
Model Checking Timed Systems with Priorities

Pao-Ann Hsiung and Shang-Wei Lin
Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

E-mail: hpa@computer.org

Abstract

Priorities are used to resolve conflicts such as in re-
source sharing and in safety designs. The use of priorities
has become indispensable in real-time system design such
as in scheduling, synchronization, arbitration, and fairness
guaranteeing. There are several modeling frameworks that
show how timed systems with priorities are to be designed
and how priority schedulers can be automatically synthe-
sized. However, the verification of timed systems with pri-
orities using model checking is still a relatively untouched
area. We show what the issues are in model checking timed
systems with priorities and how the issues are solved in this
work. In the process, we propose an optimal zone subtrac-
tion algorithm. The method has been implemented into the
SGM model checker and successfully applied to real-time
embedded systems and safety-critical systems, which illus-
trate the feasibility and advantages of the proposed verifi-
cation method.

1. Introduction

Concurrency results in conflicts when resources are
shared such as two or more processes trying to use the
same processor or the same peripheral device in real-time
embedded systems. To resolve such conflicts, scheduling,
synchronization, and arbitration are some well-known so-
lutions that have been popularly used in operating systems
and in hardware designs. A common artifact of these solu-
tions is the prioritization of contending parties. A low pri-
ority process is allowed to execute only when all processes
with higher priorities are disabled. Priorities may take dif-
ferent forms in different methods such as the process arrival
time in FIFO scheduling, the task period in rate monotonic
scheduling, the task deadline in earliest deadline schedul-
ing, or even as simple as an integer value assigned by a user
to a real-time task. Priorities are also necessary for model-
ing interrupts in embedded systems.

System models used for design and verification such

as timed automata, statecharts, and others allow non-
determinisms which arise out of concurrency, interleaving,
and information hiding. However, non-determinisms often
result in unmanageably large state-spaces. Prioritization of
transitions not only models real systems more accurately
but also removes non-determinisms and thus reduces the
size of state-spaces. Several modeling frameworks have
been proposed for modeling and designing systems with
priorities. However, their verification techniques are still
very limited. All the above mentioned reasons have moti-
vated us to model check timed systems with priorities.

The target model for prioritization in this work will be
timed automata (TA) [4], because it is widely used in most
model checkers for real-time systems such as SGM [18, 23],
RED [22], UPPAAL [6], and Kronos [24]. The main issue
here is how to extend the syntax and semantics of TA with-
out losing its original theoretical basis for model checking.

The remaining portion is organized as follows. Section 2
describes previous work related to priority modeling and
verification. Basic definitions used in our work are given in
Section 3. Section 4 will formulate the solutions to solving
the above described issues in prioritizing timed automata
and then verifying them. An application example is given
in Section 5 to show how priority helps in model checking.
The article is concluded and future research directions are
given in Section 6.

2. Related Work

Several work of Joseph Sifakis [1, 2, 16] have focused on
modeling timed systems with priorities. A solid theoretical
basis has been laid by these work for modeling schedulers
based on priorities. Several well-known scheduling meth-
ods such as FIFO, rate-monotonic, earliest deadline first,
least laxity first, priority ceiling protocol were modeled by
priority rules. Deadlock-free controllers were also synthe-
sized to meet safety properties expressed as priority rules
[16]. A real-time process with arrival time, execution time,
and period or deadline was formally modeled using differ-
ent time urgencies such as delayable (must transit before the

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

transition condition expires) and eager (must transit as soon
as the transition condition holds) [2]. In spite of these solid
work on modeling and synthesis of schedulers for timed
systems with priorities, little has been investigated on the
verification of such systems.

Priorities have also been added to other modeling for-
malisms such as the work on a priority language for Timed
CSP [19], in which some operators were refined into bi-
ased ones and several algebraic laws were given. Actions
in process algebra have been prioritized by Cleaveland and
Hennessy [12]. A prioritized version of ACP was proposed
by Baeten et al. [5]. Camilleri proposed a prioritized version
of CCS [20] with a left biased choice operator [9]. Priorities
have not received as much focus in the model checking field
as that in process algebra. The work here is an initial step in
the verification direction. Some background on the model
checking paradigm is given in the rest of this section.

Model checking [10, 11, 21] is an automatic technique
for verifying finite state concurrent systems. The proce-
dure normally uses an exhaustive search of the state space
of a system to determine if some specification is true or
not. Given sufficient resources, the procedure will always
terminate with a yes/no answer. Moreover, it can be imple-
mented by algorithms with reasonable efficiency, which can
be run on moderate-sized machines. When model check-
ing is applied to real-time system verification, the model
checker verifies if a system modeled by a set of concurrent
Timed Automata (TA) satisfies a set of user-given specifi-
cation properties expressed in the Timed Computation Tree
Logic (TCTL). TA [3, 4] is a timed extension of the con-
ventional automata, which was proposed by Alur, Courcou-
betis, and Dill in 1990 . TCTL [3] is a timed extension of the
temporal logic called Computation Tree Logic (CTL) [10].

Our model checking procedures for prioritized timed au-
tomata are implemented in the State-Graph Manipulators
(SGM) model checker [18, 23], which is a high-level com-
positional model checker for real-time systems. Now, with
the enhancement of prioritizations, SGM can also be used to
model check real-time embedded systems such as System-
on-Chip (SoC) architectures.

3. Preliminaries

Before we discuss solutions to the issues introduced in
Section 1 on model checking prioritized timed automata,
we give some basic definitions.

Definition 1 Mode Predicate
Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate η over C and D is
defined as: η := false | x ∼ c | x−y ∼ c | d ∼ c | η1∧η2 |
¬β3, where x, y ∈ C, ∼ ∈ {≤, <, =,≥, >}, c ∈ N , the set
of non-negative integers, d ∈ D, η1, η2 are mode predicates,

and β3 is a discrete variable constraint. A mode predicate
can be expressed as η = ζ ∧β, where ζ is a clock constraint
and β is a Boolean condition on the discrete variables. ��

Let B(C, D) be the set of all mode predicates over C
and D. We extend the conventional definition of TA by
prioritizing the transitions, as defined in Definition 2.

Definition 2 Prioritized Timed Automaton
A Prioritized Timed Automaton (PTA) is a tuple Ai =
(Mi, m

0
i , Ci, Di, Li, χi, Ti, λi, τi, πi, ρi) such that:

• Mi is a finite set of modes,

• m0
i ∈ M is the initial mode,

• Ci is a set of clock variables,

• Di is a set of discrete variables,

• Li is a set of synchronization labels, and ε ∈ Li is
a special label that represents asynchronous behavior
(i.e. no need of synchronization),

• χi : Mi �→ B(Ci, Di) is an invariance function that
labels each mode with a condition true in that mode,

• Ti ⊆ Mi × Mi is a set of transitions,

• λi : Ti �→ Li associates a synchronization label with a
transition,

• τi : Ti �→ B(Ci, Di) defines the transition triggering
conditions,

• πi : Ti �→ N associates an integer priority with a tran-
sition, where a larger positive value implies higher pri-
ority and a zero value implies no prioritization, and

• ρi : Ti �→ 2Ci∪(Di×N) is an assignment function that
maps each transition to a set of assignments such as re-
setting some clock variables and setting some discrete
variables to specific integer values. ��

A system state space is represented by a system state
graph as defined in Definition 3.

Definition 3 Prioritized System State Graph
Given a system S with n components modelled by PTA
Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti, λi, τi, πi, ρi), 1 ≤ i ≤ n,

the system model is defined as a state graph represented
by A1 × . . . × An = AS = (M, m0, C, D, L, χ, T,
λ, τ, π, ρ), where:

• M = M1 × M2 × . . . × Mn is a finite set of system
modes, m = m1.m2.mn ∈ M ,

• m0 = m0
1.m

0
2.m

0
n ∈ M is the initial system

mode,

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

• C =
⋃

i Ci is the union of all sets of clock variables in
the system,

• D =
⋃

i Di is the union of all sets of discrete variables
in the system,

• L =
⋃

i Li is the union of all sets of synchronization
labels in the system,

• χ : M �→ B(
⋃

i Ci,
⋃

i Di), χ(m) = ∧iχi(mi),
where m = m1.m2.mn ∈ M .

• T ⊆ M × M is a set of system transitions which con-
sists of two types of transitions:

– Asynchronous transitions: ∃i, 1 ≤ i ≤ n, ei ∈ Ti

such that ei = e ∈ T

– Synchronized transitions: ∃i, j, 1 ≤ i �= j ≤
n, ei ∈ Ti, ej ∈ Tj such that λi(ei) = (l, in),
λj(ej) = (l, out), l ∈ Li ∩ Lj �= ∅, e ∈ T
is synchronization of ei and ej with conjuncted
triggering conditions and union of all transitions
assignments (defined later in this definition)

• λ : T �→ L associates a synchronization label with a
transition, which represents a blocking signal that was
synchronized, except for ε ∈ L, ε is a special label
that represents asynchronous behavior (i.e. no need of
synchronization),

• τ : T �→ B(
⋃

i Ci,
⋃

i Di), τ(e) = τi(ei) for an asyn-
chronous transition and τ(e) = τi(ei) ∧ τj(ej) for a
synchronous transition,

• π : T �→ N , where π(e) = πi(ei) for an asynchro-
nous transition and π(e) = max{πi(ei), πj(ej)} for a
synchronous transition, and

• ρ : T �→ 2
�

i Ci∪(
�

i Di×N), ρ(e) = ρi(ei) for an asyn-
chronous transition and ρ(e) = ρi(ei) ∪ ρj(ej) for a
synchronous transition. �

In a mode predicate, there are Boolean and clock con-
straints. In most model checkers, the Boolean constraints
are represented by Binary Decision Diagrams (BDD) [8]
and the clock constraints are represented by Difference
Bound Matrices (DBM) [14].

For verifying a real-time embedded system modeled by a
set of prioritized timed automata, the system properties can
be specified in a temporal logic. The SGM model checker
chooses TCTL as its logical formalism, as defined below.

Definition 4 Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following
syntax: φ ::= η | EGφ′ | Eφ′U∼cφ

′′ | ¬φ′ | φ′ ∨ φ′′,
where η is a mode predicate, φ′ and φ′′ are TCTL formu-
lae, ∼ ∈ {<,≤, =,≥, >}, and c ∈ N . EGφ′ means there

is a computation from the current state, along which φ′ is
always true. Eφ′U∼cφ

′′ means there exists a computation
from the current state, along which φ′ is true until φ′′ be-
comes true, within the time constraint of ∼ c. Shorthands
like EF, AF, AG, AU, ∧, → can all be defined [17]. ��
Definition 5 Model Checking
Given a prioritized system state graph AS that represents
a real-time embedded system S with priority and a TCTL
formula, φ, expressing some desired specification, model
checking verifies if AS satisfies φ, denoted by AS |= φ.
Model checking can be either explicit using a labeling algo-
rithm or symbolic using a fixpoint algorithm. ��

4. Model Checking Real-Time Embedded Sys-
tems

Our target problem is to model and verify real-time em-
bedded systems with priority. A set of prioritized timed au-
tomata is used to model such a system and model checking
is used to verify if the prioritized system state graph, ob-
tained by merging the set of PTA, satisfies user-given TCTL
properties. In this section, we will propose solutions to the
issues that were introduced in Section 1. The transforma-
tion of PTA to TA will be given in Section 4.1. A major ex-
tension to the conventional semantics involves the negation
of clock zones and its implementation using DBMs, which
will be covered in Section 4.2.

4.1. Model Transformation

Prioritization semantics require the negation of transition
triggering conditions because a transition t can be executed
only if all transitions t′ with priorities higher than that of t
cannot be executed, that is, they are disabled or their trig-
gering conditions τi(t′) do not hold.

Given a triggering condition τi(t) = ζ(t)∧β(t), its nega-
tion is defined as follows.

¬τi(t) = ζ(t) ∨ ¬β(t)
ζ(t) = x ∼′ c, if ζ(t) = x ∼ c,

= x − y ∼ c, if ζ(t) = x − y ∼ c,

= ζ1 ∨ ζ2, if ζ(t) = ζ1 ∧ ζ2,
¬β(t) = d ∼′ c, if β(t) = d ∼ c

= ¬β1 ∨ ¬β2, if β(t) = β1 ∧ β2,
= β1, if β(t) = ¬β1,

(1)

where x, y ∈ Ci, d ∈ Di, c ∈ N , ∼′ ∈ {>,≥, �=,≤, <}
corresponding respectively to ∼ ∈ {≤, <, =, >,≥}, ζ1, ζ2

are clock constraints, and β1, β2 are Boolean conditions on
discrete variables in Di.

In the above definition for negation of a triggering con-
dition in B(Ci, Di), the result of negation no longer be-
longs to the set B(Ci, Di), that is, the set of mode pred-
icates is not closed under the negation operator. This is

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

because all clock constraints, also called clock zones, in
B(Ci, Di) are n-dimensional convex polyhedra for a sys-
tem with n clocks. However, the result of negation may not
be convex. This non-closure of negation has adverse effects
on model checking because all operators on transition trig-
gers and mode invariants need to guarantee closure so that
the timed automata can be composed into state-graphs for
model checking. Closure is also required to guarantee ter-
mination of the composition procedures for timed automata.

Conventional operators on clock zones such as intersec-
tion, time elapse, and reset all guarantee closure as their re-
sults are still clock zones (convex polyhedra). Nevertheless,
the possibly non-convex polyhedron generated by negation
can be converted into a set of convex polyhedra. In Section
4.2, we propose an algorithm for the optimal partitioning of
non-convex polyhedra so that priorities can be modeled and
verified for real-time embedded systems. Here, optimality
means the least number of convex polyhedra is generated.

A transition t can fire only when the following conditions
holds.

βi(t)∧ζi(t)∧

 ∧

πi(t′)>πi(t)

¬βi(t′)

 ∨

 ∧

πi(t′)>πi(t)

ζi(t′)

(2)

4.2. Optimal DBM Subtraction

A clock zone is a clock constraint consisting of conjunc-
tions of x ∼ c and x−y ∼ c, where x, y are clock variables
in Ci and c ∈ N . A clock zone is also restricted to be a
convex polyhedron. It is often implemented as a Difference
Bound Matrix (DBM) [14], which is defined as follows.

Definition 6 Difference Bound Matrix (DBM)
Given a clock zone z that represents a clock constraint on n
clocks in Ci = {x1, x2, . . . , xn}, it can be implemented as a
(n+1)×(n+1)matrix D, where the element D(i, j) =∼ c,
∼ ∈ {<,≤}, c ∈ N , represents the constraint xi − xj ∼ c,
0 ≤ i, j ≤ n. It is assumed x0 = 0. ��

Geometrically, a clock zone over n clocks is an n-
dimensional convex polyhedron. In the model checking
of timed automata, three operations on clock zones are re-
quired, namely intersection, time elapse, and reset. The in-
tersection of two convex polyhedra gives a convex polyhe-
dron, hence the set of clock zones is closed under intersec-
tion. Time elapse removes the upper bounds on all clocks
(all D(i, 0), 1 ≤ i ≤ n elements are changed to < ∞), how-
ever it is still a convex polyhedron, hence the set of clock
zones is also closed under time elapse. The reset operation
sets the values of one or more clocks to zero and adjusts
the clock value differences accordingly. Geometrically, re-
set amounts to a projection of the clock zone on the axes

corresponding to the clocks that are reset. Projection of a
convex polyhedron is still a convex polyhedron, hence the
set of clock zones is also closed under reset.

In the verification of real-time embedded systems with
priority, we need to subtract the clock zone representing the
time a higher priority transition is enabled (trigger satisfied)
from the clock zone representing the time a lower priority
transition is enabled. We will call this the subtraction oper-
ator. In Section 4.1, for a given clock zone ζ, Equations (1,
2) defined the negation of clock zones ζ . Using this nega-
tion, given two clock zones z1 and z2, we can calculate their
difference as follows.

z1 − z2 = z1 ∩ z2 (3)

where ∩ is the intersection operator between two zones.
As mentioned before in Section 4.1, z2 may not be a

clock zone anymore as it may not be convex. We propose
an algorithm here so that we can partition the possibly non-
convex polyhedron z2 into a set of convex polyhedra. For
ease of illustration, we will focus on the 2-dimensional case.
It can be easily extended to n-dimensional zones, for any
n > 2.

The optimal DBM subtraction algorithm is given in Al-
gorithm 1 and described as follows. Given two clock zones
represented by DBM z1 and z2, we can obtain the difference
z1 − z2 by the following steps.

• For each non-diagonal element in the DBM z2, we ob-
tain its complement zone by reversing the relational
operator. This complement zone does not intersect
with z2, but may intersect with z1. (Steps 2–4)

• For each complement zone, we find its intersection
with z1, denoted as ztmp, which is a zone. (Step 5)

• There is a merge procedure that tries to combine a zone
zprev generated in the previous iteration with the cur-
rently generated zone ztmp (Steps 6, 7). If the merged
DBM is indeed convex, i.e. a valid zone, then zprev is
discarded from the set z of zones to be returned (Step
8). Finally, the merged zone or ztmp is added into z
(Step 10).

The complexity of the algorithm is O(n4), where n is
the number of clock variables. Since we work on each ele-
ment of z2, it gives a O(n2) complexity. In each iteration,
we need to perform zone intersection, which is also O(n2)
complexity. Hence, the O(n4) complexity of the DBM sub-
traction algorithm.

We can prove that a minimal number of partitions
(zones) are generated after subtraction. Due to page limit,
we only give the theorem here.

Theorem 1 The number of zones generated by the DBM
subtraction algorithm is minimal. ��

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

input : DBM: z1, z2 //z2(i, j) = ′′ ∼ c′′

output: DBM*: z //set of DBMs
DBM*: ztmp, zprev = NULL1

for each z2(i, j), i �= j do2

init(ztmp) //ztmp(i, j) =′′< ∞′′, i �= j &3

ztmp(i, i) =′′≤ 0′′

ztmp(i, j) = ∼′ c //∼′ ∈ {>,≥}, ∼ ∈ {≤, <}4

ztmp = ztmp ∩ z15

if zprev & mergeable (ztmp, zprev) then6

ztmp = merge(ztmp, zprev)7

z = z\{zprev}8

end9

z = z ∪ {ztmp}10

if zprev �= ztmp then11

zprev = ztmp12

end13

end14

return z15

Algorithm 1: DBM Subtraction z1 − z2

5. Application Example

The proposed verification method was implemented in
the State-Graph Manipulators (SGM) model checker [18,
23]. The extensions included both syntax and semantics of
priorities in timed automata. Clock zones had to be sub-
tracted and the set of generated zones has to be split into
different state graph modes, which were then pushed into
the model checker stack.

The proposed verification method can be applied to any
real-time embedded system with priority that can be mod-
eled accurately using prioritized timed automata. Besides
several smaller examples, we applied the method to a real-
world large example, which is an embedded active struc-
tural control system (ASCS) used to prevent damages on
buildings caused by earthquakes or strong wind [7, 15].
The ASCS system was modeled by three periodic processes,
where we verified the system both with and without priori-
ties. Figure 1 illustrates the three PTA: modeler, data, and
pulser. The modeler computes for 2.3 to 2.5 ms and updates
a shared buffer, which takes 1 ms. The pulser has a period
between 3.2 and 14.5 ms. It reads the data in the buffer for
0.2 ms and writes them to actuators for 5.8 ms. The modeler
and pulser share the same processor. It is required that the
data read by the pulser is fresh, that is, stored by modeler at
most 13 ms ago. Freshness is imposed by the data process.
The updated transition in modeler is synchronized with the
refresh transition in data. For the system to be schedula-
ble, there should not be any dead state in the three process
automata, where a dead state is one without any outgoing
transition. To guarantee schedulability, priorities are neces-

sary as described in the following.

• (p1) The expire transition in data has priority over the
read transition in pulser.

• (p2) The compute transition in modeler has priority
over the read transition in pulser.

• (p3) The update transition in modeler has priority over
the read transition in pulser.

compute
x := 0;

computed
23 x 25

updated
x = 10
sync refresh

update
x := 0;

expire
y 130

refresh
y := 0;

refresh
y := 0; arrive

32 z 145
z := 0;

read
z 85

written
z 145

write
z 87

modeler data pulser

Figure 1. Active Structural Control System

The application results for ASCS were obtained using
SGM running on a Linux machine with an Intel Pentium 4
2.8 GHz processor and 1 GB RAM. The results of model
checking the ASCS real-time embedded system with and
without priorities are given in Table 1. It is observed that
there is a significant reduction in the sizes of the prioritized
system state-graphs (rows 2–4) compared to the unpriori-
tized one (row 1), where the size consists of the number of
modes and transitions. We can also see that there are only 2
dead states in the fully prioritized state graph. After check-
ing those dead states, we found it is due to the inability of
the SGM model checker to model different transition ur-
gencies such as delayable (must execute before trigger ex-
pires) and eager (must execute as soon as trigger holds).
Ignoring the 2 dead states, we see that the system becomes
schedulable only after all the 3 priority rules {p1, p2, p3}
are incorporated into the 3 process model. Further, we can
also observe that having priorities not only allowed us to
check the schedulability of the system, but the whole verifi-
cation process utilized much less computing resources such
as CPU time and memory.

Besides real-time embedded systems, the proposed
method was also applied to safety-critical systems that were
modeled using Safecharts [13]. Due to page-limit, we could
not cover this work here. Mainly, the priorities were used to
resolve non-determinisms that could lead to unsafe states.
Adding priorities ensured the models were safe and the

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

Table 1. Verifying ASCS With Priorities
Priorities #Modes #Trans #Dead MB sec
{} 90,905 190,903 386 77.47 13.69
{p1} 76,811 160,555 3,006 65.23 11.68
{p1, p2} 135 207 13 0.13 0.02
{p1, p2, p3} 75 95 2 0.13 0.02

safety critical systems such as railway signaling system
were model checked using SGM extended with priorities.

6. Conclusions

In this work, we have shown how the popular timed au-
tomata model for real-time systems can be extended with
priorities for verifying real-time embedded systems. We
have proposed a novel optimal algorithm for DBM subtrac-
tion, which takes care of the semantics of priorities in timed
automata. We have shown through several examples how
the algorithm generates least number of zones. A real ap-
plication example also illustrates the benefits of our method
for verifying real-time embedded systems with priority.

References

[1] K. Altisen, G. Gössler, and J. Sifakis. A methodology for
the construction of scheduled systems. In Proceedings of
the 6th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT), Lecture
Notes in Computer Science, volume 1926, pages 106–120.
Springer Verlag, September 2000.

[2] K. Altisen, G. Gössler, and J. Sifakis. Scheduler modeling
based on the controller synthesis paradigm. Real-Time Sys-
tems, 23:55–84, 2002.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for
real-time systems. In Proceedings of the 5th Annual Sympo-
sium on Logic in Computer Science, pages 414–425. IEEE
Computer Society Press, 1990.

[4] R. Alur and D. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[5] J. Baeten, J. Bergstra, and J. Klop. Syntax and defining
equations for an interrupt mechanism in process algebra.
Technical Report CS-R8503, Centre for Mathematics and
Computer Science, Amsterdam, The Netherlands, 1985.

[6] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
Y. Wang. UPPAAL: a tool suite for automatic verification of
real-time systems. In Proceedings of Workshop on Verifica-
tion and Control of Hybrid Systems III, number 1066 in Lec-
ture Notes in Computer Science, pages 232–243. Springer–
Verlag, Oct 1996.

[7] V. Braberman. Modeling and Checking Real-Time System
Designs. PhD thesis, Department of Computation, Univer-
sidad de Buenos Aires, 2000.

[8] R. Bryant. Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[9] J. Camilleri. Introducing a priority operators to ccs. Techni-
cal Report 157, Cambridge, 1989.

[10] E. Clarke and E. Emerson. Design and sythesis of synchro-
nization skeletons using branching time temporal logic. In
Proceedings of the Logics of Programs Workshop, volume
131 of LNCS, pages 52–71. Springer Verlag, 1981.

[11] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[12] R. Cleaveland and M. Hennessy. Priorities in process al-
gebra. In Proceedings of the 3rd Symposium on Logic in
Computer Science, Edinburgh, 1988.

[13] H. Dammag and N. Nissanke. Safecharts for specifying and
designing safety critical systems. In Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems, pages
78–87, October 1999.

[14] D. L. Dill. Timing assumptions and verification of finite-
state concurrent systems. In Proceedings of Workshop on
Automatic Verification Methods for Finite State Systems,
volume 407 of LNCS, pages 197–212. Springer-Verlag,
1989.

[15] W. Elseaidy, R. Cleaveland, and J. J. Baugh. Modeling and
verifying active structural control systems. Science of Com-
puter Programming, 29(1–2):99–122, 1977.

[16] G. Gössler and J. Sifakis. Priority systems. In Proceedings
of the 2nd International Symposium on Formal Methods for
Components and Objects (FMCO), Lecture Notes in Com-
puter Science, volume 3188, pages 314–329. Springer Ver-
lag, November 2003.

[17] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Sym-
bolic model checking for reat-time systems. In Proceedings
of the IEEE International Conference on Logics in Com-
puter Science (LICS), pages 394–406, June 1992.

[18] P.-A. Hsiung and F. Wang. A state-graph manipulator
tool for real-time system specification and verification. In
Proceedings of the 5th International Conference on Real-
Time Computing Systems and Applications (RTCSA), Octo-
ber 1998.

[19] G. Lowe. Probabilities and Priorities in Timed CSP. PhD
thesis, St. Hugh’s College, University of Oxford, Hilary
Term, 1993.

[20] R. Milner. Communication and Concurrency. Prentice Hall
International, 1989.

[21] J.-P. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. In Proceedings of the
International Symposium on Programming, volume 137 of
LNCS, pages 337–351. Springer Verlag, 1982.

[22] F. Wang. RED: Model-checker for timed automata with
clock-restriction diagram. In Proceedings of the Workshop
on Real-Time Tools, August 2001. Technical Report 2001-
014, ISSN 1404-3203, Department of Information Technol-
ogy, Uppsala University.

[23] F. Wang and P.-A. Hsiung. Efficient and user-friendly ver-
ification. IEEE Transactions on Computers, 51(1):61–83,
January 2002.

[24] S. Yovine. Kronos: A verification tool for real-time sys-
tems. International Journal of Software Tools for Technol-
ogy Transfer, 1(1/2):123–133, October 1997.

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’05)

1533-2306/05 $20.00 © 2005 IEEE

