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Abstract. Priorities are often used to resolve conflicts in timed systems. How-
ever, priorities are not directly supported by state-of-art model checkers. Often,
a designer has to either abstract the priorities leading to a high degree of non-
determinism or model the priorities using existing primitives. In this work, it is
shown how prioritized timed automata can make modelling prioritized timed sys-
tems easier through the support for priority specification and model checking. The
verification of prioritized timed automata requires a subtraction operation to be
performed on two clock zones, represented by DBMs, for which we propose an
algorithm to generate the minimal number of zones partitioned. After the appli-
cation of a series of DBM subtraction operations, the number of zones generated
become large. We thus propose an algorithm to reduce the final number of zones
partitioned by merging some of them. A typical bus arbitration example is used to
illustrate the benefits of the proposed algorithms. Due to the support for prioriti-
zation and zone reduction, we observe that there is a 50% reduction in the number
of modes and 44% reduction in the number of transitions.

Keywords: Prioritized timed automata, DBM subtraction, zone merging, zone
reduction.

1 Introduction

Concurrency results in conflicts when resources are shared such as two or more process-
es trying to use the same processor or the same peripheral device in real-time embedded
systems. To resolve such conflicts, scheduling, synchronization, and arbitration are some
well-known solutions that have been popularly used in operating systems and in hardware
designs. A common artifact of these solutions is the prioritization of contending parties.
A low priority process is allowed to execute only when all processes with higher priorities
are disabled.

System models used for design and verification such as timed automata, statecharts,
and others allow non-determinisms which arise out of concurrency, interleaving, and in-
formation hiding. However, non-determinisms often result in unmanageably large state-
spaces. Prioritization of transitions not only models real systems more accurately but
also removes non-determinisms and thus reduces the size of state-spaces. Several model-
ing frameworks have been proposed for modeling and designing systems with priorities.
However, their verification techniques are still very limited. All the above mentioned
reasons have motivated us to model check timed systems with priorities.
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The target model for prioritization in this work will be timed automata (TA) [4],
because it is widely used in most model checkers for real-time systems such as SGM
[15,22], RED [21], UPPAAL [6], and Kronos [23]. In model checking timed automata
with priorities, a subtraction operation between two clock zones, represented by Differ-
ence Bound Matrices (DBMs), is required. We have proposed an algorithm to perform
the subtraction operation on two DBMs [14]. This algorithm generates the minimal num-
ber of zones partitioned. If there are multiple priorities in timed automata, a series of
DBM subtraction operations are needed. After a series of DBM subtraction operations,
the final number of zones partitioned may become very large resulting in a significant
increase in state-space sizes. In this work, we propose another DBM subtraction opera-
tion that also generates the minimal number of zones partitioned. For handling the large
number of zones generated after a series of DBM subtraction, we also propose a DBM
merging algorithm to reduce the final number of zones partitioned by merging some of
the zones.

The remaining portion is organized as follows. Section 2 describes previous work
related to priority modeling and verification. Basic definitions used in our work are given
in Section 3. Section 4 will formulate the solutions for solving the above described issues
in prioritizing timed automata and then verifying them. Section 5 gives an example. The
article is concluded and future research directions are given in Section 6.

2 Related Work

Several work of Joseph Sifakis [1,2,13,20,19] have focused on modeling timed sys-
tems with priorities. A solid theoretical basis has been laid by these work for modeling
schedulers based on priorities. Several well-known scheduling methods such FIFO, rate-
monotonic, earliest deadline first, least laxity first, priority ceiling protocol were modeled
by priority rules. Deadlock-free controllers were also synthesized to meet safety prop-
erties expressed as priority rules [13]. A real-time process with arrival time, execution
time, and period or deadline was formally modeled using different time urgencies such
as delayable (must transit before the transition condition expires) and eager (must tran-
sit as soon as the transition condition holds) [2]. The compositionality of priorities was
handled by priority choice operators [19]. In spite of these solid work on modeling and
synthesis of schedulers for timed systems with priorities, little has been investigated on
the verification of such systems.

Priorities have also been added to other modeling formalisms such as the work on
a priority language for Timed CSP [16], in which some operators were refined into
biased ones and several algebraic laws were given. Actions in process algebra have
been prioritized by Cleaveland and Hennessy [11]. A prioritized version of ACP was
proposed by Baeten et al. [5]. Camilleri proposed a prioritized version of CCS [17]
with a left biased choice operator [8]. Priorities have not received as much focus in the
model checking field as that in process algebra. The work here is an initial step in the
verification direction. Some background on the model checking paradigm is given in the
rest of this Section.

Model checking [9,10,18] is a technique for verifying finite state concurrent sys-
tems. One benefit of this restriction is that verification can be performed automatically.
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The procedure normally uses an exhaustive search of the state space of a system to
determine if some specification is true or not. Given sufficient resources, the procedure
will always terminate with a yes/no answer. Moreover, it can be implemented by algo-
rithms with reasonable efficiency, which can be run on moderate-sized machines. The
process of model checking includes three parts: modeling, specification, and verification.
Modeling is to convert a design into a formalism accepted by a model checking tool.
Before verification, specification, which is usually given in some logical formalism, is
necessary to state the properties that the design must satisfy. The verification is com-
pletely automated. However, in practice it often involves human assistance. One such
manual activity is the analysis of the verification results. In case of a negative result, the
user is often provided with an error trace. This can be used as a counterexample for the
checked property and can help the designer in tracking down where the error occurred.
In this case, analyzing the error trace may require a modification to the system and a
re-application of the model checking algorithm.

When model checking is applied to real-time system verification, the model checker
verifies if a system modeled by a set of concurrent Timed Automata (TA) satisfies a set
of user-given specification properties expressed in the Timed Computation Tree Logic
(TCTL). TA [3,4] is a timed extension of the conventionalautomata, which was proposed
by Alur, Courcoubetis, and Dill in 1990 . TCTL [3] is a timed extension of the temporal
logic called Computation Tree Logic (CTL) [9].

Our model checking procedures for prioritized timed automata are implemented
in the State-Graph Manipulators (SGM) model checker [15,22], which is a high-level
compositional model checker for real-time systems. Now, with the enhancement of
prioritizations, SGM can also be used to model check real-time embedded systems such
as System-on-Chip (SoC) architectures.

3 Preliminaries

Definition 1. Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of a mode
predicate η over C and D is defined as: η := false | x ∼ c | x − y ∼ c | d ∼ c |
η1 ∧ η2 | ¬β3, where x, y ∈ C, ∼ ∈ {≤, <, =, ≥, >}, c ∈ N , the set of non-negative
integers, d ∈ D, η1, η2 are mode predicates, and β3 is a discrete variable constraint. A
mode predicate η can be expressed as a conjunction of a clock constraint ζ and a Boolean
condition β on the discrete variables, that is, η = ζ ∧ β. ��

Let B(C, D) be the set of all mode predicates over C and D. We extend the con-
ventional definition of TA by prioritizing some of the transitions in a TA, as defined in
Definition 2.

Definition 2. Prioritized Timed Automaton
A Prioritized Timed Automaton (PTA) is a tuple Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti, λi,

τi, πi, ρi) such that:

– Mi is a finite set of modes,
– m0

i ∈ M is the initial mode,
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– Ci is a set of clock variables,
– Di is a set of discrete variables,
– Li is a set of synchronization labels, and ε ∈ Li is a special label that represents

asynchronous behavior (i.e. no need of synchronization),
– χi : Mi �→ B(Ci, Di) is an invariance function that labels each mode with a

condition true in that mode,
– Ti ⊆ Mi × Mi is a set of transitions,
– λi : Ti �→ Li associates a synchronization label with a transition,
– τi : Ti �→ B(Ci, Di) defines the transition triggering conditions,
– πi : Ti �→ N associates an integer priority with a transition, where a larger positive

value implies higher priority and a zero value implies no prioritization, and
– ρi : Ti �→ 2Ci∪(Di×N ) is an assignment function that maps each transition to a

set of assignments such as resetting some clock variables and setting some discrete
variables to specific integer values. ��

A system state space is represented by a system state graph as defined in Definition
3.

Definition 3. Prioritized System State Graph
Given a system S with n components modelled by PTAAi=(Mi, m

0
i , Ci, Di, Li, χi, Ti,

λi, τi, πi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph represented by
A1 × . . . × An = AS = (M, m0, C, D, L, χ, T, λ, τ, π, ρ), where:

– M = M1 ×M2 × . . .×Mn is a finite set of system modes, m = m1.m2. . . . .mn ∈
M ,

– m0 = m0
1.m

0
2. . . . .m

0
n ∈ M is the initial system mode,

– C =
⋃

i Ci is the union of all sets of clock variables in the system,
– D =

⋃
i Di is the union of all sets of discrete variables in the system,

– L =
⋃

i Li is the union of all sets of synchronization labels in the system,
– χ : M �→ B(

⋃
i Ci,

⋃
i Di), χ(m) = ∧iχi(mi), where m = m1.m2. . . . .mn ∈

M .
– T ⊆ M ×M is a set of system transitions which consists of two types of transitions:

• Asynchronous transitions: ∃i, 1 ≤ i ≤ n, ei ∈ Ti such that ei = e ∈ T
• Synchronized transitions: ∃i, j, 1 ≤ i �= j ≤ n, ei ∈ Ti, ej ∈ Tj such that

λi(ei) = (l, in), λj(ej) = (l, out), l ∈ Li ∩ Lj �= ∅, e ∈ T is synchronization
of ei and ej with conjuncted triggering conditions and union of all transitions
assignments (defined later in this definition)

– λ : T �→ L associates a synchronization label with a transition, which represents
a blocking signal that was synchronized, except for ε ∈ L, ε is a special label that
represents asynchronous behavior (i.e. no need of synchronization),

– τ : T �→ B(
⋃

i Ci,
⋃

i Di), τ(e) = τi(ei) for an asynchronous transition and
τ(e) = τi(ei) ∧ τj(ej) for a synchronous transition,

– π : T �→ N , where π(e) = πi(ei) for an asynchronous transition and π(e) =
max{πi(ei), πj(ej)} for a synchronous transition, and

– ρ : T �→ 2
�

i Ci∪(
�

i Di×N ), ρ(e) = ρi(ei) for an asynchronous transition and
ρ(e) = ρi(ei) ∪ ρj(ej) for a synchronous transition. �
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In a mode predicate, there are Boolean and clock constraints. In most model checkers,
the Boolean constraints are represented by Binary Decision Diagrams (BDD) [7] pro-
posed by Bryant and the clock constraints are represented by Difference Bound Matrices
(DBM) [12] proposed by Dill.

4 Model Checking Real-Time Embedded Systems

Our target problem is to model and verify real-time embedded systems with priority. A
set of prioritized timed automata is used to model such a system and model checking
is used to verify if the prioritized system state graph, obtained by merging the set of
PTA, satisfies user-given TCTL properties. In this section, we will propose solutions
to the issues that were introduced in Section 1. A precise definition of the semantics
of prioritized timed automata will be given in Section 4.1. A major extension to the
conventional semantics involves the negation of clock zones and its implementation
using DBMs, which will be covered in Section 4.2.

4.1 Semantics of Prioritized Timed Automata

The syntax of priorities was given as non-negative integers associated with transitions
such that a larger positive value implied higher priority, as defined in Definition 2.
Besides an integer priority, a transition t ∈ Ti also has a triggering condition τi(t) ∈
B(Ci, Di), which, being a mode predicate (Definition 1), can be segregated into two
parts, namely a clock constraint (or clock zone) ζ(t) and a Boolean condition β(t)
such that τi(t) = ζ(t) ∧ β(t). Prioritization semantics require the negation of transition
triggering conditions because a transition t can be executed only if all transitions t′ with
priorities higher than that of t cannot be executed, that is, they are disabled or their
triggering conditions τi(t′) do not hold. In other words, transition t can fire only when
the following condition holds.

τi(t) ∧

⎛

⎝
∧

πi(t′)>πi(t)

¬τi(t′)

⎞

⎠ , (1)

where transitions t and t′ all originate from the same source mode.
Given a triggering condition τi(t) = ζ(t) ∧ β(t), its negation is defined as follows.

¬τi(t) = ζ(t) ∨ ¬β(t)
ζ(t) = x ∼′ c, if ζ(t) = x ∼ c,

= x − y ∼ c, if ζ(t) = x − y ∼ c,

= ζ1 ∧ ζ2, if ζ(t) = ζ1 ∧ ζ2,
¬β(t) = d ∼′ c, if β(t) = d ∼ c

= ¬β1 ∨ ¬β2, if β(t) = β1 ∧ β2,
= β1, if β(t) = ¬β1,

(2)

where x, y ∈ Ci, d ∈ Di, c ∈ N , ∼′ ∈ {>, ≥, �=, ≤, <} corresponding respectively to
∼ ∈ {≤, <, =, >, ≥}, ζ1, ζ2 are clock constraints, and β1, β2 are Boolean conditions
on discrete variables in Di.
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In the above definition for negation of a triggering condition in B(Ci, Di), the result
of negation no longer belongs to the set B(Ci, Di), that is, the set of mode predicates is
not closed under the negation operator. This is because all clock constraints, also called
clock zones, in B(Ci, Di) are n-dimensional convex polyhedra for a system with n
clocks. However, the result of negation may not be convex. This non-closure of negation
has adverse effects on model checking because all operators on transition triggers and
mode invariants need to guarantee closure so that the timed automata can be composed
into state-graphs for model checking. Closure is also required to guarantee termination
of the composition procedures for timed automata.

Conventional operators on clock zones such as intersection, time elapse, and reset all
guarantee closure as their results are still clock zones (convex polyhedra). Nevertheless,
the possibly non-convex polyhedron generated by negation can be converted into a set of
convex polyhedra. In Section 4.2, we propose an algorithm for the optimal partitioning
of non-convex polyhedra so that priorities can be modeled and verified for real-time
embedded systems. Here, optimality means the least number of convex polyhedra is
generated.

Returning to the condition for execution of a low priority transition t given in Equa-
tion (1), it can be expressed now more precisely as the following.

βi(t) ∧ ζi(t) ∧

⎡

⎣

⎛

⎝
∧

πi(t′)>πi(t)

¬βi(t′)

⎞

⎠ ∨

⎛

⎝
∧

πi(t′)>πi(t)

ζi(t′)

⎞

⎠

⎤

⎦ (3)

4.2 Optimal DBM Subtraction Algorithm

A clock zone is a clock constraint consisting of conjunctions of x ∼ c and x − y ∼ c,
where x, y are clock variables in Ci and c ∈ N . A clock zone is also restricted to be a
convex polyhedron. It is often implemented as a Difference Bound Matrix (DBM) [12],
which is defined as follows.

Definition 4. Difference Bound Matrix (DBM)
Given a clock zone z that represents clock constraints on n clocks in Ci = {x1, x2, . . . ,
xn}, it can be implemented as a (n + 1) × (n + 1) matrix D, where the element
D(i, j) =∼ c, ∼ ∈ {<, ≤}, c ∈ N , represents the constraint xi −xj ∼ c, 0 ≤ i, j ≤ n.
It is assumed x0 = 0. ��

Geometrically, a clock zone over n clocks is an n-dimensional convex polyhedron.
In the model checking of timed automata, three operations on clock zones are required,
namely intersection, time elapse, and reset. The set of clock zones is closed under these
three operations.

Definition 5. Unbounded and Bounded Element in DBM
Given a DBM D on n clocks, an element D(i, j) of D is unbounded if D(i, j) =′′< ∞′′,
where i �= j; otherwise we call D(i, j) bounded, where i �= j. ��

Definition 6. Unrestricted DBM
Given a DBM D on n clocks, we call D unrestricted, if it satisfies the following: D(i, j)
is unbounded for all 0 ≤ i, j ≤ n. ��
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Definition 7. Complement Clock Constraint
Given a clock constraint c1 = x − y ∼ c (or x ∼ c), the Complement Clock Constraint
c1 of c1 is defined as : c1 = x − y ∼′ c (or x ∼′ c), where x, y ∈ C, c ∈ N , ∼′

∈ {≤, <, �=, ≥, >} corresponding respectively to ∼∈ {>, ≥, =, <, ≤}. We can call
that c1 and c1 are complement or c1 is complement to c1. ��

Definition 8. Reduced DBM
Given a DBM D on n clocks representing a clock zone z, D is reduced if D has the
minimal number of bounded elements in all of the DBMs representing the same clock
zone z. ��

In the verification of real-time embedded systems with priority, we need to subtract
the clock zone representing the time a higher priority transition is enabled (trigger satis-
fied) from the clock zone representing the time a lower priority transition is enabled. We
will call this the subtraction operator. In Section 4.1, for a given clock zone ζ, Equations
(1, 2, 3) defined the negation of clock zones ζ . Using this negation, given two clock
zones z1 and z2, we can calculate their difference as follows.

z1 − z2 = z1 ∩ z2 (4)

where ∩ is the intersection operator between two zones.
As mentioned before in Section 4.1, z2 may not be a clock zone anymore as it may

not be convex. We propose an algorithm here so that we can partition the possibly non-
convex polyhedron z2 into a set of convex polyhedra. For ease of illustration, we will
focus on the 2-dimensional case. It can be easily extended to n-dimensional zones, for
any n > 2.

The optimal DBM subtraction algorithm, with O(n4) complexity for n clocks, is
given in Algorithm 1 and described as follows. Given two clock zones represented by
DBM z1 and z2, we can obtain the difference z1 − z2 by the following steps.

– Find zintersect = z1 ∩ z2 (Step 2)
– Reduce zintersect to obtain a DBM with minimal bounded elements so as to generate

the minimal number of partitions (zones). (Step 3)
– Let zremain record the remainder unpartitioned zone, which is initially assigned as

z1 (Step 4)
– For each non-diagonal and bounded element in the DBM zintersect, we obtain a

corresponding complement zone by reversing the relational operator. (Steps 5–7)
– For each complement zone, we find its intersection with zremain, denoted as ztmp,

which is a zone. (Step 8)
– If ztmp is not NULL, it means that we have subtracted a zone from zremain. Then

ztmp is included into the set Z . (Step 10)
– After that, we have to recompute the remainder zone zremain. (Step 11–13)

We can prove that a minimal number of partitions (zones) are generated after sub-
traction. Before we prove this, we give Theorem 1 as follows.

Theorem 1. Given two DBMs namely z1 and z2, and zintersect = z1∩z2, if the reduced
DBM of zintersect has m unbounded elements, then z1 − z2 will generate at least m
zones(DBMs).
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input : DBM: z1, z2

output: DBM*: Z //set of DBMs
DBM*: zintersect, ztmp, zremain

zintersect ← z2 ∩ z1;
REDUCE(zintersect);
zremain ← z1;
for each zintersect(i, j) and i �= j and zintersect(i, j) is bounded do

INIT(ztmp); //set ztmp unrestricted
ztmp(i, j) ←∼′ c; //zintersect(i, j) = ′′ ∼ c′′,∼′ ∈ {>, ≥} for ∼ ∈ {≤, <},

respectively
ztmp ← ztmp ∩ zremain

if ztmp �= NULL then
Z ← Z ∪ {ztmp}
INIT(ztmp); //set ztmp unrestricted
ztmp(i, j) ←∼ c; //zintersect(i, j) = ′′ ∼ c′′

zremain ← zremain ∩ ztmp;
end

end
return Z

Algorithm 1: DBM Subtraction z1 − z2

Proof. Let S = {S1, S2, ..., Sn} be the set of DBMs generated by z1 − z2, and | S |
is n. Let {c1, c2, ..., cm} be the m clock constraints corresponding to the m unbounded
elements of zintersect. Let {c1, c2, ..., cm} be the m complement clock constraints with
respect to {c1, c2, ..., cm}. Because we want to subtract zintersect from z1, therefore
ci ∈ Sj , where 1 ≤ i ≤ m, for some j ∈ {1, 2, ..., n}. Given every two element cp and
cq ∈ {c1, c2, ..., cm}, cp and cq will not belong to the same Sj for some j ∈ {1, 2, ..., n},
otherwise Sj will not be a zone (if so, Sj will not be a convex). So, n ≥ m, that is,
z1 − z2 will generate at least m zones (DBMs).

Theorem 2. The number of zones generated by the DBM subtraction algorithm is min-
imal.

Proof. Let z1 and z2 are two DBMs, and we want to do z1 −z2. Let zintersect = z1 ∩z2.
Let m be the number of bounded elements of the reduced DBM of zintersect. By Theorem
1, we know that the number of zones generated by z1 − z2 is at least m. By Algorithm
1, we use each bound element of the reduced DBM of zintersect ⇒ the number of zones
generated by Algorithm 1 is at most m. So, Algorithm 1 generates the minimal number
of zones of z1 − z2.

Consider the example shown in Figure 1, we want to subtract the smaller zone from
the bigger zone. Figure 2 shows the snap shots of Algorithm 1 operating on this example.

4.3 DBM Merging Algorithm

From Theorem 1 and Theorem 2, we know that we can obtain the minimal number of
zones using Algorithm 1 when we want to subtract z2 from z1. Algorithm 1 operating on
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Fig. 1. An Example of DBM Subtraction

Fig. 2. Steps of DBM Subtraction

two zones is optimal, but if we want to do z1 − z2 − z3, the number of zones generated
may not be optimal. In other words, there may exist more than two zones which can be
merged into a zone in the zone set after z1 − z2 − z3.

In order to obtain the less number of zones after a series of zone subtraction opera-
tions, we propose an algorithm, which can help to determine whether given two zones
z1 and z2 are mergeable. If not, the algorithm will return an unrestricted DBM. If yes,
the algorithm will return a DBM representing z1 ∪ z2. Note that all zones in the zone
set S, after a series of subtraction operations, are disjoint. The input zones, say z1 and
z2, of the algorithm have one restriction, which is that, z1 cannot intersect with z2. The
DBM merging algorithm given in Algorithm 2 has O(n3) complexity and is described
as follows. Given two clock zones represented by DBM z1 and z2 on n clocks, we can
obtain the DBM z generated by merging z1 and z2 by the following steps.
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– Reduce z1 and z2 (Steps 5–6)
– Set z unrestricted (Step 7)
– See if z1 and z2 are mergeable. If z1 and z2 are mergeable, then there exists a

clock constraint z1(i, j), whose complement constraint is z2(j, i), for some i, j ∈
{1, 2, ..., n}. If there is no z1(i, j), whose complement constraint is the same as
z2(i, j) for some i, j ∈ {1, 2, ..., n}, then z1 and z2 are not mergeable and the
algorithm terminates. If yes, z1 and z2 are possibly mergeable. (Steps 8–17)

– If a pair of complement constraints is found in Steps 8–17 when i = m and j = n,
then z(i, j) will be set as z2(i, j) and z(j, i) will be set as z1(j, i). (Step 11–14)

– Besides the complement constraints found in Steps 8-17, if every corresponding
bounded element pair (z1(i, j), z2(i, j)) is equal for all i, j ∈ {1, 2, ..., n}, then
z1 and z2 are mergeable; otherwise, z1 and z2 are not mergeable. If z1 and z2 are
mergeable,we can obtain z(i, j) from bounded z1(i, j) or z2(i, j). (Step 22–38)

After illustrating how Algorithm 2 works on two zones, we will now show how to use
Algorithm 2 to merge several zones generated by a series of zone subtraction operations
on a zone. Theorem 3 tells us that given a zone set Z = {z1, z2, ..., zn}, which consists
of n clock zones, if (z1 ∪ z2 ∪ ... ∪ zn) is a zone, then there exist two zones zi and zj

which are mergeable for some i, j ∈ {1, 2, ..., n}, that is, there exists a merge sequence
merging two zones at a time, which can merge {z1, z2, ..., zn} into Z .

We propose an algorithm which helps to merge a zone set Z = {z1, z2, ..., zn} into
another zone set Z ′ = {z′1, z

′
2, ..., z

′
m}, for m ≤ n. This algorithm uses Algorithm 2 as

a subroutine. The DBM set merging algorithm is given in Algorithm 3 and described as
follows.

– Set Z ′ an empty set (Step 1)
– Merge zi ∈ Z with each other zone zj , i �= j , i, j ∈ {1, 2, ..., n} and modify zi

into the output zone of DBM-Merge(zi, zj). (Step 3–9)
– Add zi to Z ′ (Step 10)
– Do the above steps iteratively until every zi has been considered. (Step 2–11)

Theorem 3. Given a zone set Z = {z1, z2, ..., zn} and | Z |= n. If no pair of zones zi,
zj ∈ Z is mergeable, then (z1 ∪ z2 ∪ ... ∪ zn) is not a zone.

Proof. Let us prove this using a contradiction. We assume that (z1 ∪ z2 ∪ ... ∪
zn) is a zone. Thus there must exist a zone zi ∈ Z , such that (z1 ∪ z2 ∪ . . .∪ zi−1 ∪ zi+1
∪ ...∪zn) is a zone for some i ∈ {1, 2, ..., n}, and of course zi and (z1 ∪z2 ∪ ...∪zi−1 ∪
zi+1 ∪ ...∪ zn) are mergeable. Otherwise,(z1 ∪ z2 ∪ ...∪ zn) will not be a zone. Use the
above property iteratively, we can obtain a zone Z ′ which consists of only two subzones
zp and zq, such that Z ′ = zp ∪ zq for some p, q ∈ {1, 2, ..., n}, that is, zp and zq are
mergeable. This contradicts the fact that no pair of zones zi and zj ∈ Z is mergeable.

5 Application Example

In this section, we give a real example of bus arbitration. In a bus system, there are
several masters and one arbiter attached to the bus. All masters on the bus will re-
quest the bus to do some data transfers, but the bus can only serve one master at a
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input : DBM: z1, z2 //z1 does not interset with z2

output: DBM: z //the DBM generated by merging z1 and z2;If z1 and z2 cannot be
merged, z will be unrestricted

bool : mergable1

int : m, n;2

unMergable ← TRUE;3

m ← n ← 0;4

REDUCE(z1);5

REDUCE(z2);6

INIT(z) //set z unrestricted7

for each z1(i, j) and i �= j do8

if z1(i, j) is complement to z2(j, i) then9

unMergable ← FALSE;10

m ← i;11

n ← j;12

z(i, j) ← z2(i, j);13

z(j, i) ← z1(j, i)14

break;15

end16

end17

if unMergable = TRUE then18

return z;19

end20

else21

for each z1(i, j) and i �= j and i �= m, n and j �= m, n do22

if z1(i, j) =′′< ∞′′ and z2(i, j) �=′′< ∞′′ then23

z(i, j) ← z2(i, j);24

end25

else if z1(i, j) �=′′< ∞′′ and z2(i, j) =′′< ∞′′ then26

z(i, j) ← z1(i, j);27

end28

else if z1(i, j) �=′′< ∞′′ and z2(i, j) �=′′< ∞′′ then29

if z1(i, j) = z2(i, j) then30

z(i, j) ← z1(i, j);31

end32

else33

unMergable ← TRUE;34

break;35

end36

end37

end38

if unMergable = TRUE then39

INIT(z); //set z unrestricted40

end41

end42

return z43

Algorithm 2: DBM Merging (z1, z2)



Model Checking Prioritized Timed Automata 381

input : DBM: Z //Z = {z1, z2, ..., zn}
output: DBM: Z′ //Z′ = {z′

1, z
′
2, ..., z

′
m}

Z′ ← Ø1

for each zi ∈ Z do2

for each zj ∈ Z and zj �= zi do3

ztmp = DBM-Merge(zi, zj);4

if ztmp �= unrestricted DBM then5

zi ← ztmp;6

Z = Z − {zj};7

end8

end9

Z′ = Z′ ∪ {zi};10

end11

return Z12

Algorithm 3: DBM Set Merging (Z)

time. In order to resolve conflicts, masters will usually be prioritized. When requests
from masters arrive at the same time, the arbiter will decide which master can use the
bus according the priorities of the masters. In our example, there are three masters
and one arbiter attached to the bus system. The masters are modelled as in Figure 3.

Each of the three masters, namely Master A, Master B, and Master C, will request
the bus when it wants to transfer data on the bus by entering the “requesting” state. It will
stay in the “requesting” state until the arbiter grants its request. The priorities of Master
A, Master B, and Master C are respectively 5, 3, and 2 where a higher value implies a
higher priority.

idle

requesting

processing

requestA := 1 

grantA = 1 

idle

requesting

processing

requestB := 1 

grantB = 1 

idle

requesting

processing

requestC := 1 

grantC = 1 

Fig. 3. PTA Model for Masters
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idle

grant

requestB = 1 [
1 <= x <= 3 

3 <= y <= 4] / grantB := 1

requestC = 1 [
2 <= x <= 4
2 <= y <= 5

x-y <= 1
y-x <=2

] / grantC := 1

requestA = 1 [
3 <= x <=6
3 <= y <= 6

x-y <= 1
y-x <= 1] / grantA := 1

Fig. 4. PTA Model for Arbiter

Table 1. Prioritized Timed Automata of Arbiter

PTA #Modes #Trans
Without DBM Merging 2 7
With DBM Merging 2 5

Table 2. Verifying Bus-Arbitration Example (the whole state graph) With and Without DBM
Merging

System State Graph #Modes #Trans Mem (MB) Time (sec)
Without DBM Merging 3,088 12,596 2.96 6.78
With DBM Merging 1,524 7,232 1.08 3.54
(reduction) (50%) (44%) (64%) (48%)

The arbiter is modelled as in Figure 4. If there is any request from the masters, it will
decide which master can use the bus according their priorities and trigger conditions,
and then enter the ”grant” state.

The proposed DBM subtraction and merging algorithms were all implemented into
the State Graph Manipulators (SGM) model checker [15,22] and applied to the bus
arbitration example. Tables 1 and 2 show comparisons between applying and not applying
the proposed DBM merging algorithm, for the arbiter alone and for the whole system
graph, respectively. From Table 1, we can see that the arbiter PTA model illustrated in Fig.
4, which had 2 modes and 4 transitions, was transformed into a larger PTA model having 7
transitions when merging is not applied and having 5 transitions when merging is applied.
This shows that merging significantly reduces the set of zones partitioned through a series
of DBM subtraction. Further, it also shows that if priority is not supported, the user would
have to model a larger PTA model. This increase in model size becomes significant with
application complexity and will thus be a tedious task for a normal user. The burden of
performing this tedious task is thus alleviated by our proposed methods.

The requirement for or the benefits of DBM merging after a series of DBM sub-
traction can be clearly observed from Table 2, which shows that there is a significant
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reduction in the number of modes (50%) and transitions (44%) after applying DBM
merging. The computing resources are also reduced by a factor of 64% and 48% for
memory space and CPU time, respectively.

6 Conclusions and Future work

In this work, we have proposed Prioritized Timed Automata to model timed systems with
multiple priorities. We have also developed the semantics of Prioritized Timed Automata
for model checking. Three algorithms were proposed for DBM subtraction and merging.
The DBM subtraction algorithm generates the minimal number of partitioned zones.
After a series of DBM subtraction operations, the number of zones partitioned may be
mergeable. The DBM merging algorithm helps to reduce the final number of partitioned
zones. The proposed algorithm when applied to a simple bus arbiter showed significant
reductions in model size and computing resources. Future work will include reduction in
the complexities of the proposed algorithms and their application to larger applications.
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