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Abstract. With rapid development in science and technology, we now see the
ubiquitous use of different types of safety-critical systems in our daily lives such
as in avionics, consumer electronics, and medical systems. In such systems, un-
intentional design faults might result in injury or even death to human beings.
To make sure that safety-critical systems are really safe, there is need to verify
them formally. However, the verification of such systems is getting more and
more difficult, because the designs are becoming very complex. To cope with
high design complexity, currently model-driven architecture design is becom-
ing a well-accepted trend. However, conventional methods of code testing and
standards conformance do not fit very well with such model-based approaches.
To bridge this gap, we propose a model-based formal verification technique for
safety-critical systems. In this work, the model checking paradigm is applied to
the Safecharts model which was used for modeling, but not yet used for verifica-
tion. Our contributions are five folds. Firstly, the safety constraints in Safecharts
are mapped to semantic equivalents in timed automata for verification. Secondly,
the theory for safety constraint verification is proved and implemented in a com-
positional model checker (SGM). Thirdly, prioritized transitions are implemented
in SGM to model the risk semantics in Safecharts. Fourthly, it is shown how the
original Safecharts lacked synchronization semantics which could lead to safety
hazards. A solution to this issue is also proposed. Finally, it is shown that priority-
based approach to mutual exclusion of resource usage in the original Safecharts
is unsafe and corresponding solutions are proposed here. Application examples
show the feasibility and benefits of the proposed model-driven verification of
safety-critical systems.

1 Introduction

Safety-critical systems are systems whose failure most probably results in the tragic
loss of human life or damage to human property. There are numerous examples of these
mishaps. The accident at the Three Mile Island nuclear power plant in Pennsylvania on
28th March, 1979 is just one unfortunate example. Moreover, as time goes on, there are
more and more cars, airplanes, rapid transit systems, medical facilities, and consumer
electronics, which are all safety-critical systems appearing in our daily lives. When
some of them malfunction or fault, a tragedy is inevitable. The natural question that
comes to mind is that can we use these systems without 100% warranty? Obviously,
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the answer is negative. That’s why we need some methodology to exhaustively verify
safety-critical systems.

Traditional verification methods such as simulation and testing can only prove the
presence of faults and not their absence. Simulation and testing [11] both involve mak-
ing experiments before deploying the system in the field. While simulation is performed
on an abstract model of a system, testing is performed on the actual product. In the case
of hardware circuits, simulation is performed on the design of the circuit, whereas test-
ing is performed on the fabricated circuit itself. In both cases, these methods typically
inject signals at certain points in the system and observe the resulting signals at other
points. For software, simulation and testing usually involve providing certain inputs and
observing the corresponding outputs. These methods can be a cost-efficient way to find
many errors. However, checking all of the possible interactions and potential pitfalls us-
ing simulation and testing techniques is rarely possible. Conventionally, safety-critical
systems are validated through standards conformance and code testing. Using such veri-
fication methods for safety-critical systems cannot provide the desired 100% confidence
on system correctness.

In contrast to the traditional verification methods, formal verification is exhaustive
and provides 100% guarantee. Further, unlike simulation, formal verification does not
require any testbenches or stimuli for triggering a system. More precisely, formal veri-
fication is a mathematical way of proving a system satisfies a set of properties. Formal
verification methods such model checking [4] are being taken seriously in the recent
few years by several large hardware and software design companies such as Intel, IBM,
Motorola, and Microsoft, which goes to show the importance and practicality of such
methods for real-time embedded systems and SoC designs. For the above reasons, we
will thus employ a widely popular formal verification method called model checking
for the verification of safety-critical systems that are formally modeled.

In the course of developing a model-based verification method for safety-critical
systems, several issues are encountered as detailed in the following. First and fore-
most, we need to decide how to model safety-critical systems. Our decision is to adopt
Safecharts [4] as our models. Safecharts are a variant of Statecharts, especially for use
in the specification and the design of safety-critical systems. The objective of the model
is to provide a sharper focus on safety issues and a systematic approach to deal with
them. This is achieved in Safecharts by making a clear separation between functional
and safety requirements. Other issues encountered in designing the formal verification
methodology for model-based safety-critical systems are as follows:

1. How to transform Safecharts into a semantically equivalent Extended Timed Au-
tomata (ETA) model that can be accepted by traditional model checkers? How can
the transformation preserve the safety semantics in Safecharts?

2. What are the properties that must be specified for model checking Safecharts?

3. Basic states in Safecharts have a risk relation with each other specifying the com-
parative risk/safety levels. How do we represent such information in ETA for model
checking?

4. Safecharts have safety loopholes due to the lack of synchronization mechanisms. A
motivational example will be given in Section 4.4.
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5. The current semantics of Safecharts states that mutual exclusion of resource usages
can be achieved through priority. This is clearly insufficient as priorities cannot
ensure mutual exclusion.

The remaining portion is organized as follows. Section 2 describes the background
form our model including a comparison between conventional validation, such as simu-
lation and testing, and formal verification. Basic definitions used in our work are given
in Section 3. Section 4 will formulate each of our solutions to solving the above de-
scribed problems in formally verifying safety-critical systems modelled by Safecharts.
The article is concluded and future research directions are given in Section 6.

2 Related Work

A commonly-used method to demonstrate the safety of a system is proof by contra-
diction [13]. In this method, we assume that the unsafe states, identified by hazard
analysis, can be reached by executing the program. We then systematically analyze the
code and show that the pre-conditions for a hazardous state are contradicted by the
post-conditions of all program paths leading to that state. If this is the case, the initial
assumption of an unsafe state is incorrect. If this is repeated for all identified hazards,
then the system is safe. However, to find and list all possible hazards of safety-critical
systems is difficult. For example, a system may fail due to an unpredicted hazard that
may lead to a serious tragedy. This is not allowed, and that’s why we propose a more
formal method to verify safety-critical systems that are modeled by Safecharts and ver-
ified by model checking as introduced in the rest of this Section.

Safecharts [4] is a variant of Statecharts intended exclusively for safety-critical
systems design. With two separate representations for functional and safety require-
ments, Safecharts brings the distinctions and dependencies between them into sharper
focus, helping both designers and auditors alike in modeling and reviewing safety fea-
tures. Safecharts incorporates ways to represent equipment failures and failure handling
mechanisms and uses a safety-oriented classification of transitions and a safety-oriented
scheme for resolving any unpredictable nondeterministic pattern of behavior. It achieves
these through an explicit representation of risks posed by hazardous states by means of
an ordering of states and a concept called risk band. Recognizing the possibility of gaps
and inaccuracies in safety analysis, Safecharts do not permit transitions between states
with unknown relative risk levels. However, in order to limit the number of transitions
excluded in this manner, Safecharts provides a default interpretation for relative risk
levels between states not covered by the risk ordering relation, requiring the designer
to clarify the risk levels in the event of a disagreement and thus improving the risk
assessment process.

Timed Computation Tree Logic (TCTL) is a timed extension of the well-known tem-
poral logic called Computation Tree Logic (CTL) which was proposed by Clarke and
Emerson in 1981. We will use TCTL to specify system properties that are required to
be satisfied.

Model checking [2,3,12] is a technique for verifying finite state concurrent systems.
One benefit of this restriction is that verification can be performed automatically. The



Modeling and Verification of Safety-Critical Systems Using Safecharts 293

procedure normally uses an exhaustive search of the state space of a system to deter-
mine if some specification is true or not. Given sufficient resources, the procedure will
always terminate with a yes/no answer. Moreover, it can be implemented by algorithms
with reasonable efficiency, which can be run on moderate-sized machines. The process
of model checking includes three parts: modeling, specification, and verification. Mod-
eling is to convert a design into a formalism accepted by a model checking tool. Before
verification, specification, which is usually given in some logical formalism, is neces-
sary to state the properties that the design must satisfy. The verification is completely
automated. However, in practice it often involves human assistance. One such manual
activity is the analysis of the verification results. In case of a negative result, the user
is often provided with an error trace. This can be used as a counterexample for the
checked property and can help the designer in tracking down where the error occurred.
In this case, analyzing the error trace may require a modification to the system and a
reapplication of the model checking algorithm.

Our safety-critical system model and its model checking procedures are imple-
mented in the State-Graph Manipulators (SGM) model checker [14], which is a high-
level model checker for both real-time systems as well as systems-on-chip modeled by
a set of timed automata.

3 System Model, Specification, and Model Checking

Before going into the details of how Safecharts are used to model and verify safety-
critical systems, some basic definitions and formalizations are required as given in this
Section. Both Safecharts and their translated ETA models will be defined. TCTL and
model checking will also be formally described.

Definition 1. Statechart
Statecharts are a tuple F = (S, T , E , Θ,V , Φ), where S is a set of all states, T is a set
of all possible transitions, E is a set of all events, Θ is the set of possible types of states
in Statecharts, that is, Θ = {AND,OR,BASIC}, V is a set of integer variables, and
Φ ::= v ∼ c | Φ1 ∧ Φ2 | ¬Φ1, in which v ∈ V , ∼ ∈ {<,≤,=,≥, >}, c is an integer,
and Φ1 and Φ2 are predicates. Let Fi be an arbitrary state in S. It has the general form:

Fi = (θi, Ci, di, Ti, Ei, li)

where:

– θi : the type of the state Fi; θi ∈ Θ.
– Ci : a finite set of direct substates of Fi, referred to as child states of Fi, Ci ⊆ S.
– di : di ∈ Ci and is referred to as the default state of Fi. It applies only toOR states.
– Ti : a finite subset of T , referred to as explicitly specified transitions in Fi.
– Ei : the finite set of events relevant to the specified transitions in Ti; Ei ⊆ E .
– li : a function Ti → E × Φ × 2Ei , labelling each and every specified transition in
Ti with a triple, 2Ei denoting the set of all finite subsets of Ei. �	

Given a transition t ∈ T , its label is denoted by l(t) = (e, fcond, a), written
conventionally as e[fcond]/a. e, fcond and a in the latter, denoted also as trg(t) =
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e, con(t) = fcond, and gen(t) = a, represent respectively the triggering event, the
guarding condition and the set of generated actions.

Definition 2. Safechart
Safecharts Z extend Statecharts by adding a safety-layer. States are extended with a
risk ordering relation and transitions are extended with safety conditions. Given two
comparable states s1 and s2, a risk ordering relation
 specifies their relative risk levels,
that is s1 
 s2 specifies s1 is safer then s2. Transition labels in Safecharts have an
extended form:

e[fcond]/a[l, u)Ψ [G]

where e, fcond, and a are the same as in Statecharts. The time interval [l, u) is a real-
time constraint on a transition t and imposes the condition that t does not execute until
at least l time units have elapsed since it most recently became enabled and must ex-
ecute strictly within u time units. The expression Ψ [G] is a safety enforcement on the
transition execution and is determined by the safety clause G. The safety clause G is a
predicate, which specifies the conditions under which a given transition t must, or must
not, execute. Ψ is a binary valued constant, signifying one of the following enforcement
values:

– Prohibition enforcement value, denoted by �. Given a transition label of the form
� [G], it signifies that the transition is forbidden to execute as long as G holds.

– Mandatory enforcement value, denoted by �. Given a transition label of the form
[l, u) � [G], it indicates that whenever G holds the transition is forced to execute
within the time interval [l, u), even in the absence of a triggering event. �	

The Safecharts model is used for modeling safety-critical systems, however the
model checker SGM can understand only a flattened model called Extended Timed Au-
tomata [6] as defined in the following.

Definition 3. Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η over C and D is defined as: η := false | x ∼ c | x − y ∼ c | d ∼ c |
η1 ∧ η2 | ¬η1, where x, y ∈ C, ∼ ∈ {≤, <,=,≥, >},c ∈ N , d ∈ D, and η1, η2 are
mode predicates. �	

Let B(C,D) be the set of all mode predicates over C and D.

Definition 4. Extended Timed Automaton
An Extended Timed Automaton (ETA) is a tuple Ai = (Mi,m

0
i , Ci, Di, Li, χi, Ti,

ψi, τi, ρi) such that: Mi is a finite set of modes, m0
i ∈ Mi is the initial mode, Ci is

a set of clock variables, Di is a set of discrete variables, Li is a set of synchroniza-
tion labels, and ε ∈ Li is a special label that represents asynchronous behavior (i.e. no
need of synchronization), χi : Mi �→ B(Ci, Di) is an invariance function that labels
each mode with a condition true in that mode, Ti ⊆ Mi ×Mi is a set of transitions,
λi : Ti �→ Li associates a synchronization label with a transition, τi : Ti �→ B(Ci, Di)
defines the transition triggering conditions, and ρi : Ti �→ 2Ci∪(Di×N ) is an assignment
function that maps each transition to a set of assignments such as resetting some clock
variables and setting some discrete variables to specific integer values. �	
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A system state space is represented by a system state graph as defined in
Definition 5.

Definition 5. System State Graph
Given a system S with n components modelled by Ai = (Mi,m

0
i , Ci, Di, Li, χi, Ti,

ψi, τi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph represented by
A1 × . . .×An = AS = (M,m0, C,D,L, χ, T, ψ, τ, ρ), where:

– M = M1×M2× . . .×Mn is a finite set of system modes,m = m1.m2. . . . .mn ∈
M ,

– m0 = m0
1.m

0
2. . . . .m

0
n ∈M is the initial system mode,

– C =
⋃

i Ci is the union of all sets of clock variables in the system,
– D =

⋃
iDi is the union of all sets of discrete variables in the system,

– L =
⋃

i Li is the union of all sets of synchronization labels in the system,
– χ : M �→ B(

⋃
iCi,

⋃
i Di), χ(m) = ∧iχi(mi), where m = m1.m2. . . . .mn ∈

M .
– T ⊆M×M is a set of system transitions which consists of two types of transitions:

• Asynchronous transitions: for each e ∈ T , ∃i, 1 ≤ i ≤ n, ei ∈ Ti such that
ei = e

• Synchronized transitions: ∃i, j, 1 ≤ i = j ≤ n, ei ∈ Ti, ej ∈ Tj such that
ψi(ei) = (l, in), ψj(ej) = (l, out), l ∈ Li ∩Lj = ∅, e ∈ T is synchronization
of ei and ej with conjuncted triggering conditions and union of all transitions
assignments (defined later in this definition)

– ψ : T �→ L × {in, out} associates a synchronization label and a direction of com-
munication with a transition, which represents a blocking signal that was synchro-
nized, except for ε ∈ L, ε is a special label that represents asynchronous behavior
(i.e. no need of synchronization),

– τ : T �→ B(
⋃

iCi,
⋃

i Di), τ(e) = τi(ei) for an asynchronous transition and
τ(e) = τi(ei) ∧ τj(ej) for a synchronous transition, and

– ρ : T �→ 2
⋃

i Ci∪(
⋃

i Di×N ), ρ(e) = ρi(ei) for an asynchronous transition and
ρ(e) = ρi(ei) ∪ ρj(ej) for a synchronous transition. �

Definition 6. Safety-Critical System
A safety-critical system is defined as a set of resource components and consumer com-
ponents. Each component is modeled by one or more Safecharts. If a safety-critical
system H has a set of resource components {R1, R2, . . . , Rm} and a set of consumer
components {C1, C2, . . . , Cn}, H is modeled by {ZR1 ,ZR2 , . . . ,ZRm ,ZC1 ,ZC2 , . . . ,
ZCn}, where ZX is a Safechart model for component X . Safecharts ZRi and ZCj are
transformed into corresponding ETA ARi and ACj , respectively. Therefore, H is se-
mantically modeled by the state graph AR1 × . . .×ARm×AC1 × . . .×ACn as defined in
Definition 5. �	

For both hardware and software systems, a property or requirement can be spec-
ified in some temporal logic. The SGM model checker chooses TCTL as its logical
formalism, as defined below.
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Definition 7. Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following syntax:

φ ::= η | EGφ′ | Eφ′U∼cφ
′′ | ¬φ′ | φ′ ∨ φ′′,

where η is a mode predicate, φ′ and φ′′ are TCTL formulae, ∼ ∈ {<,≤,=,≥, >}, and
c ∈ N . EGφ′ means there is a computation from the current state, along which φ′ is
always true. Eφ′U∼cφ

′′ means there exists a computation from the current state, along
which φ′ is true until φ′′ becomes true, within the time constraint of ∼ c. Shorthands
like EF, AF, AG, AU, ∧, and → can all be defined [5]. �	

Definition 8. Model Checking
Given a Safechart Z that represents a safety-critical system and a TCTL formula, φ,
expressing some desired specification, model checking [2,3,12] verifies if Z satisfies φ,
denoted by Z |= φ.

Model checking can be either explicit using a labeling algorithm or symbolic using
a fixpoint algorithm. Binary Decision Diagram (BDD) and Difference Bound Matrices
(DBM) are data structures used for Boolean formulas and clock zones [3], respectively.

�	

4 Model Checking Safecharts

Safecharts have been used to model safety-critical systems, but the models have never
been verified. In this work, we propose a method to verify safety-critical systems mod-
elled by Safecharts. Our target model checker is State Graph Manipulators (SGM)
[14,6], which is a high-level model checker for both real-time systems, as well as,
Systems-on-Chip modelled by a set of extended timed automata. As mentioned in Sec-
tion 1, there are several issues to be resolved in model checking Safecharts.

Basically, a system designer models a safety-critical system using a set of Safecharts.
After accepting the Safecharts, we transform them into ETA, while taking care of the
safety characterizations in Safecharts, and then automatically generate properties corre-
sponding to the safety constraints. The SGM model checker is enhanced with transition
priority, synchronization, and urgency. Resource access mechanisms in Safecharts are
also checked for satisfaction of modeling restrictions that prevent violation of mutual
exclusion. Finally, we input the translated ETA to SGM to verify the safety-critical sys-
tem satisfies functional and safety properties. Each of the issues encountered during
implementation and the corresponding solutions are detailed in the rest of this section.

4.1 Flattening Safecharts and Safety Semantics

Our primary goal is to model check Safecharts, a variant of Statecharts. However,
Safecharts cannot be accepted as system model input by most model checkers, which
can accept only flat automata models such as the extended timed automata (ETA) ac-
cepted by SGM. As a result, the state hierarchy and concurrency in Safecharts must
be transformed into semantically equivalent constructs in ETA. Further, besides the
functional layer, Safecharts have an extra safety layer, which must be transformed into
equivalent modeling constructs in ETA and specified as properties for verification.
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There are three categories of states in Safechart: OR, AND, and BASIC. An
OR-state, or an AND-state, consists generally of two or more substates. Being in an
AND-state means being in all of its substates simultaneously, while being in an OR-
state means being in exactly one of its substates. A BASIC-state is translated into an
ETA mode. The translations forOR-states andAND-states are performed as described
in [8].

Safety Semantics . The syntax for the triggering condition and action of a transition in
Safecharts is:

e[fcond]/a[l, u)Ψ [G],
where e is the set of triggering events, fcond is the set of guard conditions, a is the set
of broadcast events, [l, u) is the time interval specifying the time constraint, Ψ means
the execution conditions for safety constraints, andG is the set of safety-layer’s guards.
In Safecharts, e[fcond]/a appears in the functional layer, while [l, u)Ψ [G] may appear
in the safety layer. The two layers of Safecharts can be integrated into one in ETA as de-
scribed in the following. However, we need to design three different types of transitions
[1]:

– Eager Evaluation (ε) : Execute the action as soon as possible, i.e. as soon as a guard
is enabled. Time cannot progress when a guard is enabled.

– Delayable Evaluation (δ) : Can put off execution until the last moment the guard
is true. So time cannot progress beyond a falling edge of guard.

– Lazy Evaluation (λ) : You may or may not perform the action.

The transition condition and assignment e[fcond]/a[l, u)Ψ [G] can be classified into
three types as follows:

1. e[fcond]/a
There is no safety clause on a transition in Safechart, thus we can simply transform
it to the one in ETA. We give the translated transition a lazy evaluation (λ).

2. e[fcond]/a � [G]
There is prohibition enforcement value on a transition t. It signifies that the transi-
tion t is forbidden to execute as long as G holds. During translation, we combine
them as e[fcond ∧ ¬G]/a. We give the translated transition a lazy evaluation (λ).
The transformation is shown in Fig. 1.

3. e[fcond]/a[l, u) � [G]
There is mandatory enforcement value on a transition t. Given a transition label of
the form e[fcond]/a[l, u) � [G], it signifies that the transition is forced to execute
within [l, u) whenever G holds. We translate functional and safety layers into a
transition t1 and a path t2, respectively. t1 represents e[fcond]/a, which means t1
is enabled if the triggering event e occurs and its functional conditional fcond is
true. We give t1 a lazy evaluation (λ). Path t2 is combined by two transitions, tε
and tδ. Transition tε is labeled [G]/timer := 0, where timer is a clock variable
used for the time constraint, and we give tε an eager evaluation (ε). When G holds,
tε executes as soon as possible, and tε’s destination is a newly added mode, named
translator(t). tδ’s source is translator(t), and its destination is t’s destination. tδ’s
guard is [timer ≥ l∧ timer < u]. However, we give tδ a delayable evaluation (δ),
which means it can put off execution until the last moment the guard is true. The
procedure of translation is shown in Fig. 2.
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4.2 Property Specification for Safecharts

In the safety-layer of Safecharts, there are two types of safety conditions on a transition,
one is prohibition and the other is mandatory. After parsing the Safechart models of
a safety-critical system, corresponding properties are automatically generated without
requiring the user to specify again. Such properties are used to verify if the safety-layers
work or not. As described in the following, to ensure that the safety constraints are
working, two categories of properties are generated automatically for model checking.

1. AG((src(t) ∧G) → ¬EX(des(t)))
If a transition t in Safechart has prohibition condition � [G] in its safety-layer, it
means that such transition is forbidden to execute as long as G holds. As shown
in Fig. 1, t’s source is src(t), and its destination is des(t). Due to � [G], src(t) is
not allowed to translate to des(t) as long as G holds. If such property is tenable in
our system state graph, which means that there is no transition from src(t) to des(t)
executing wheneverG holds, then we can know that the safety-critical system won’t
become dangerous while G holds.

2. AG((src(t)∧G → ¬EX(¬translator(t))) andAG(translator(t)∧timer < u)
If a transition t in Safechart has [l, u) � [G] in its safety-layer, it means that such
transition is enabled and forced to execute within [l, u) wheneverG holds. As men-
tioned in former sections, we add two transitions for the safety-layer’s behavior,
namely tε and tδ , and a mode, translator(t) between them.
From Fig. 2, whenG holds, tε must be executed as soon as possible due to its eager
evaluation and the next active mode must be translator(t). Moreover, we know
that if the mode translator(t) is active, then the next active state must be des(t)
within the time limit timer ≥ l∧ timer < u. If this constraint is violated, then the
safety condition will not be satisfied.

4.3 Transition Priority

When modeling safety-critical systems, it is important to eliminate any non-deterministic
behavior patterns of the system. Non-determinism arises if the triggering expressions
of two transitions starting from a common state are simultaneously fulfilled. Because
of its concern with safety-critical systems, Safecharts remove non-determinism in all
cases except when there is no safety implication. In a Safechart model, a list of risk
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Fig. 3. Risk graph with risk band

relation tuples is used to represent a risk graph [10]. Non-comparable conditions may
still exist in a risk graph. An example [9] is given in Fig. 3, where, relative to other
states, the state O may have received less attention in the risk assessment, resulting in
it becoming non-comparable with other states in the graph, namely, the states N and
P . Consequently, Safecharts do not allow any transition between them, for instance, a
transition such as O � P .

As a solution to the above problem, the authors of Safecharts proposed risk band
[9], which can be used to enumerate all states in a risk graph to make precise their
relative risk relations that were not explicitly described. To adopt this method, we im-
plemented transition priorities based on the risk bands of a transition’s source and des-
tination modes. According to a list of risk relations, we can give modes different risk
bands, as depicted in Fig. 3, where the maximum risk band, maxrb, is 6. We assign
each transition a priority as follows:

pri(t) = maxrb − (rbsrc(t) − rbdes(t)),

where pri(t) is the priority assigned to transition t, rbsrc(t) is the risk band of transi-
tion t’s source mode, and rbdes(t) is the risk band of transition t’s destination mode.
Moreover, the smaller the value of pri(t) is, the higher is the priority of transition t. In
Fig. 3, pri(t4) is 4, and pri(t6) is 3. Obviously, when t4 and t6 are both enabled, t6
will be executed in preference to t4. With risk bands, we can give a transition leading
to a lower risk band state a higher priority.

For implementing transition priorities into the SGM model checker, the triggering
guards of a transition are modified as follows [1].

τ ′(ti) = τ(ti) ∧
∧

j≥i

¬τ(tj),

where τ(ti) and τ(tj) are the guard conditions of transitions ti and tj , j ≥ i means that
tj’s priority is higher than or equal to ti’s, and τ ′(ti) is the modified guard condition of
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Fig. 4. Routes and signals

ti. This application results in allowing ti executed only if there is no enabled transition
tj which has priority over ti.

4.4 Transition Urgency and Synchronization

Safecharts have a safety/security loophole due to the lack of synchronization mecha-
nisms. A motivation example is the railway signal system illustrated in Fig. 4, where a
route can be requested, evaluated, and set when the required signals on a route are op-
erating without faults and are in the free state. The Safecharts for route[x] and signal[i]
are given in Fig. 5 and Fig. 6, respectively. A signal breaks down when either its lamp
or its sensor fails. The signal mode is changed from OPR to FAULTY upon receiving
either εl (lamp fail event) or εs (sensor fail event). However, this mode change is not
synchronized with εl or with εs, thus in-between these two actions, a route could have
been evaluated and set, although the signal is faulty which is not detected because the
signal’s mode has not been changed as yet. Due to this lack of synchronization, safety
loopholes exists in Safecharts. The route once set could allow a train to pass through
a faulty signal endangering human lives as well as damaging properties. Safety-based
resolution of non-determinism as proposed in [9,10,11] also does not solve this syn-
chronization issue because non-determinism is resolved only among transition of the
same Safechart and not among different Safecharts.
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Return_route[0,2]�[signal[i] in   signal[i] in FREE ��signal[k] 
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/ release_i, release_k             � signal[k] in FAULTY] 
                              / allocate_i, allocate_k 
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Fig. 5. Safechart for route[x]
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Fig. 6. Safechart for signal[i]

To solve the above problem, we propose the use of transition urgency as detailed in
the following.
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 route[x] 

SET 

EVALUATE_REQ 

NOT_SET 

Return_route[0,2]�[signal[i] in   signal[i] in FREE ∧ signal[k] 
FAULTY ∨ signal[k] in FAULTY]   in FREE ∧�regi=x ∧ regk=x 
/ release_i, release_k             �[signal[i] in FAULTY ∨ 
                              signal[k] in FAULTY] 

/ allocate_i, allocate_k 

reject_route ∨ regi≠ x�∨ regk ≠ x 
�[signal[i] in FAULTY�

∨ signal[k] in FAULTY] 
 

request_route 
/ regi := x, regk := x 

Fig. 7. Safechart for route[x] with mutual exclusion

Transition Urgency. As mentioned in Section 4.1, there are three types of transi-
tions: eager evaluation (ε), delayable evaluation (δ), and lazy evaluation (λ). Transi-
tions concerned with safety are given eager evaluation (ε) to ensure that when some
malfunction or repair events happen, they can be executed first to reflect the correct
status of a real-time system. In the railway signalling example, the model designer must
give the transition with malfunctioning event ε an eager evaluation ε. As soon as the
event ε occurs, the signal’s MODE is immediately changed to FAULTY. Thus route
will not acquire the usage of signal, due to the safety-layer prohibiting guard condition
signal[i] in FAULTY ∨ signal[k] in FAULTY.

To eliminate the safety-loopholes in Safecharts and avoid errors due to the loop-
holes, the above method must be used to extend Safecharts. We have implemented the
proposed method in our Safecharts verification framework based on SGM.

4.5 Resource Access Mechanisms

Safecharts model both consumers and resources. However, when resources must be
used in a mutually exclusive manner, a model designer may easily violate the mutual
exclusion restriction by simultaneous checking and discovery of free resources, fol-
lowed by their concurrent usages. A motivation example can be observed in the railway
signalling system as illustrated in Fig. 4, Fig. 5, and Fig. 6, where signal[k] must be
shared in a mutually exclusive way between route[x] and route[y]. However, each route
checks if signal[k] is free and finds it free, then both route will be SET, assuming all
signals are fault-free. This is clearly a modeling trap that violates mutually exclusive
usages of resources. A serious tragedy could happen in this application example as two
intersecting routes are set resulting in perhaps a future train collision.

From above we know that when consumers try to acquire resources that cannot be
used concurrently, it is not safe to check only the status of resources. We need some kind
of model-based mutual exclusion mechanism. A very simple policy would be like Fis-
cher’s mutual exclusion protocol [7]. For each mutually exclusive resource, a variable is
used to record the id of the consumer currently using the resource. Before the consumer
uses the resource, it has to check if the variable is set to its id. Fig. 7 is a corrected vari-
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ant of the route Safechart from Fig. 5. When route[id] transits into EVALUATE REQ,
it sets variable reg to its id. When route[x] tries to transit into the SET mode to acquire
the usage of resource, it needs to check if reg is still its id. If reg is still x, then route[x]
acquires the usage of the resource. Other mechanisms such as atomic test-and-set per-
formed on a single asynchronous transition can also achieve mutual exclusion.

5 Application Examples

The proposed model-based verification methodology for safety-critical systems was
applied to several variants of the basic railway signaling system, which was illustrated in
Fig. 4. The basic system was used to check the feasibility of the proposed methodology.
The variants were used to check the scalability and efficiency of the methodology.

The basic system consists of two routes: route[x] and route[y], where route[x] re-
quires signal[i] and signal[k], and route[y] requires signal[j] and signal[k]. The numbers
and sizes of the Safecharts and the generated ETA are given in Table 1. As illustrated
in Figs. 8 and 9, for each route Safechart, one ETA is obtained and for each signal
Safechart, five ETA are generated. Thus, in the full system consisting of 5 Safecharts,
17 ETA are generated. It can be observed that the number of ETA modes, 40, is lesser
than the number of Safecharts states, 56. The reason for this reduction is that hierarchi-
cal states do not exist in ETA. The synchronization and the mutual exclusion issues were
both solved for this railway system as described in Sections 4.4 and 4.5, respectively.
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Table 1. Results of the Railway Signaling System

Component Safecharts ETA
Name # # |S| |T | # |M | |T |
route 2 1 4 4 1 5 13
signal 3 1 16 10 5 10 12

full system 5 5 56 38 17 40 62

Table 2. Results of Application Examples

System Safecharts ETA |φ| Issues Solved Time Mem
|R| |S| # |S| |T | # |M | |T | Sync ME (µs) (MB)

A 2 3(1) 5 56 38 17 40 62 16 3 1 230 0.12
B 2 4(1) 6 72 48 22 50 78 19 4 1 292 0.12
C 2 4(2) 6 72 48 22 50 82 22 4 2 337 0.13
D 3 4(1) 7 76 52 23 55 87 24 4 1 326 0.14
E 3 5(2) 8 92 62 28 65 111 33 5 2 515 0.14
F 4 5(1) 9 96 66 29 70 112 32 5 1 634 0.14

|R|: total num of routes, |S|: total num of signals (num of shared signals), |φ|: num of
properties generated Sync: Num of synchronization issues solved, ME: Num of
mutual exclusion issues solved

A number of variants of the basic railway signaling system were used for validat-
ing the proposed method’s scalability and efficiency. Varying the number of routes and
the number of signals in each route increases the complexity and the concurrency of
the system. However, we can observe from the verification results in Table 2 that the
amount of time and memory expended for verification do not increase exponentially
and are very well acceptable. The number of properties to be verified also increase and
thus their automatic generation is also a crucial step for successful and easily accessible
verification of safety critical systems. The number of issues solved imply how the pro-
posed solutions in this work are significant for the successful verification of complex
systems modeled by Safecharts.

6 Conclusions

Nowadays, safety-critical systems are becoming more and more pervasive in our daily
lives. To reduce the probability of tragedy, we must have a formal and accurate method-
ology to verify if a safety-critical system is safe or not. We have proposed a formal
method to verify safety-critical systems. Our methodology can be applied widely to
safety-critical systems with a model-driven architecture. We hope our methodology can
have some real contribution such as making the world a safer place along with the de-
velopment of science and technology.

.
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