Verifying soft deadlines
with probablistic timed automata. In: Proceedings of the Workshop on
Advances in Verification (WAVe).

Lin, S.-W., Hsiung, P.-A., Huang, C.-H., Chen, Y.-R., 2005. Model checking prioritized
timed automata. In: Proceedings of the 3rd International Symposium on
Automated Technology for Verification and Analysis (ATVA), LNCS, vol. 3707,
Springer-Verlag, pp. 370-384.

Sifakis, J., Yovine, S., 1996. Compositional specification of timed systems. In:
Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), LNCS, vol. 1046, Springer-Verlag, pp. 347-359.

Stefani, J.-B., Hazard, L., Horn, F., 1992. Computational model for distributed
multimedia application based on a synchronous programming language.
Computer Communications (Special Issue on FDTs) 15 (2), 114-128.

Wang, F., 2001. RED: model-checker for timed automata with clock-restriction
diagram. In: Proceedings of the Workshop on Real-Time Tools, August 2001,
Technical Report 2001-014, Department of Information Technology, Uppsala
University, ISSN:1404-3203.

Wang, F., Hsiung, P.-A., 2002. Efficient and user-friendly verification. IEEE
Transactions on Computers 51 (1), 61-83.

Yovine, S., 1997. Kronos: a verification tool for real-time systems. International
Journal of Software Tools for Technology Transfer 1 (1/2), 123-133.

Pao-Ann Hsiung Ph.D., received his B.S. in Mathematics and his Ph.D. in Electrical
Engineering from the National Taiwan University, Taipei, Taiwan, ROC, in 1991 and
1996, respectively. From 1996 to 2000, he was a post-doctoral researcher at the
Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC. From Feb-
ruary 2001 to July 2002, he was an assistant professor and from August 2002 to July
2007 he was an associate professor in the Department of Computer Science and
Information Engineering, National Chung Cheng University, Chiayi, Taiwan, ROC.
Since August 2007, he has been a full professor. Dr. Hsiung was the recipient of the
2001 ACM Taipei Chapter Kuo-Ting Li Young Researcher for his significant contri-
butions to design automation of electronic systems. Dr. Hsiung was also a recipient
of the 2004 Young Scholar Research Award given by National Chung Cheng Uni-
versity to five young faculty members per year. Dr. Hsiung is a senior member of the
IEEE, a senior member of the ACM, and a life member of the [ICM. He has been
included in several professional listings such as Marquis’ Who’s Who in the World,
Marquis’ Who's Who in Asia, Outstanding People of the 20th Century by Interna-
tional Biographical Centre, Cambridge, England, Rifacimento International’s Admi-
rable Asian Achievers (2006), Afro/Asian Who’s Who, and Asia/Pacific Who’s Who.
Dr. Hsiung is an editorial board member of the International Journal of Embedded
Systems (IJES), Inderscience Publishers, USA; the International Journal of Multi-
media and Ubiquitous Engineering (IJMUE), Science and Engineering Research
Center (SERSC), USA; an associate editor of the Journal of Software Engineering
(JSE), Academic Journals, Inc., USA; an editorial board member of the Open Software
Engineering Journal (OSE), Bentham Science Publishers, Ltd., USA; an international
editorial board member of the International Journal of Patterns (IJOP). Dr. Hsiung
has been on the program committee of more than 50 international conferences. He
served as session organizer and chair for PDPTA’99, and as workshop organizer and
chair for RTC'99, DSVV’2000, and PDES'2005. He has published more than 160
papers in international journals and conferences. He has taken an active part in
paper refereeing for international journals and conferences. His main research

http://www.irccyn.ec-nantes.fr
http://www.irccyn.ec-nantes.fr
http://www-interval.imag.fr
http://www-interval.imag.fr

P.-A. Hsiung et al./ The Journal of Systems and Software 82 (2009) 1627-1641 1641

interests include reconfigurable computing and system design, multi-core pro-
gramming, cognitive radio architecture, System-on-Chip (SoC) design and verifi-
cation, embedded software synthesis and verification, real-time system design and
verification, hardware-software codesign and coverification, and component-based
object-oriented application frameworks for real-time embedded systems.

Shang-Wei Lin received his B.S. in management information system from National
Chung Cheng University, Chiayi, Taiwan, ROC, in 2002. He is currently working
towards his Ph.D. in the Department of Computer Science and Information Engi-
neering at National Chung Cheng University, Chiayi, Taiwan, ROC. He is a teaching
and research assistant in the Department of Computer Science and Information
Engineering at National Chung Cheng University. His research interests include
formal verification, formal synthesis, scheduling, embedded system design, and
object-oriented software synthesis.

Yean-Ru Chen received her B.S. in Computer Science and Information Engineering
from the National Chiao Tung University, Hsinchu, Taiwan, ROC in 2002. From 2002
to 2003, she was employed as an engineer in SoC Technology Center, Industrial
Technology Research Institute, Hsinchu, Taiwan, ROC. She received her M.S. in
Computer Science and Information Engineering from the National Chung Cheng
University, ChiaYi, Taiwan, ROC in 2006. She is currently a Ph.D. candidate in
Graduate Institute of Electronics Engineering of National Taiwan University, Taipei,
Taiwan, ROC. Her current research interests include model checking, safety-critical
systems and Electronic System Level (ESL) Design.

Chun-Hsian Huang received his B.S. degree in Information and Computer Education
from National TaiTung University, TaiTung, Taiwan, ROC, in 2004. He is currently
working toward his Ph.D. in the Department of Computer Science and Information
Engineering at National Chung Cheng University, Chiayi, Taiwan, ROC. He is a
teaching and research assistant in the Department of Computer Science and Infor-
mation Engineering at National Chung Cheng University. His research interests

include dynamically partially reconfigurable systems, UML-based hardware/soft-
ware co-design methodology, hardware/software co-verification, and formal
verification.

Chihhsiong Shih received his BSc degree from Chung Yuan Christian University,
Taiwan, in 1984 and his MSc in computer science, and PhD degree in mechanical
engineering in 1997, all from Rensselaer Polytechnic Institute. Since then, he has
been working in the CAD software industry. From 1997-2000, he has worked for a
CAD simulation company, Simmetrix, while from 2000-2002, he worked for the
EDA team of microelectronic division of IBM Corp. He has broad interests in the
software-assisted CAD applications, including engineering simulation and electrical
properties analysis. He is currently involved with graphics and vision assisted 3D
applications, e.g., reverse engineering and embedded software engineering research
in Tunghai University, Taiwan, as an assistant professor.

William Cheng-Chung Chu is the dean of Engineering College, a professor of the
Department of Computer Science, and the Director of Software Engineering and
Technologies Center of Tunghai University. He had served as the Dean of Research
and Development office at Tunghai University from 2004 to 2007, Taiwan. From
1994 to 1998, he was an associate professor at the Department of Information
Engineering and Computer Science at Feng Chia University. He was a research
scientist at the Software Technology Center of the Lockheed Missiles and Space
Company, Inc., where he received special contribution awards in both 1992 and
1993 and a PIP award in 1993. In 1992, he was also a visiting scholar at Stanford
University. He is serving as the associate editor for Journal of Software Maintenance
and Evolution (JSME) and Journal of Systems and Software (JSS). His current
research interests include software engineering, embedded systems, and E-learn-
ing. Dr Chu received his MS and PhD degrees from Northwestern University in
Evanston Illinois, in 1987 and 1989, respectively, both in computer science. He has
edited several books and published over 100 referred papers and book chapters, as
well as participating in many international activities, including organizing inter-
national conferences.

	Modeling and verification of real-time embedded systems with urgency
	Introduction
	Related work
	Preliminaries
	Model checking urgent timed systems
	Absolute semantics of urgent timed automata
	Capping zones
	Enforcing urgencies

	Implementation, analysis, and application examples
	Urgency processing algorithm
	Theoretical analysis
	Zone capping vs. zone partitioning
	Application examples

	Conclusions
	References

