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Abstract. Dynamically reconfigurable computing systems (DRCS) pro-
vides an intermediate tradeoff between flexibility and performance of
computing systems design. Unfortunately, designing DRCS has a highly
complex and formidable task. The lack of tools and design flows discour-
age designers from adopting the reconfigurable computing technology.
A UML-based design flow for DRCS is proposed in this article. The
proposed design flow is targeted at the execution speedup of functional
algorithms in DRCS and at the reduction of the complexity and time-
consuming efforts in designing DRCS. In particular, the most notable
feature of the proposed design flow is a HW-SW partitioning methodol-
ogy based on the UML 2.0 sequence diagram, called Dynamic Bitstream
Partitioning on Sequence Diagram (DBPSD). To prove the feasibility
of the proposed design flow and DBPSD partitioning methodology, an
implementation example of DES (Data Encryption Standard) encryp-
tion/decryption system is presented in this article.

Keywords: UML, sequence diagram, partitioning, design flow, recon-
figurable computing, FPGA, codesign.

1 Introduction

The acceleration of computing-intensive applications requires more powerful
computing architectures. Continuing improvement in microprocessor has in-
creased computing speed, however it is still slower than the speed required by
the computing-intensive applications. Microprocessors provide high flexibility in
executing a wide range of applications, but they suffer from limited performance.
Application specific integrated circuits (ASICs) provide superior performance,
but are restricted by limited set of applications. Thus, a new computing paradigm
is called for. DRCS [1], [2] is a promising solution, which provides an intermediate
tradeoff between flexibility and performance.

The work in this article is concerned with the development of a design flow
and of related supporting tools for DRCS. The proposed design flow takes a
UML-based application model and facilitates the co-synthesis and rapid pro-
totyping of dynamically reconfigurable computing systems. The outputs of our
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Fig. 1. Model of Reconfigurable Computing Architecture

design flow are the ready-to-run software application and hardware bitstreams
for target platform, which is a dedicated FPGA (Field Programmable Gate Ar-
rays) board connected to the host computer over the PCI (Peripheral Component
Interconnect) interface. Furthermore, the primary focus of this article is on the
hardware-software partitioning of UML models, which makes it different from
previous researches.

Reconfigurable computing systems refer to systems, which contain a part of
hardware that can change its circuits at run-time to facilitate greater flexibil-
ity without compromising performance [1]. The architecture of reconfigurable
computing systems typically combine a microprocessor with reconfigurable logic
resources, such as FPGA. An abstract model of such an architecture appears
in Fig. 1. The microprocessor executes the main control flow of application and
operations that cannot be done efficiently in the reconfigurable logic. The recon-
figurable logic performs the computing-intensive parts of the application. The
shared memory is used for communication between the microprocessor and the
reconfigurable logic.

Unfortunately, designing these kinds of systems is a formidable task with a
high complexity. Although many researches are ongoing in the academia [6]-[10]
and industry, but the lack of mature tools and design flows discourage designers
from adopting the reconfigurable computing technology. This leads to the need
for a design flow especially easy for use by software engineers.

Issues encountered in constructing a design flow for dynamically reconfig-
urable computing systems are as follows.

– How to provide a HW-SW partitioning methodology, which is intuitional
and easy for a software engineer?

– How to help the software engineer to synthesize the hardware bitstreams
without much knowledge in digital hardware design?

– The communication between software and hardware is crucial. Thus, how
must communication be designed easily, correctly, and efficiently?

– What kind of target hardware platform is appropriate for this design flow?

To solve the issues mentioned above, we develop a UML-based design flow
and related supporting tools for the rapid application prototyping of dynamically
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reconfigurable computing systems. The features of our proposed solutions are as
follows:

– Supporting software-oriented strategy for co-synthesis as we start from a
UML specification and identify parts which are to be implemented in recon-
figurable hardware.

– Automatic synthesis of bitstreams for reconfigurable hardware.
– Automatic generation of software/hardware interfaces.
– Using commercial off-the-shelf FPGA within PCI card to facilitate the con-

struction of target platform and using API (Application Programming In-
terface) for reconfiguration.

The article is organized as follows. In Sect. 2, we give a detailed discussion of
the proposed design flow. Section 3 is the core of this article, where we present
our partitioning methodology for UML models. In Sect. 4, some examples are
presented to show the feasibility of the proposed design flow. In the last section,
we conclude this article and introduce some future work.

2 The Design Flow

The proposed design flow, as shown in Fig. 2, is separated into three phases:
design and implementation of the system software model, hardware synthesis,
and software synthesis. C++ code and UML 2.0 diagrams such as the class
diagram, sequence diagram, and state machine diagram are the inputs of the
proposed design flow. Reconfigurable C++ application and bitstreams are out-
puts of our design flow. In Fig. 2, the elliptical boxes such as Class Diagram,
XMI Documents, and Bitstreams represent the workproduct in each phase. The
rectangular boxes such as Rhapsody 5.0, C++ Compiler, Forge, and XFlow rep-
resent commercial-off-the-shelf tools. The three-dimensional rectangular boxes
such as SW/HW Extractor, SW Interface Synthesizer, and HW Interface Syn-
thesizer represent tools developed by ourselves. Certainly, the target platform
for verifying the proposed design flow is also constructed. Each phase of the
proposed design flow and the target platform will be examined further in the
following subsections.

2.1 Design and Implementation of System Software Model

In the Design and Implementation of System Software Model phase of the pro-
posed design flow, we use the Rhapsody 5.0 tool to build the UML models, im-
plement the detailed behaviors in C++, verify the functionalities of the system
software model, and partition performance critical methods into hardware. Af-
ter the model is constructed, XMI documents are generated by the XMI toolkit
of Rhapsody 5.0. XMI documents use the XML format to store UML model
information, and C++ code is also included. We then use our SW/HW Extrac-
tor to parse partitioning information from the XMI documents. The SW/HW
Extractor searches the XMI documents to locate UML stereotype <<HW>>
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Fig. 2. Design Flow for Dynamically Reconfigurable Computing Systems

marked by user, then it extracts this portion of C++ method as HW method for
post synthesis in the Hardware Synthesis phase. The SW C++ code is another
output of SW/HW Extractor, which represents all of the C++ application code.
This SW C++ code will be the input of the Software Synthesis phase. After the
Design and Implementation of System Software Model phase, the design flow is
split up into the Hardware Synthesis phase and the Software Synthesis phase.
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The Unified Modeling Language (UML) [3] is a standard modeling language
used in the software industry. In this work, we have chosen three diagrams from
UML 2.0 for building the system model, namely class diagram, state machine di-
agram, and sequence diagram. Class diagrams are used to model the architecture
of software application.

State machine diagrams describe the dynamic behavior of a class in response
to external stimuli, such as event or trigger. There exists a gap between the state
machine diagram and its implementation. According to [4], the state machine
diagrams include many concepts such as states and transitions that are not
present in most object-oriented programming languages, like Java or C++. In
order to overcome this gap, we adopt Rhapsody [5] as our UML modeling tool.
After drawing UML models in Rhapsody, the tool can generate Ada, C, C++,
or Java code. Rhapsody provides an Object Execution Framework (OXF) [5],
which enables state machine diagrams to be implemented in object-oriented
programming languages.

Sequence diagrams show the interactions between classes in a scenario that
is a partial system behavior of overall system specifications. In a sequence dia-
gram, classes and objects are listed horizontally as columns, with vertical lifelines
indicating the lifetime of the object over time. Messages are rendered as horizon-
tal arrows between classes or objects and represent the communication between
classes or objects.

2.2 Hardware Synthesis

The purpose of the Hardware Synthesis phase is to synthesize the hardware bit-
streams which will be used by software applications, to perform some required
computing-intensive operation. The HW Methods derived from SW/HW Extrac-
tor are the inputs of this phase. First, the Forge tool is used to transform the
HW Methods into synthesizable Verilog HDL (Hardware Description Language)
code. Secondly, the HW Interface Synthesizer adds PCI wrapper for the Verilog
HDL code, then produces the HW Verilog HDL code with interface which enable
communication from software. Finally, the XFlow tool will synthesize the HW
Verilog HDL code with interface into the hardware bitstreams for execution in
FPGA.

2.3 Software Synthesis

The purpose of the Software Synthesis phase is to build an executable C++
application, which is capable of invoking hardware methods on demand. The
Software C++ code which was derived from the SW/HW Extractor is the input
of this phase. Starting from this code, the Sofware Interface Synthesizer is used
to synthesize code for accessing hardware methods. After that, the produced
Software C++ code with interfaces is the final source code. Finally, this code is
compiled by a C++ compiler to generate a ready-to-run C++ program, called
Reconfigurable C++ Application. During the execution on the host processor,
this Reconfigurable C++ Application can reconfigure required hardware method
into FPGA for acceleration of the software execution.
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2.4 Target Platform

Target platform allows system designers to verify the overall system behavior and
to evaluate the overall system performance. Our target platform is a dedicated
Xilinx Virtex-II FPGA (XC2V3000, 28,672 LUTs, at 40MHz) board connected
to the host computer (Pentium 4 2.8GHz, 1GB RAM, Windows XP ) over the
PCI interface.

3 The DBPSD Partitioning Methodology

We propose a Dynamic Bitstream Partitioning on Sequence Diagrams (DBPSD),
which is a partitioning methodology based on the UML 2.0 sequence diagrams
and includes partitioning guidelines to help designers make prudent partitioning
decisions at the granularity of class methods. Sequence diagrams in UML 2.0 have
been significantly enhanced for specifying complex control flows in one sequence
diagram. As shown in the middle of Fig. 3, the most obvious changes are the
three rectangular boxes, called interaction fragments. The five-sided box with
labels such as alt, opt, or loop at the upper left-hand corner is the interaction
operator of the interaction fragment.

The interaction operator gives the interaction fragment specific meaning. The
alt operator denotes a conditional choice according to the evaluation results of

Controller A B C

M1()

M2() <<HW1>>

M3() <<HW1>>

M4() <<HW2>>

M5() <<HW2>>

M6()

M7() <<HW3>>

M8() <<HW4>>

M9() <<HW3>>

M10() <<HW5>>

M11() <<HW5>>

M12()

alt

[X>1]

[else]

opt

loop[0,5]

[Y>5]

Fig. 3. The Example of the Partitioning on UML 2.0 Sequence Diagram



UML-Based Design Flow and Partitioning Methodology 485

the guards. For example, if the guard [x>1] is evaluated to true, then the M4()
method will be called, otherwise the [else] guard will be evaluated to true and
then the M5() method will be called. The opt operator is the if portion of the
alt, that is the same as the if construct in the C language. The loop operator
defines that an interaction fragment shall be repeated several times.

When doing partitioning on the sequence diagrams, a designer may add a
UML stereotype <<HWx>> for a method to be implemented in hardware.
For example, in Fig. 3 the methods M2() and M3() are marked by the same
stereotype <<HW1>>, but the method M4() is marked by another stereotype
<<HW2>>. As a consequence, the methods M2() and M3() will be synthe-
sized into the same bitstream, but the method M4() will be synthesized into
another bitstream. Calling a hardware method that is synthesized into a dif-
ferent bitstream will require the FPGA to be reconfigured, therefore additional
time overhead will be incurred.

The key performance penalties in DRCS are the FPGA reconfiguration time
and the communication time between the CPU and the FPGA. These overheads
are mainly dependent on the hardware restrictions. However, we can reduce the
number of FPGA reconfigurations, so that reconfiguration overhead is decreased.

To reduce the number of FPGA reconfigurations, we need to take the control
flow and execution order into consideration when doing partitioning on sequence
diagrams. Hence, in DBPSD the following partitioning guidelines are provided:

Guideline 1: Add the same stereotype <<HWx>> to all computing-intensive
methods. For example, M1() <<HW1>>, M2() <<HW1>>, ..., M12() <<-
HW1>>. If synthesis is feasible, only one bitstream is produced, thus only
one reconfiguration action is needed.

Guideline 2: Add the same stereotype <<HWx>> to all dependent methods.
For example, M3() is invoked by M2().

Guideline 3: For the alt operator, add the same stereotype <<HWx>> to all
the computing-intensive methods in all condition branches. If the synthe-
sis of the stereotyped methods is not possible, then start moving the last
conditional branch to another stereotype <<HWy>> first, until synthesis
is successful.

Guideline 4: For the opt operator, associate all of the methods inside this
interaction fragment with a stereotype different from the methods outside
this interaction fragment.

Guideline 5: For the loop operator, associate the same stereotype <<HWx>>
to all the computing-intensive methods inside this interaction fragment. If
the synthesis of the stereotyped methods is not possible, then start moving
the less computing-intensive method to another stereotype <<HWy>> first,
until synthesis is successful.

4 Implementation Example

An implementation example of DES (Data Encryption Standard) encryption
system is presented to prove the feasibility of the proposed design flow and
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+calculate(LARGE_INTEGER msg):LARGE_INTEGER
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+decrypt(LARGE_INTEGER msg):LARGE_INTEGER

DES

+init():void
+checkCryptoType():bool
+checkReqCrc():bool

Controller

+linkBuffer : LARGE_INTEGER

+transmit():void
+receive():LARGE_INTEGER

NIC
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1

Fig. 4. The Class Diagram of the DES IMS System Example

Controller DES CRC

decrypt(Msg) <<HW1>>

encrypt(Msg) <<HW1>>

calculate(Msg)

alt [isEncrypt = False]

[else]

opt

NIC

[isReqCrc=True]

break

transmit(Msg)

receive(Msg)

verify(Msg)opt

[isReqCrc=True]

isEncrypt=checkCryptoType()

isReqCrc=checkReqCrc()

decrypt(Msg) <<HW1>>

loop [0,3]

Fig. 5. The Sequence Diagram of the DES IMS System Example

Table 1. The Implementation Results of Different Partitions

Partition 1 Partition 2 Partition 3 Partition 4

encrypt() SW SW HW HW

decrypt() SW HW SW HW

Total Execution Time 7200us 2560us 4880us 240us

FPGA Utilization (%LUTs) 0% 18% 18% 36%

Speedup Compared to Partition1 — +2.81x +1.48x +30x
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DBPSD partitioning methodology. Starting from the design and implementation
of the system software model phase of the proposed design flow, the designer
constructs the class diagram, the state machine diagrams, and the sequence
diagrams for modeling this system, then the detailed functions are implemented
in the C++ language.

Figure 4 is the class diagram for this system, which contains four classes:
Controller (for controlling of the overall system), NIC (for simulating of the
network interface), CRC (for calculating the CRC value), and DES (for encryption
and decryption of message). Due to the limited space, the state machine diagram
of this example is not shown.

The sequence diagram which depicts the overall system interaction is shown in
Fig. 5. After the profiling procedure, we found that the DES class is a computing-
intensive part of this system, thus the partitioning focuses on its two methods:
encrypt() and decrypt(). Figure 5 shows the optimal partition for this example.
The other partitions and their implementation results are shown in Table 1.

As shown in Table 1, the most notable partitions are Partition 2 and Partition
3. The difference in the total execution time of Partition 2 and Partition 3 was
not expected. The reason for this difference can be observed from the sequence
diagram of this example. Different control flows affect the number of times each
method is invoked. Thus, the worth of doing partitioning on sequence diagram
is proved by this example.

5 Conclusions

A UML-based design flow and its HW-SW partitioning methodology are pre-
sented in this article. The enhanced sequence diagram in UML 2.0 is capable of
modelling complex control flows, thus the partitioning can be done efficiently on
the sequence diagrams. As a result of using the proposed design flow, we are able
to efficiently implement DRCS with significant reduction of error-prone, tedious,
and time-consuming tasks, such as hardware design and HW-SW interface syn-
thesis. Additionally, the real implementation results and information produced
by the proposed flow such as application performance datum, hardware method
execution time, FPGA reconfiguration time and communication overheads can
used for further simulation or evaluation. Further research directions of this ar-
ticle include the semi-automatic or automatic HW-SW partitioning on sequence
diagram, algorithm or methodology for reconfiguration overhead reduction, and
support for FPGA partial reconfiguration.
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