
��������������������	��
�
����
�� ��������

Reconfigurable Hardware Module Sequencer - A Tradeoff Between Networked
and Data Flow Architectures

Kai-Jung Shih†, Chin-Chieh Hung, and Pao-Ann Hsiung‡

Department of Computer Science and Information Engineering
National Chung Cheng University

Chiayi, Taiwan-62102, ROC
†kjshih@cs.ccu.edu.tw, ‡hpa@computer.org

Abstract

Dynamically reconfigurable systems either adopt
a processor-controlled networked architecture or a
sequencer-controlled data flow architecture. In the net-
worked architecture, the processor is overloaded with data
transfer requests, whereas in the data flow architecture,
the burden is completely shifted from the processor to the
data sequencer. As a tradeoff between these two extremes,
this work proposes a novel module sequencer architecture,
which not only allows the processor and the sequencer
to share the heavy data communication load, but is also
more coherent with the conventional processor-FPGA
architecture. Further, the architecture is highly flexible
because it can be tuned to fit a particular application.
Application examples show how the proposed architecture
is superior to the networked architecture in terms of lower
communication load and to the data flow architecture in
terms of reduced system complexity.

1. Introduction

With technology progress, the advent of the FPGA rep-
resents a trade off between performance and flexibility.
Given the large amount of resources, Dynamically Par-
tially Reconfigurable Systems (DPRS) can now be imple-
mented in a single FPGA [5]. Unlike von-Neumann based
architectures, there are currently no standard memory hi-
erarchy and communication schemes for DPRS. However,
two communication architectures are commonly adopted,
namely processor-controlled network architecture (PNA)
and sequencer-controlled data flow architecture (SDA). The
main problem in PNA is that the processor is easily over-
loaded with too many communication requests. The chal-
lenge in SDA is that the high complexity in generating low-
level data flow instructions makes optimization difficult and

thus it is not easy to achieve high communication perfor-
mance.

As a tradeoff between the low communication perfor-
mance of network architectures and the high complexity
of data flow architectures, a novel module sequencer archi-
tecture (MSA) is proposed in this work, which solves the
issues related to reduced communication overhead, simpli-
fied programming model, simplified bus architecture, and
virtual function mapping.

This article is organized as follows. Section 2 discusses
related research work and compares them with our archi-
tecture. The proposed module sequencer architecture is de-
scribed in Section 3. The illustration examples are given in
Section 4. Finally, conclusions are described in Section 5.

2. Related Work

Instead of describing the generally well-known bus or
NoC based PNA, we focus on two typical SDA in this sec-
tion. Transport Triggered Architecture (TTA) [1][2], was
proposed for customizing application-specific instruction-
set processor (ASIP) designs. The TTA is a static hardware
with simple design that moves the application complexity
from hardware to software or the compiler design. Recon-
figurable Pipelined Datapaths (RaPiD) [3][4] is a domain-
specific coarse-grained reconfigurable architecture. RaPiD
is a typical data flow architecture with a data sequencer.

3. Module Sequencer Architecture

Similar to other DPRS architectures, the target module
sequencer architecture has a statically configured part and a
dynamically reconfigurable part. As shown in Figure 1, the
static part consists of a microprocessor, RAM, static hard-
ware accelerators, a configuration device, and the proposed
Reconfigurable Module Sequencer (RMS). Unlike other ar-
chitectures, the dynamic part is controlled by the RMS.

Static Area

Dynamic Area

System Bus

Processor RAM Static HW

32 20 32

8

Slot 1

Reconfiguration
Controller

8

Slot 2 Slot 3 Slot 4 Slot 5
RMS

Log Phy

Empty

DCT

DES

Quan

DCT

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Data Bus

Control Line Set

Figure 1. Module Sequencer System Archi-
tecture

Each kind of reconfigurable hardware function block is as-
sociated with a unique logical ID, which is mapped to a
physical slot ID by the RMS dynamically.

The proposed MSA is an efficient blending of the con-
ventional PNA and SDA architectures, because the micro-
processor and the RMS share the data communication and
control workload in a running application.

In MSA, an application is defined by a set of partially
ordered command sequences called chains. Each chain
〈f0, f1, . . . , fn, fn+1〉 consists of a sequence of n+2 func-
tions, where f0, fn+1 are software functions and f1, . . . , fn

are hardware functions. A data transfer request is defined
by a pair of functions 〈fi−1, fi〉.

3.1. RMS Design

As illustrated in Figure 2, the RMS has nine components,
including three internal storages, four controllers, a bus
state monitor, and an input decoder. The storages include a
command pool (CP) that stores the chain commands, a data
FIFO (DF) that caches the input data, and a slot table (ST)
that records the state information for each slot. The state
of a slot includes the mapping between logical and physical
ID, the usage status, and the execution status if it is con-
figured. The command pool controller (CPC) accesses the
CP, stores chains into it, and selects an enabled data transfer
request to be executed from some chain. The memory con-
troller (MC) loads input data from DF to the configurable
data bus. The slot controller (SC) accesses ST and controls
the reconfigurable bus by asserting and deasserting the con-
trol signals. The output controller (OC) that sends output
data to the processor through the system bus. The bus state
monitor (BSM) checks the state of the reconfigurable bus,
and dispatches signals to different controllers. The input de-
coder decodes command type and sends data or commands
to the different controllers.

Input
Address

Input
data

EnableRequest

Input
Decoder

Cmd Pool
Controller

Memory
Controller

Slot
Controller

Busy

ENB

Bus State
Monitor

Clock Reset

Output
Controller

Cmd
Pool

Data
FIFO

Slot
Table

Clock

Reset

Write

Read

Request

Output
data

Output
 Address

Data Bus

Chain
Num Busy

Figure 2. Reconfigurable Module Sequencer
Architecture

3.2. RMS Control Flow

The interaction between the RMS and the processor is
triggered when the processor sends three types of com-
mands to the RMS. The ID mappings are stored in ST by
SC, the chain commands are stored in CP by CPC, and the
input data are stored in DF by MC. The CPC checks for
data transfer requests in CP and selects a request belonging
to the chain with highest priority. To execute a data transfer
request, the CPC queries the SC to check if the hardware of
the requested function is configured in some slot and queries
MC to check if its input data are available in the DF if it is
the first data transfer request. If the responses from the SC
and MC are both positive, then the CPC notifies the SC to
assert the read and write control signals of the correspond-
ing functions and the MC to transfer data. Otherwise, ex-
ecution is postponed if the requested hardware function or
the data of the selected chain are unavailable. In this case,
the CPC selects another request to execute.

When the SC receives a function query signal from the
CPC, it refers to the ST to check if the corresponding func-
tions are configured. If configured and unused, SC ac-
knowledges that the requested function is ready. When the
SC receives a function execution signal, it asserts the write
signal of the sender and the read signal of the receiver. If the
sender is SW, the SC enables the tri-state buffer as shown in
Figure 2, so that the data of the chain sent by the MC can be
transferred on the bus. If not configured or all physical in-
stances are busy, the SC acknowledges microprocessor that
the requested function is unavailable.

When a data transfer is finished, the corresponding func-
tions assert the busy signal indicating that the data bus is
free for another transaction. The CPC initiates the execu-
tion of another data transfer request.

Process Control
Subsystem

Scheduler
PlacerDevice

Drivers
...

Reconf-
Controller

RMS
Other

Subsystems

HW-SW Task Constructor User Level

Kernel Level

MM
...

Slot 1

Reconfiguration
Controller

Slot 2 Slot 3 Slot 4 Slot 5

Chain Generator
User Program Task Profile

Chained Program

Control Line Set

Data Bus

Figure 3. Programming Model and Chained
Program Operating System

3.3. Programming Model

The programming model for MSA tries to follow a con-
ventional one so that a user need not learn a new program-
ming method. As shown in Figure 3, given a user pro-
gram and corresponding task profile information, the chain
generator determines the hardware-software partition. The
hardware-software task constructor reorganizes the user
program by replacing selected loops with RMS driver sys-
tem call invocations and synchronization and buffering con-
structs. The result is a modified program called the chained
program.

To support the execution of chained programs in MSA,
an operating system for chained programs (CPOS) is re-
quired. Besides being an operating system for reconfig-
urable systems (OS4RS), CPOS has a system call that al-
lows chained programs to send a request for executing a
chain through the RMS driver. CPOS also has a hardware-
software task scheduler, a hardware function block placer,
a driver for the configuration controller, and other I/O de-
vice drivers. It must be noted here that the allocation, man-
agement, placement, and scheduling of reconfigurable hard-
ware function blocks are all performed by CPOS, which
means the RMS is only responsible for executing a chain
request by coordinating the data transfers between blocks
and between the processes and the blocks. The develop-
ment of CPOS is still an on-going work and requires further
design and implementation.

3.4. Performance Model

To evaluate the effectiveness of our proposed RMS
architecture, we will compare RMS with the processor-
controlled network architecture. Since we are improving

the communication load for processors, one might wonder
if existing schemes such as DMA would suffice. However,
we will show that, as expected, DMA is effective only when
the data size is very large and not if there are lots of com-
munications. For evaluating the performance in executing a
task consisting of k iterations of chain 〈f0, f1, ···, fn, fn+1〉,
where fi is the ith function, f0 and fn+1 are software, f1

to fn are hardware, and n is the total number of hardware
functions, we first define the following notations.

• ti: Data transfer time from fi to fi+1 in cycles,
• DTS : DMA setup time in cycles,
• DFS: RMS Data FIFO size in bytes, and
• SZ: Total input data size of the chain in bytes.

We assume the context switch time to be negligible in the
following evaluation. We compare four different architec-
tures depending on the use of RMS and DMA. The number
of cycles a processor must expend in handling data commu-
nication for the task is as follows.

• No RMS, No DMA:

k ×
n∑

i=0

ti (1)

• No RMS, With DMA:

DTS × k × (n + 1) (2)

• With RMS, No DMA:

(t0 + tn) × k + (n + 2) (3)

• With both RMS and DMA:

DTS × �SZ/DFS� × 2 + (n + 2) (4)

4. Experiments

The target module sequencer architecture was mod-
eled, designed, and implemented. However, for perfor-
mance evaluation we developed a SystemC-based simula-
tion framework for the proposed architecture. The RMS
cache size is 4096 byte, and the DMA setup time is 15
cycles. The first example was used for checking fea-
sibility of the proposed architecture. It has three re-
configurable hardware functions and the chain command
is 〈f0, f1, f2, f3, f4〉, where f0, f4 are software func-
tions. The total input data size is 2048 bytes. Each
data transfer size between two successive hardware func-
tions and between the processor and the first/last func-
tion is 64 bytes, which take 16 bus cycles to communi-
cate. The total number of iterations for the chain is 32.

Table 1. Processor Cycles for Handling Com-
munication

RMS DMA Toy JPEG DES
A NO NO 2, 048 510, 000 1, 024

1, 920 450, 000 960
B NO YES −6.25% −1.18% −6.25%

1, 029 150, 005 1, 027
C YES NO −49.76% −70.59% +0.29%

35 3, 545 35
D YES YES −98.29% −99.31% −96.58%

The second example is an encrypted transmission of com-
pressed images, which contains two chains, namely the
JPEG [7] chain and the DES [6] chain. The JPEG chain is
〈SW,DCT,Quantization,Entropyencoder, SW 〉 and
the total input data size of the JPEG chain is 480, 000 bytes.
The DES chain that takes 64-bit data as information and 64-
bit data as key. The total data for this chain is 1024 bytes
for data and 1024 bytes for key. A single execution takes 18
cycles to encrypt 64-bit data. The DES chain to be executed
is 〈SW,DES, SW 〉.

As given in Table 1, we compare the total number of
cycles expended by the processor for handling communica-
tion in four different architectures for each application ex-
ample. We can observe that the RMS brings very good per-
formance improvements (70%) than the DMA (6%) when
the chain is time-consuming such as the JPEG encoder. The
RMS does not work well for small chains such as the DES
because our architecture tries to reduce the communication
between the reconfigurable hardware modules of a chain.
The combination of DMA and RMS results in the best per-
formance improvements (96% ∼ 99%) in all cases because
a single DMA setup can transfer only a limited amount of
data, whereas with the help of the data FIFO buffer in RMS,
a single DMA setup can transfer as much as the data FIFO
can accommodate with whole iterations of a chain.

In Table 2, we compare the total system execution time
for 5 configurations: (1) a single JPEG chain, (2) a single
DES chain, (3) a JPEG with DES chained sequentially, (4)
a low priority JPEG chain running in parallel with a high
priority DES chain, and (5) a high priority JPEG chain run-
ning in parallel with a low priority DES chain. Data size for
JPEG and DES are both 1, 024 bytes. Comparing config-
urations (3), (4), (5), we observe that configuration (3) has
the worst performance because the functions are executed
sequentially, in a single chain. Compared to configuration
(5) and all other configurations, configuration (4) gives the
best performance. This is because the most time consum-
ing chain such as DES here is given the highest priority in
RMS.

Table 2. Execution Time of JPEG and DES
With Different Priority

JPEG DES System
JPEG DES Time Time Time
1 YES NO 1, 598 N/A 1, 598
2 NO YES N/A 2, 062 2, 062
3 YES YES 1, 536 1, 814 3,660
4 Low High 2, 018 2, 498 2,498
5 High Low 1, 853 2, 753 2,753
Low and High Are Priorities of JPEG and DES

5. Conclusions

We proposed a novel module sequencer architecture as
a tradeoff between networked and data flow architectures.
Experiments show that the proposed architecture reduces
the heavy communication load for processors by as much
as 99% and also reduces the high programming complexity
found in data flow architectures. Future work will consist
of support for preemptive hardware functions and the col-
laboration of RMS with the scheduler and placer in an OS.

References

[1] H. Corporaal. Design of transport triggered architectures. In
Proceedings of the 4th Great Lakes Symposium on Design Au-
tomation of High Performance VLSI systems, pages 130–135,
March 1994.

[2] H. Corporaal and H. Mulder. Move: A framework for high-
performance processor design. In Proceedings of the IEEE
conference on Supercomputing, pages 692–701, 1991.

[3] D. Cronquist, P. Franklin, C. Fisher, F. M., and E. C. Ar-
chitecture design of reconfigurable pipelined datapaths. In
Proceedings of the 20th Anniversary Conference on Advanced
Research in VLSI, pages 23–40, March 1999.

[4] C. Ebeling, D. Cronquist, P. Franklin, J. Secosky, and S. Berg.
Mapping applications to the rapid configurable architecture.
In Proceedings of the 5th IEEE Symposium on FPGA-Based
Custom Computing Machines, pages 106–115, April 1997.

[5] C.-H. Huang, K.-J. Shih, C.-S. Lin, S.-S. Chang, and P.-A.
Hsiung. Dynamically swappable hardware design in partially
reconfigurable systems. In Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages
2742–2745, May 2007.

[6] E. Schaefer. A simplified data encryption standard algorithm.
Cryptologia, 20:77–84, January 1996.

[7] B. William and L. Joan. JPEG: Still Image Data Compression
Standard. Kluwer Academic Publisher, 1993.

	Welcome Page
	Table of Contents
	Author Index

