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Abstract—With rapid developments in science and technology, we now see the ubiquitous use of different types of safety-critical

systems in our daily lives such as in avionics, consumer electronics, and medical systems. In such systems, unintentional design faults

might result in injury or even death to human beings. To make sure that safety-critical systems are really safe, there is a need to verify

them formally. However, the verification of such systems is getting more and more difficult because designs are becoming very

complex. To cope with high design complexity, currently, model-driven architecture design is becoming a well-accepted trend.

However, existing methods of testing and standards conformance are restricted to implementation code, so they do not fit very well

with model-based approaches. To bridge this gap, we propose a model-based formal verification technique for safety-critical systems.

In this work, the model-checking paradigm is applied to the Safecharts model, which was used for modeling but not yet used for

verification. Our contributions listed are as follows: First, the safety constraints in Safecharts are mapped to semantic equivalents in

timed automata for verification. Second, the theory for safety constraint verification is proven and implemented in a compositional

model checker (that is, the State-Graph Manipulator (SGM)). Third, prioritized and urgent transitions are implemented in SGM to model

the risk semantics in Safecharts. Finally, it is shown that the priority-based approach to mutual exclusion of resource usage in the

original Safecharts is unsafe and corresponding solutions are proposed here. Application examples show the feasibility and benefits of

the proposed model-driven verification of safety-critical systems.

Index Terms—Safety-critical systems, model checking, Safecharts, extended timed automaton.

Ç

1 INTRODUCTION

SAFETY-CRITICAL systems are systems whose failure most
probably results in the tragic loss of human life or

damage to human property. There are numerous examples
of such mishaps. The accident at the Three Mile Island
(TMI) nuclear power plant in Pennsylvania on 28 March
1979 is just one unfortunate example [19]. Moreover, as time
goes on, we are becoming more and more dependent on
cars, airplanes, rapid transit systems, medical facilities, and
consumer electronics, which are all safety-critical systems.
When some of them malfunction or fault, a tragedy is
inevitable. The natural question here is should we use these
systems without a very high confidence in their safety?
Obviously, the answer is negative in most cases. That is
why we need some methodology to exhaustively verify
safety-critical systems.

Traditional verification methods such as simulation and

testing can only prove the presence of faults and not their

absence. Some methods such as fault-based testing and

semiformal verification that integrates model checking and

testing can prove the absence of prespecified faults.

Simulation and testing [26] are both required before a

system is deployed in the field. Although simulation is

performed on an abstract model of a system, testing is
performed on the actual product. In the case of hardware
circuits, simulation is performed on the design of the circuit,
whereas testing is performed on the fabricated circuit itself.
In both cases, these methods typically inject signals at
certain points in the system and observe the resulting
signals at other points. For software, simulation and testing
usually involve providing certain inputs and observing the
corresponding outputs. These methods can be a cost-
efficient way to find many errors. However, checking all
of the possible interactions and potential pitfalls using
simulation and testing techniques is rarely possible. Con-
ventionally, safety-critical systems are validated through
standards conformance and code testing. Using such
verification methods for safety-critical systems cannot
provide the desired 100 percent confidence in system
correctness.

In contrast to the traditional verification methods, formal
verification is exhaustive. Further, unlike simulation, formal
verification does not require any test benches or stimuli for
triggering a system. More precisely, formal verification is a
mathematical way of proving that a system satisfies a set of
properties. Formal verification methods such as model
checking [5], [6], [25] have been taken seriously in the past
few years by several large hardware and software design
companies such as Intel, IBM, Motorola, and Microsoft,
which goes to show the importance and practicality of such
methods for real-time embedded systems and system-on-
chip (SoC) designs. For the above reasons, we will thus
employ a widely popular formal verification method called
model checking for the verification of safety-critical systems
that are formally modeled.
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Model checking [5], [6], [25] is a technique for verifying
finite-state concurrent systems. One benefit of this restric-
tion is that verification can be performed automatically. The
procedure normally uses an exhaustive search of the state
space of a system to determine if some specification is true
or not. Given sufficient resources, the procedure will always
terminate with a yes/no answer. Moreover, it can be
implemented by algorithms with reasonable efficiency
which can be run on moderate-sized machines. In case of
a negative result, the user is often provided with a
counterexample.

Our safety-critical system model and its model-checking
procedures are implemented in the State-Graph Manipulator
(SGM) model checker [27], which is a model checker for
real-time systems modeled by a set of extended timed
automata (ETA).

In the course of developing a model-based verification
method for safety-critical systems, several issues are
encountered, as detailed in the following: First and fore-
most, we need to decide how to model safety-critical
systems. Our decision is to adopt Safecharts [7] as system
models. Safecharts are a variant of Statecharts, especially for
use in the specification and the design of safety-critical
systems. The objective of the model is to provide a sharper
focus on safety issues and a systematic approach to deal
with them. This is achieved in Safecharts by making a clear
separation between functional and safety requirements. Other
issues encountered in designing the formal verification
methodology for model-based safety-critical systems are
listed as follows:

. How can Safecharts be transformed into a semanti-
cally equivalent ETA model that can be accepted by
traditional model checkers? How can the transfor-
mation preserve the safety semantics in Safecharts?

. What are the properties that must be specified for
model-checking Safecharts?

. Basic states in Safecharts have a risk relation with
each other specifying the comparative risk/safety
levels. Safety nondeterminism allows only safe
transitions between states with known risk levels
in Safecharts. How do we represent such informa-
tion in ETA for model checking?

. The current semantics of Safecharts state that mutual
exclusion of resource usages can be achieved
through priority. This is clearly insufficient as
priorities cannot ensure mutual exclusion.

We propose solutions in this work for the above issues.
Basically, a system designer models a safety-critical system
using a set of Safecharts. After accepting the Safecharts, we
transform them into ETA, while taking care of the safety
characterizations in Safecharts, and then automatically
generate properties corresponding to the safety constraints.
The SGM model checker is enhanced with transition
priority and urgency types. Resource access mechanisms
in Safecharts are also checked for satisfaction of modeling
restrictions that prevent violation of mutual exclusion.
Finally, we input the translated ETA to SGM to verify that
the safety-critical system satisfies functional and safety
properties. Our contributions in this work, as detailed in
Section 2, mainly consist of the integration of formal

verification techniques with design models, explicit model-
ing of failures and repairs for verification, and the extension
of a conventional model checker for verifying safety-critical
systems.

The remaining portion of this paper is organized as
follows: Section 2 describes the current state of the art in the
verification of safety-critical systems, especially how formal
verification has been integrated into conventional techni-
ques. Basic definitions used in our work are given in
Section 3, along with an illustrative railway signaling
system example. Section 4 will formulate each of our
solutions to solving the issues encountered in formally
verifying safety-critical systems modeled by Safecharts.
Implementation details of the proposed method in the SGM
model checker are given in Section 5. Application examples
are given in Section 6. The paper concludes and future
research directions are given in Section 7.

2 RELATED WORK

Traditionally, safety-critical systems have been verified
mainly using hazard analysis techniques such as checklists,
hazard indices, fault tree analysis (FTA), management
oversight and risk tree analysis (MORT), event tree analysis,
cause-consequence analysis (CCA), hazards and operability
analysis (HAZOP), interface analysis, failure modes and
effects analysis (FMEA), failure modes, effects, and criti-
cality analysis (FMECA), and fault hazard analysis (FHA)
[19]. Hazard analysis is a continual and iterative process
which generally includes the following steps: definitions of
objectives and scope, system description, hazard identifica-
tion, data collection, qualitative ranking of hazards, identi-
fication of causal factors, identification and evaluation of
corrective measures, verification of control implementa-
tions, quantification of unresolved hazards and residual
risks, and feedback and evaluation of operational experi-
ence. Hazard analysis techniques have been successfully
applied to several different real-world safety-critical sys-
tems. Nevertheless, a major limitation of hazard analysis is
that the phenomena unknown to the analysts are not
covered in the analysis and, thus, hazards related to the
phenomena are not foreseen. This becomes a severe
limitation when the system is complex and analysts may
overlook some possible hazards. Safety-critical systems are
getting more and more complex and, thus, there is a trend to
use methods [4], [14] that are more automatic and exhaustive
than hazard analysis, for example, model checking.

The verification of safety-critical systems using formal
techniques is not something new [19], as can be seen from
methods such as state machine hazard analysis, which was
based on Petri nets [20], and the application of model
checking to safety-critical system verification based on
various formal models such as finite state machines [4],
Statecharts [3], Process Control Event Diagrams [28], Scade
[8], and Altarica [3]. A common method for the application
of model checking to safety-critical system verification is
through the specification of safety-related properties using
some temporal logic such as Computation Tree Logic (CTL) or
Linear Temporal Logic (LTL) and then checking for the
satisfaction of the safety specification [15]. However, as
noted by Leveson [19], this approach is inadequate because,
in the system models, we are assuming that all of the
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components do not fail and the system is proven to be safe
under this assumption. However, the assumption is not
valid, so transforming each hazard into a formal property
for verification, as in [15], is not sufficient. Some works have
also integrated traditional FTA techniques with model
checking, such as in the Enhanced Safety Assessment for
Complex Systems (ESACS) project [3], [9], which expressed
the Minimal Cut Sets (MCS), that is, the minimal combina-
tions of component failures, generated by a model checker,
using fault trees. Nevertheless, failure modes of compo-
nents must still be injected by a safety engineer into the
system model before model checking can be performed.
Bieber et al. [2] used model checking as a means to check if
all unexpected events have been eliminated by conventional
FTA techniques. Yang et al. [28] defined various fault
modes for each component and used model checking in
each fault mode to check for safety properties. In all of the
above models and methods, safety-related actions such as
failure mode capturing, safety requirements capturing, and
model analysis must all be performed separately from the
model-checking process. Here, the work on using Safecharts
[7], [22], [23], [24] to verify safety-critical systems con-
tributes to the state of the art in verification of such systems
in several ways, as described in the following:

1. The Unified Modeling Language (UML) is an industry
de facto standard for model-driven architecture
design. Safecharts, being an extension of the UML
Statecharts, blend naturally with the semantics of
other UML diagrams for the design of safety-critical
systems. The work described in this paper automati-
cally transforms Safecharts into the timed automata
model, which can be accepted by conventional model
checkers. Thus, Safecharts are suitable for both design
and verification, thus acting as a bridge between the
two, the link between which was seen as an “over-the-
wall process” for a long time [10].

2. Safecharts allow and require the explicit modeling of
component failures and repairs within the safety
layer of its models. This is unique and is very helpful
not only for safety design engineers but also for
safety verification engineers. Further, using Safe-
charts, there is no need to separately define failure
modes and effects, thus preventing accidental omis-
sions and inconsistent specifications.

3. The work here shows how a conventional model
checker can be extended to perform safety-critical
system verification, without the need to integrate
conventional methods. Safecharts play a major role
in the feasibility of such a simple extension through
its unique features of risk states, transition priorities,
and component failure and repair modeling artifacts.

4. Due to Safecharts being a variant of the UML
Statecharts, automatic code generation is supported
through model-driven development, which is be-
coming a standard way of software code design.
Safety requirements proved in the models can thus
be preserved in the final software code through this
automatic code generation process. This is out of
scope here in this work but is an added advantage
which must be carefully proved.

3 SYSTEM MODEL, SPECIFICATION, AND MODEL

CHECKING

Before going into the details of how Safecharts are used to
model and verify safety-critical systems, some basic defini-
tions and formalizations are required, as given in this
section. Both Safecharts and their translated ETA models
will be defined. TCTL and model checking will also be
formally described. A railway signaling system is used as a
running example for illustration. Since Safecharts are based
on the UML Statecharts, we first define Statecharts in
Definition 1 and then define Safecharts in Definition 2.

Definition 1 (Statecharts). Statecharts are a tuple
F ¼ ðS; T ;E; �; V ; �Þ, where S is a set of all states,
T is a set of all possible transitions, E is a set of all
events, � is the set of possible types of states in
Statecharts, that is, � ¼ fAND;OR;BASICg, V is a set
of integer variables, and � ::¼ v � cj�1 ^ �2j:�1 in
which v 2 V , � 2 f<;�;¼;�; >g, c is an integer, and �1

and �2 are predicates. Let Fi be an arbitrary state in S. It has
the general form

Fi ¼ ð�i; Ci; di; Ti; Ei; liÞ;

where

. �i is the type of the state Fi, �i 2 �,

. Ci is a finite set of direct substates of Fi, referred to as
child states of Fi, Ci � S,

. di is di 2 Ci and is referred to as the default state of
Fi. It applies only to OR states,

. Ti is a finite subset of F � F , referred to as explicitly
specified transitions in Fi,

. Ei is the finite set of events relevant to the specified
transitions in Ti, Ei � E, and

. li is a function Ti ! E � �� 2Ei, labeling each and
every specified transition in Ti with a triple, 2Ei

denoting the set of all finite subsets of Ei.

Given a transition t 2 T , its label is denoted by
lðtÞ ¼ ðe; fcond; aÞ, written conventionally as e½fcond�=a. e,
fcond, and a in the latter, denoted also as trgðtÞ ¼ e,
conðtÞ ¼ fcond, and genðtÞ ¼ a, represent, respectively, the
triggering event, the guarding condition, and the set of
generated actions.

Safecharts [7], [22], [23], [24] are a variant of Statecharts
intended exclusively for safety-critical systems design. With
two separate representations for functional and safety
requirements, Safecharts bring the distinctions and depen-
dencies between them into sharper focus, helping both
designers and auditors alike in modeling and reviewing
safety features. Fig. 1 shows the functional and safety layers
of a Safecharts model for setting a route of a railway system.
The functional layer specifies the normal functions of
requesting and setting or rejecting a route. The safety layer
enforces the safety restrictions for setting or unsetting a
route. The notations and in the safety layer will be
defined in Definition 2 and basically restrict setting a route
or enforce the release of a route when any of the signals in
that route are or become faulty.

Further, Safecharts incorporates ways to represent
equipment failures and failure handling mechanisms and
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use a safety-oriented classification of transitions and a

safety-oriented scheme for resolving any unpredictable
nondeterministic pattern of behavior. It achieves these

through an explicit representation of risks posed by
hazardous states by means of an ordering of states and a
concept called risk band [22]. Recognizing the possibility of

gaps and inaccuracies in safety analysis, Safecharts do not
permit transitions between states with unknown relative
risk levels. However, in order to limit the number of

transitions excluded in this manner, Safecharts provide a
default interpretation for relative risk levels between states

not covered by the risk ordering relation, requiring the
designer to clarify the risk levels in the event of a
disagreement and thus improving the risk assessment

process.

Definition 2 (Safecharts). Safecharts Z extends Statecharts by

adding a safety layer. States are extended with a risk ordering

relation and transitions are extended with safety conditions.

Given two comparable states s1 and s2, a risk-ordering relation

� specifies their relative risk levels, that is, s1 � s2 specifies

that s1 is safer than s2. Transition labels in Safecharts have an

extended form: e½fcond�=a½l; uÞ  ½G�, where e, fcond, and a

are the same as in Statecharts. The time interval ½l; uÞ is a real-

time constraint on a transition t and imposes the condition

that t does not execute until at least l time units have elapsed

since it most recently became enabled and must execute strictly

within u time units. The expression  ½G� is a safety

enforcement on the transition execution and is determined by

the safety clause G. The safety clause G is a predicate, which

specifies the conditions under which a given transition t must,

or must not, execute.  is a binary valued constant, signifying
one of the following enforcement values:

. Prohibition enforcement value, denoted by . Given a
transition label of the form ½G�, it signifies that the
transition is forbidden to execute as long as G holds.

. Mandatory enforcement value, denoted by . Given a
transition label of the form ½l; uÞ ½G�, it indicates that,
whenever G holds, the transition is forced to execute
within the time interval ½l; uÞ, even in the absence of a
triggering event.

A railway signaling system that sets and releases routes is
given as an example for modeling using Safecharts. In Fig. 2,
we can see that there are two routes, route[x] and route[y],
such that route[x] must have signal[i] and signal[k] allocated,
whereas route[y] must have signal[j] and signal[k] allocated,
where signal[k] is a resource shared between the two
routes.

The Safecharts model for route[x] was given in Fig. 1 and
that for route[y] will be similar. However, we can also
express the two layers through an integrated model, as in
Fig. 3. The integrated Safecharts model for signal[i] is given
in Fig. 4.

The Safecharts model is used for modeling safety-critical
systems; however, the SGM model checker can understand
only a flattened model called ETA [13], which was
enhanced with priority and urgency, as defined in Defini-
tion 4.

Definition 3 (Mode Predicate). Given a set C of clock
variables and a set D of discrete variables, the syntax of a
mode predicate � over C and D is defined as
� :¼ falsejx � cjx� y � cjd � cj�1 ^ �2j:�1, w h e r e x,
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y 2 C, � 2 f�; <;¼;�; >g, c 2 N , d 2 D, and �1 and �2

are mode predicates.

LetBðC;DÞ be the set of all mode predicates overC andD.

Definition 4 (Extended Time Automaton). An Ex-

tended Time Automaton (ETA) is a tuple Ai ¼
ðMi;mi0; Ci;Di; Li; �i; Ti; �i; �i; �i; 	i; 
iÞ such that Mi is a

finite set of modes, mi0 2M is the initial mode, Ci is a set of

clock variables, Di is a set of discrete variables, Li is a set of

synchronization labels, and " 2 Li is a special label that

represents asynchronous behavior (that is, no need for

synchronization), �i : Mi ! BðCi;DiÞ is an invariance

function that labels each mode with a condition true in that

mode, Ti �Mi �Mi is a set of transitions, �i : Ti ! Li
associates a synchronization label with a transition, �i : Ti !
N associates an integer priority with a transition, �i : Ti !
flazy; eager; delayableg associates an urgency type with a

transition, 	i : Ti ! BðCi;DiÞ defines the transition trigger-

ing conditions, and 
i : Ti ! 2Ci[ðDi�NÞ is an assignment

function that maps each transition to a set of assignments such

as resetting some clock variables and setting some discrete

variables to specific integer values.

Take as an example the ETA that is semantically
equivalent to the MODE Safecharts in signal[i] of Fig. 4,
as illustrated in Fig. 5.

A system state space is represented by a system state

graph as defined in Definition 5.

Definition 5 (System State Graph). Given a system S with n

components modeled by

Ai ¼ ðMi;mi0; Ci;Di; Li; �i; Ti; �i; �i; �i; 	i; 
iÞ; 1 � i � n;

the system model is defined as a state graph represented by

A1 � . . .�An ¼ AS ¼ ðM;m0; C;D; L; �; T ; �; �; �; 	; 
Þ;

where

. M ¼M1 �M2 � . . .�Mn is a finite set of system
modes, m ¼ m1:m2 . . . ::mn 2M,

. m0 ¼ m0
1:m

0
2 . . . ::m0

n 2M is the initial system mode,
. C ¼ [iCi is the union of all sets of clock variables in

the system,
. D ¼ [iDi is the union of all sets of discrete variables

in the system,

. L ¼ [iLi is the union of all sets of synchronization
labels in the system,

. � : M ! Bð[iCi;[iDiÞ, �ðmÞ ¼ ^i�iðmiÞ, where
m ¼ m1:m2 . . . ::mn 2M,

. T �M �M is a set of system transitions which
consists of two types of transitions:

- Asynchronous transitions: 9 i, 1 � i � n, ei 2
Ti such that ei ¼ e 2 T .

- Synchronized transitions: 9 i; j, 1 � i 6¼ j � n,
ei 2 Ti, ej 2 Tj s u c h t h a t �iðeiÞ ¼ ðl; inÞ,
�jðejÞ ¼ ðl; outÞ, l 2 Li \ Lj 6¼ ;, and e 2 T is
synchronization of ei and ej with conjuncted
triggering conditions and union of all transitions
assignments (defined later in this definition).

. � : T ! L associates a synchronization label with a
transition, which represents a blocking signal that was
synchronized, except for " 2 L, " is a special label that
represents asynchronous behavior (that is, no need for
synchronization),

. � : T ! N associates an asynchronous transition with
its original priority and a synchronous transition with
the maximum priority among all the synchronized
transitions,

. � : T ! flazy; eager; delayableg associates an asyn-
chronous transition with its original urgency type and
a synchronous transition with the eager type if there is
one synchronized or with the delayable type if there is
one, otherwise, with the lazy type,

. 	 : T ! Bð[iCi;[iDiÞ, 	ðeÞ ¼ 	iðeiÞ for an asyn-
chronous transition, and 	ðeÞ ¼ 	iðeiÞ ^ 	jðejÞ for a
synchronous transition, and

. 
 : T ! 2[iCi[ð[iDi�NÞ, 
ðeÞ ¼ 
iðeiÞ for an asynchro-
nous transition, and 
ðeÞ ¼ 
iðeiÞ [ 
jðejÞ for a
synchronous transition.

Definition 6 (Safety-Critical System). A safety-critical

system is defined as a set of resource components and

consumer components. Each component is modeled by one

or more Safecharts. If a safety-critical system H has a set of

resource components fR1; R2; . . . ; Rmg and a set of

consumer components fC1; C2; . . . ; Cng, H is modeled by

fZR1; ZR2; . . . ; ZRm; ZC1; ZC2; . . . ; ZCng, where ZX is a

Safechart model for component X. Safecharts ZRi and ZCj
are transformed into corresponding ETA ARi and ACj,

respectively. Therefore, H is semantically modeled by the

state graph AR1 � . . .�ARm �AC1 � . . .�ACn, as defined

in Definition 5.
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For our railway signal system,

fsignal½i�; signal½j�; signal½k�g

is the set of resource components and {route[x], route[y]} is
the set of consumer components. The system is thus
modeled by the state graph

Asignal½i� �Asignal½j� �Asignal½k� �Aroute½x� �Aroute½y�:

Timed Computation Tree Logic (TCTL) [11] is a timed
extension of the well-known temporal logic called CTL,
which was proposed by Clarke and Emerson in 1981. We
will use TCTL to specify the safety properties that are
required to be satisfied by a safety-critical system modeled
by Safecharts. The SGM model checker also chooses TCTL
as its logical formalism, which is defined as follows:

Definition 7 (TCTL). A TCTL formula has the following
syntax:

� ::¼ �jEG�0jE�0U�c�00j:�0j�0 _ �00;

where � is a mode predicate, �0 and �00 are TCTL formulas,
� 2 f<;�;¼;�; >g, and c 2 N . EG�0 means there is a
computation from the current state along which �0 is always
true. E�0U�c�

00 means there exists a computation from the
current state, along which �0 is true until �00 becomes true,
within the time constraint of � c. Shorthand, like EF, AF, AG,
AU, ^, and ! , can all be defined [11].

For the railway signal system, we can specify that the
following safety properties must be satisfied:

1. AGð:ðroute½x� in SET ^ route½y� in SETÞÞ,
2. AG(signal[i] in FAULTY ! :(route[x] in SET)),
3. AG(signal[j] in FAULTY ! :(route[y] in SET)), and
4. AG(signal[k] in FAULTY ! :(route[x] in SET _

route[y] in SET)).

The first property states that both routes should not be
set at the same time since they share a common resource,
signal[k]. The other three properties state that a route
should not be set if any of its resources (signals) is faulty.

Definition 8 (Model Checking [5], [6], [25]). Given a
Safechart Z that represents a safety-critical system and a
TCTL formula � expressing some desired specification, model
checking verifies if Z satisfies �, denoted by Z 	 �.

Model checking can be either explicit, using a labeling
algorithm, or symbolic, using a fixed-point algorithm. Binary
Decision Diagram (BDD) and Difference Bound Matrices (DBM)
are data structures used for Boolean formulas and clock zones
[6], respectively. For our railway signal system, we must
check if Asignal½i� �Asignal½j� �Asignal½k� �Aroute½x� �Aroute½y� 	 �,
where � is each of the four properties described above.

4 MODEL-CHECKING SAFECHARTS

Safecharts have been used to model safety-critical systems,
but the models have never been used for verification. In this
work, we propose a method to verify safety-critical systems
modeled by Safecharts. Our tool is the State Graph
Manipulators (SGM) [13], [27], which is a high-level model

checker for systems modeled by a set of ETA. Several issues

to be resolved in model-checking Safecharts were described

in Section 1, for which we propose solutions in the rest of

this section. First, we show how Safecharts are transformed

into ETA models that can be accepted by SGM while

maintaining the safety semantics. Second, we show how

some properties are generated for model checking. Third,

we discuss how risk relationships are represented by

transition priorities and urgencies in SGM. Finally, we

show how mutually exclusive access of shared resources

cannot be guaranteed by the original Safecharts and how

we solved the problem.

4.1 Flattening Safecharts and Safety Semantics

Our primary goal is to model check Safecharts, a variant of

Statecharts. However, Safecharts cannot be accepted as

system model inputs by most model checkers, which can

accept only flat automata models such as the ETA accepted

by SGM. As a result, the state hierarchy and concurrency in

Safecharts must be transformed into semantically equiva-

lent constructs in ETA. Further, besides the functional layer,

Safecharts have an extra safety layer, which must be

transformed into equivalent modeling constructs in ETA

and specified as properties for verification.
There are three categories of states in Safecharts: OR,

AND, and BASIC. An OR state or an AND state generally

consists of two or more substates. Being in an AND state

means being in all of its substates simultaneously, whereas

being in an OR state means being in exactly one of its

substates. A BASIC state is translated into an ETA mode. The

translations for OR states and AND states are performed as

described in [18].

4.1.1 Safety Semantics

The syntax for the triggering condition and action of a

transition in Safecharts is e ½fcond�=a½l; uÞ ½G�, where e is

the set of triggering events, fcond is the set of guard

conditions, a is the set of broadcast events, ½l; uÞ is the time

interval specifying the time constraint,  means the

execution conditions for safety constraints, and G is the

set of safety layer’s guards. In Safecharts, e½fcond�=a
appears in the functional layer, whereas ½l; uÞ ½G� may

appear in the safety layer. The two layers of Safecharts can

be integrated into one in ETA as described in the following.

However, we need to design three different types of

transitions [1]:

. Eager Evaluation ð"Þ. Execute the action as soon as
possible, that is, as soon as a guard is enabled. Time
cannot progress when a guard is enabled.

. Delayable Evaluation ð�Þ. You can put off execution
until the last moment the guard is true. Therefore,
time cannot progress beyond a falling edge of guard.

. Lazy Evaluation ð�Þ. You may or may not perform the
action.

The transition condition and assignment

e½fcond�=a½l; uÞ ½G�

can be classified into three types as follows:
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1. e[fcond]/a. There is no safety clause on a transition
in Safechart, thus, we can simply transform it to the
one in ETA. We give the translated transition a lazy
evaluation �.

2. e[fcond]/a [G]. There is a prohibition enforcement
value on a transition t. It signifies that the transition t
is forbidden to execute as long as G holds. During
translation, we combine them as e½fcond ^ :G�=a.
We give the translated transition a lazy evaluation �.
The transformation is shown in Fig. 6.

3. e[fcond]/a[l, u) [G]. There is a mandatory enforce-
ment value on a transition t. Given a transition label
of the form e[fcond]/a[l, u) [G], it signifies that the
transition is forced to execute within ½l; uÞ whenever
G holds. We translate functional and safety layers
into a transition t1 and a path t2, respectively. t1
represents e½fcond�=a, which means t1 is enabled if
the triggering event e occurs and its functional
conditional fcond is true. We give t1 a lazy
evaluation �. Path t2 is combined by two transi-
tions t" and t�. Transition t" is labeled
½G�=timer :¼ 0, where timer is a clock variable
used for the time constraint and we give t" an
eager evaluation ". When G holds, t" executes as
soon as possible and t"’s destination is a newly
added mode named translatorðtÞ. t�’s source is
translatorðtÞ and its destination is t’s destination.
t�’s guard is ½timer � l ^ timer < u�. However, we
give t� a delayable evaluation ð�Þ, which means it can
put off execution until the last moment the guard is
true. The procedure of translation is shown in Fig. 7.

4.2 Property Specification for Safecharts

In the safety layer of Safecharts, there are two types of

safety conditions on a transition: One is prohibition and the
other is mandatory. After parsing the Safechart models of a
safety-critical system, corresponding properties are auto-
matically generated without requiring the user to specify

again. Such properties are used to verify if the safety layers
work or not. As described in the following, to ensure that

the safety constraints are working, two categories of
properties are generated automatically for model checking:

1. For prohibition condition [G]:

AGððsrcðtÞ ^GÞ ! :EXðdesðtÞÞÞ:

2. For mandatory condition [l, u) [G]:

AGððsrcðtÞ ^G! :EXð:translatorðtÞÞÞ

and AGðtranslatorðtÞ ^ timer < uÞ.
Proving the first property ensures that a safety-critical

system will not become dangerous under any prohibited
condition. Proving the second set of properties ensures that
a safety-critical system will go to a safer state whenever
there is some fault.

4.3 Transition Priority

Nondeterminism is often used as a means of modeling data-
dependent or runtime choices and occurs whenever system
behavior is abstracted in the system model. However, for
safety-critical systems, nondeterminism is undesirable and
must be avoided or eliminated because it might result in
dangerous behaviors presiding over other safer behaviors.
This is accomplished in Safecharts by removing nondeter-
minisms in all cases except when there is no safety
implication. In Safecharts, a user specifies the relative safety
levels between two states using risk relation tuples, which
are used to establish a risk graph [23] for the Safechart. For
example, the tuple (N, M) specifies that state N is of a lower
risk compared to state M, as shown in Fig. 8. Noncompar-
able conditions may still exist in a risk graph.

Risk bands [22], [23] were used in Safecharts to determine
the relative risk relations that were not explicitly described.
As shown in Fig. 8, since each state belongs to exactly one
risk band, which are numbered starting from 1, we decided
to associate each Safechart state with an integer risk level.
Safe nondeterminism dictates that, whenever there is
nondeterminism between two or more transitions, a
transition leading to a safer state is given higher priority.
Hence, we implemented transition priorities based on the
risk bands of a transition’s source and destination modes as
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priðtÞ ¼ rbsrcðtÞ � rbdesðtÞ, where priðtÞ is the priority assigned
to transition t, rbsrcðtÞ is the risk band of transition t’s source
mode, and rbdesðtÞ is the risk band of transition t’s
destination mode. The larger the value of priðtÞ is, the
higher the priority of transition t is. In Fig. 8, priðt4Þ is 2 and
priðt6Þ is 3. Obviously, when t4 and t6 are both enabled, t6
will be executed in preference to t4. With risk bands, we can
give a transition leading to a lower risk-band state a higher
priority. For two or more transitions leading to modes in the
same risk band, one has to look for the risk bands of the two
transitions’ future target states until either the states are in
different risk bands or all of the future states are in the same
band. Further, urgent transitions are also given higher
priority than lazy transitions. A novel clock zone subtrac-
tion operation is required here [12].

4.4 Resource Access Mechanisms

Safecharts model both consumers and resources. However,
when resources must be used in a mutually exclusive
manner, a model designer may easily violate the mutual
exclusion restriction by simultaneous checking and dis-
covery of free resources, followed by their concurrent
usages. A motivational example can be observed in the
railway signaling system, as illustrated in Figs. 2, 3, and 4,
where signal[k] must be shared in a mutually exclusive way
between route[x] and route[y]. However, each route checks
if signal[k] is free and, if it finds it free, then both routes will
be SET, assuming G does not hold. This is clearly a
modeling trap that violates mutually exclusive resource
usages. A serious tragedy could happen as two intersecting
routes are set, perhaps resulting in a future train collision.

From the above, we know that, when consumers try to
acquire resources that cannot be used concurrently, it is not
safe to check only the status of resources. We need some
kind of model-based mutual exclusion mechanism. A very
simple policy would be like Fischer’s mutual exclusion
protocol [17]. For each mutually exclusive resource, a
variable is used to record the ID of the consumer currently
using the resource. Before the consumer uses the resource, it
has to check if the variable is set to its ID. Fig. 9 is a
corrected variant of the route Safechart from Fig. 3. When
route[x] transits into EVALUATE_REQ, it sets variable reg
to its ID. When route[x] tries to transit into the SET mode to
acquire the usage of resource, it needs to check if reg is still
its ID, x. If reg is still x, then route[x] acquires the usage of
the resource. Other mechanisms such as atomic test-and-set

performed on a single asynchronous transition can also
achieve mutual exclusion.

5 IMPLEMENTATION IN A MODEL CHECKER

The model checking of Safecharts has been implemented in
the SGM [27], which is a TCTL model checker for real-time
and embedded systems. SGM was a conventional model
checker, which could take only a set of ETA as the system
model. We enhanced SGM in several ways to accommodate
the verification of Safecharts. First and foremost, we had to
develop an input language that could allow recursive
definitions of the hierarchical Safecharts models. Second,
we had to employ a flattening algorithm [18] to remove all
of the hierarchies and obtain a set of ETA that was
semantically equivalent to the originally specified set of
Safecharts. Third, the preservation of safety semantics from
Safecharts to ETA demanded support for transition urgen-
cies such as eager and delayable, besides the original lazy
semantics. We implemented support for transition urgen-
cies in SGM through a novel zone-capping operation.
Finally, we had to develop and implement algorithms for
the construction of risk bands from the risk relations
specified in Safecharts and then use the risk levels as the
risk associated with the ETA states. We also had to check if
there are any transitions between states with unknown risk
levels. For implementing safe nondeterminism, we had to
support prioritized transitions in SGM, which we accom-
plished using a clock zone subtraction operation [12], [21].
We also prove the semantic equivalence between Safecharts
and the generated set of ETA. State-space explosion is
handled through several state-space reduction techniques,
as discussed in Section 5.2.

5.1 Semantic Equivalence

A given set of Safecharts modeling a safety-critical system is
transformed into a set of ETA for model checking by an
enhanced version of the SGM tool. We show the semantic
equivalence between the user-specified set of Safecharts
model and the automatically generated set of ETA models
in the following theorem:

Theorem 1. The automatically generated set of ETA models is
semantically equivalent to the given set of Safecharts as far as
model checking is concerned.

Proof. We prove semantic equivalence between the two
models based on their differences, which include
concurrency, hierarchy, safety transitions, and safety
nondeterminism:

1. Concurrency. Since each AND state in a Safechart is
transformed into an equivalent set of concurrent
ETA, concurrency is preserved. However, transi-
tions entering or exiting an AND state must be
synchronized so that all initial or history states in
an AND state are entered simultaneously or all
active states left simultaneously. In the automatic
generation process, a new initial mode was
introduced into each component ETA and incom-
ing and outgoing transitions could thus be
synchronized.
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2. Hierarchy. An OR state represents a lower hier-
archy level in Safecharts. In our transformation
process, we flatten out this hierarchy by embed-
ding the lower hierarchy level of Safecharts into
the higher hierarchy level. However, in doing so,
we must preserve the incoming and outgoing
transitions of an OR state. Thus, the hierarchy
semantics was preserved through flattening.

3. Safety Transitions. Safecharts have an extra safety
layer besides the conventional functional layer as
shown in Fig. 1, with two possible types of safety
transitions: prohibitory and mandatory. Safety
semantics preservation is discussed for each, as
given below:

a. Since the prohibitory transition only specifies
a condition G under which the functional
transition should not take place, our trans-
formation through conjunction of :G with
the triggering condition of all corresponding
functional transitions, as shown in Fig. 6,
naturally prohibits the functional transition
to take place when G holds, thus preserving
the prohibitory transition semantics.

b. Unlike prohibitory transitions, a mandatory
transition specifies a functionally indepen-
dent requirement of transiting to a safer
successor state when a condition G is
satisfied and the transition must take place
within some time interval ½l; uÞ. Our transfor-
mation, as shown in Fig. 7, generates two
independent ETA paths leading to the same
safer successor state, that is, one is the
nominal functional transition and the other
is a path with two transitions: an eager
transition and a delayable transition. The
urgency semantics associated with the eager
and delayable transitions in the ETA models
preserve exactly the mandatory semantics of
safety transitions in Safecharts because not
only the time requirement is preserved, but
also the eager transition is given a higher
priority than other lazy transitions (the
functional ones), thus the eager transition
will be taken whenever enabled, irrespective
of other functional ones, which is exactly
what the mandatory safety transition in
Safecharts requires.

4. Safety nondeterminism. Nondeterminism is only
allowed in Safecharts when transitions lead to
states with equal levels of safety; otherwise,
transitions leading to safer states are given higher
priority. In our automatic transformation, we
have preserved these semantics through the
derivation of a risk level for each state based on
the user-specified risk relations that can be used
to construct a risk graph and then converted into
risk bands. The risk level of each state is then
used to assign an integer priority for each
nondeterministic transition. Prioritization of tran-
sitions was then supported in the SGM model

checker through the zone subtraction operation
[12]. Transitions with higher priority levels led to
safer states. Thus, safety nondeterminism seman-
tics was preserved.

In summary, we can see that the semantics of the
above four features of Safecharts were all preserved in
the ETA models. All other semantics of Safecharts, such
as state, transition, and computation run, are similar to
that in ETA. Thus, we can conclude that the automati-
cally generated ETA models are semantically equivalent
to the given set of Safecharts. tu

5.2 Scalability and State-Space Reduction

In model checking, state-space explosion is an infamous

problem that must be dealt with for any real-world system

of moderate size. We investigated different techniques for

reducing the state-space sizes of the ETA models that were

generated automatically from Safecharts for safety-critical

systems. The techniques included variable usage and clock

hiding, clock number reduction, safety transition reduction,

and safe time abstractions. Due to page limits, we

informally describe each of them here. The experimental

results are shown in Section 6.4.
Variable usage and clock hiding are general techniques

based on the analysis of discrete and clock variables,

respectively. In variable usage reduction, we record all

possible variable values in each mode and automatically

prune the transitions that cannot be taken from that mode.

This might seem to be trivial; however, since ETA are merged

two at a time in a compositional way in the SGM, this

reduction needs to check all other ETA that are not yet merged

into the global state graph. In clock hiding, we hide the clocks

whose values are not read before being reset. Both of these

techniques have been formally described in [27].
Clock number reduction tries to minimize the number of

clocks by reusing them whenever possible. In Safecharts,

clocks are mainly used to timeout mandatory transitions.

Hence, each Safechart with a mandatory transition must

have a clock. However, we can reduce the number of clocks

by reusing the same clock for all mandatory transitions that

have the same deadline. This is a stricter semantics than the

original Safecharts semantics. However, if this model is

proven to be safe, then the original model would also be

safe and this technique results in significant reductions.
Safety transition reduction tries to replace mandatory

transitions that are not related to safety with normal

transitions. In Safecharts, it may happen that a mandatory

transition is imposed when it is actually not directly related

to safety. Such mandatory transitions need not have a

deadline and, thus, we can transform them into normal lazy

transitions. State-space size is also reduced significantly

using this reduction technique.
Safe time abstraction is a technique whereby the time

interval ½l; uÞ on a mandatory transition is replaced with

[0, 0]. This results in stricter semantics, which means that, if

proven safe, then the original model is also safe. However,

state-space reduction can be achieved in such a stricter

semantics model.
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6 APPLICATION EXAMPLES

The proposed model-checking verification methodology
was applied to several safety-critical systems, including
several variants of the basic railway signaling system, the
hydraulic system in the Airbus A320 airplane, and a nuclear
reactor model of the TMI accident. Safecharts were
automatically transformed into ETA, input to SGM, merged
into a global state graph along with state-space reduction
techniques, and then model checked with corresponding
safety properties. Due to page limits, the ETA models are
given in online supplementary materials, which can be
found on the Computer Society Digital Library at http://
computer.org/tc/archives.htm.

6.1 Railway Signaling System

The basic railway signaling system consists of two routes:
route[x] and route[y], where route[x] requires signal[i] and
signal[k] and route[y] requires signal[j] and signal[k]. The
numbers and sizes of the Safecharts and the generated ETA
are given in Table 1. As illustrated in the supplementary
materials, which can be found on the Computer Society
Digital Library at http://computer.org/tc/archives.htm,
for each route Safechart, one ETA is obtained and, for each
signal Safechart, five ETA are generated. Thus, in the full
system consisting of five Safecharts, 17 ETA are generated.
It can be observed that the number of ETA modes, 40, is less
than the number of Safecharts states, 56. The reason for this
reduction is that hierarchical states do not exist in ETA. The
mutual exclusion issue was resolved as described in
Sections 4.4, respectively.

As illustrated in the figures given in the supplementary
materials, which can be found on the Computer Society
Digital Library at http://computer.org/tc/archives.htm, a
number of variants of the basic railway signaling system
were used for validating the proposed method. Varying the
number of routes and the number of signals in each route
increases the complexity and the concurrency of the system.
However, we can observe from the verification results in
Table 2 that the amount of time and memory expended for

model transformations are very small. However, the global
state graph increases exponentially in size and, thus, the
state-space reduction techniques proposed in Section 5.2
were all applied. The results will be given in Section 6.4.
The number of properties to be verified also increases and,
thus, their automatic generation is also a crucial step for
successful and easily accessible verification of safety-critical
systems. The safety properties that were verified for these
railway signaling systems are as given in Section 3 after
TCTL was defined.

6.2 Airbus A320 Hydraulic System

The hydraulic system in an advanced airplane such as an
Airbus A320 supplies hydraulic power for aircraft control
during flight and on the ground [2]. The safety require-
ments are listed as follows: 1) We need to ensure that we are
not in a state of total loss of hydraulic power, which is
classified as catastrophic, and 2) we need to verify that a
single failure does not result in total loss of power. As
shown in Fig. 10, there are three kinds of pumps: Electric
Motor Pump (EMP) powered by the electric system, Engine-
Driven Pump (EDP), powered by the two aircraft engines,
and one RAT Pump, powered by Ram Air Turbine. There
are three power distribution channels: Green, Blue, and
Yellow. The Blue channel is made up of one electric pump,
EMPb, one RAT pump, and a distribution line, distb. The
Green channel is made up of one pump driven by engine 1,
EDPg, and a distribution line, distg. The Yellow channel is
made up of one pump driven by engine 2, EDPy, one
electric pump, EMPy, and a distribution line, disty. A
power transfer unit (PTU) opens a transmission from the
green hydraulic power to the yellow distribution line and
vice versa as soon as their differential pressure is higher
than a given threshold.

This system was originally modeled by the A320 devel-
opment teams in Altarica [2], [16]; however, as shown in
Section 6.5, our method has several advantages compared to
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Results of the Railway Signaling System

TABLE 2
Results of Application Examples

jRj: total number of routes, jSIGj: total number of signals (number of shared signals), and j�j: number of properties generated.

Fig. 10. A320 hydraulic system model.



Altarica. There are two types of models in this system,
namely, basic block and controller block. Each basic block
was modeled by a Safechart with a MODE OR state
representing if it is working or faulty, a SENSOR OR state
modeling its sensor, and an OUTPUT OR state showing if
the basic block is providing hydraulic power. Each
controller block, besides the MODE and SENSOR states,
also has a STATUS OR state, representing whether the
system is on the ground or in flight, and an OUTPUT state,
representing if it is currently activated or not. As we can
see, the failure modes for each component block are
explicitly modeled into Safecharts, thus eliminating the
need to separately define the failure modes and effects.
Figs. 11 and 12 show the generic models for a basic and a
controller block, respectively.

Each of the five pumps and their corresponding
controllers, along with the three distribution lines, were
all modeled by Safecharts. However, since the blue system
is independent of the other two systems, we verified the
blue system separately. To check for total loss of hydraulic
power, we had to check if the blue system does not supply
power (that is, EF (EG ðpowerB ¼ 0Þ)) and if the rest of the
system (green and yellow systems) also does not supply
power (that is, EF (EG(powerG ¼ 0 and powerY ¼ 0))). It
was easy to check the second safety requirement, that is, if a
single failure results in total loss of hydraulic power, which,
expressed in TCTL, is EF(EG(MODE in fail ¼> powerB ¼ 0
and powerG ¼ 0 and powerY ¼ 0)).

The A320 hydraulic system was modeled by 13 Safe-
charts with 145 states and 105 transitions, which were
automatically transformed into 44 ETA models with
98 modes and 125 transitions. As shown in Section 6.4,
several state-space reduction techniques were implemented
into the SGM model checker to successfully verify the A320
hydraulic system.

6.3 Nuclear Reactor System

The Three Mile Island 2 nuclear reactor was also modeled
[22] to see if we could verify the failure that occurred during

the accident on 28 March 1979. As shown in Fig. 13, there
are two circuits: a primary circuit and a secondary circuit.
The primary circuit, as modeled in Fig. 14, generated steam
due to the reactor heat and was confined in a containment
building to avoid the leakage of radiation. A pressurizer
valve and some control rods, as modeled in Fig. 15,
controlled the nuclear reaction. The secondary circuit fed
water to the primary circuit for cooling and heat exchange
and used steam from the primary circuit to drive a turbine.

We summarize the events that led to the Three Mile
Island accident as follows: Due to some manual errors, the
feedwater valve in the secondary circuit was closed; heat
exchange was thus stopped, resulting in a temperature
increase in the primary circuit. As expected, the pressure
relief valve (PRV) was opened and the control rods were
dropped to slow down the nuclear fission. This is the loss of
coolant accident (LOCA). When the pressure and tempera-
ture dropped, the PRV should have closed and control rods
lifted. However, the PRV was stuck open and this was not
detected by the solenoid (sensor). As a result, the coolant
from the primary circuit kept draining, thus endangering its
environment with possible radiation.

This well-known example is used to illustrate how
Safecharts can also be used to detect a known fault, that
is, the PRV stuck-opened fault, which is conventionally
known as fault injection [4] or error seeding [29]. The fault is
modeled into Safecharts and then detected by model
checking the Safecharts against safety properties.

Safecharts [22] can be used to model the components in
the TMI nuclear reactor and, since Safecharts can explicitly
model all of the failure modes of a component such as the
stuck-open failure mode of the PRV, we can use Safecharts
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Fig. 11. Integrated Safecharts model for a basic block in A320.

Fig. 12. Integrated Safecharts model for a controller block in A320.

Fig. 13. Three Mile Island 2 nuclear reactor.



to check for such safety violations in the model itself. Fig. 15

illustrates the Safechart model for PRV, where we can see

that the PRV stuck-open failure is detected by the sensor in

the model; however, in the actual TMI reactor, during the

accident, the PRV-close transition was taken and, thus, the

sensor could not detect the failure of the PRV to close.

Fig. 14 illustrates the Safechart model for the primary circuit

in the TMI nuclear reactor along with LOCA. The hazard

that was checked for this model is EF(status in stuck-

opened and PRV position in PRV-closed and flow in

draining). Any witness to the satisfaction of this TCTL

property generated by the SGM model checker was

evidence that the hazard could happen in this model. There

were two Safecharts with 27 states and 28 transitions, which

were transformed into six ETA models with 19 modes and

30 transitions. As shown in Section 6.4, several state-space

reduction techniques were implemented into the SGM

model checker to successfully verify this system.

6.4 State-Space Reduction

The state-space reduction techniques proposed for safety-

critical systems in Section 5.2 were all applied to the three

examples described in this section. Experiments were
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Fig. 14. Safechart model of primary circuit at Three Mile Island.

TABLE 4
State-Space Reduction for TMI Nuclear Reactor

TABLE 3
State-Space Reduction for A320 Hydraulic System (Blue Line)

0: No reduction, 1: VCT, 2: VCTþCNR, 3: VCTþ CNRþ STR, 4: VCTþ CNRþ STRþ STA, VCT: variable usage and clock hiding technique,
CNR: clock number reduction, STR: safety transition reduction, STA: safe time abstractions, #C: number of clocks.

Fig. 15. Safechart model of PRV at Three Mile Island.



conducted on a Linux machine with a Pentium 4 2.8-GHz
CPU and a 2-Gbyte RAM and swap space. The results of
applying the reduction techniques to the blue subsystem of
the A320 hydraulic system are tabulated in Table 3, where
we observe that, when the techniques are applied incre-
mentally, the state-space sizes are reduced significantly
such that model checking becomes feasible, whereas the
global state graph could not be constructed without the
techniques.

For the Three Mile Island nuclear reactor example, the
results are tabulated in Table 4, where we can see that the
model being moderately sized, the effects of reduction were
not significant; however, it did not matter as the model was
feasible for model checking.

6.5 Evaluation and Validation of Safecharts Model
Checking

The proposed method of Safecharts model checking for
verifying safety-critical systems can be evaluated and
validated by comparing it with other methods. However,
for safety-critical systems, it is not always possible to do an
exact quantitative comparison, so we performed a qualita-
tive comparison, as summarized in Table 5.

In comparison with other methods in Table 5, the
advantages provided by the Safecharts model checking
include the following: 1) Fault-modeling techniques are
built-in within the popular UML design models, 2) timing
verification is performed as we use an ETA model checker,
namely, SGM, and 3) several state-space reduction techni-
ques are employed to verify large system models.

7 CONCLUSIONS

Nowadays, safety-critical systems are becoming more and
more pervasive in our daily lives. To reduce the probability
of tragedy, we must have a formal and accurate methodol-
ogy to verify if a safety-critical system is safe or not. We
have proposed a formal method to verify safety-critical
systems based on the Safecharts model and model-checking
paradigm. Our methodology can be widely applied to
safety-critical systems with a model-driven architecture.
Through several examples, we have shown the benefits of
the proposed verification method and system model. We
hope our methodology can have some real contribution
such as making the world a safer place to live.
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