Modeling and Automatic Failure Analysis of
Safety-Critical Systems Using Extended Safecharts

Yean-Ru Chen!, Pao-Ann Hsiung?, and Sao-Jie Chen'!

! Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan—106, ROC
d95943037@ntu.edu.tw, csj@cc.ee.ntu.edu.tw
2 Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan—621, ROC
hpa@computer.org

Abstract. With the rapid progress in science and technology, we find ubiquitous
use of safety-critical systems in avionics, consumer electronics, and medical in-
struments. In such systems, unintentional design faults might result in injury or
even death to human beings. To avoid such mishaps, we need to verify safety-
critical systems thoroughly, where formal verification techniques such as model
checking play a very promising role. Currently, there is practically no automatic
technique in formal verification used to formally model system faults and re-
pairs. This work contributes in proposing an extension to the Safecharts model,
with which faults and repairs can be easily modeled. Moreover, these Safecharts
can be directly transformed into semantically equivalent Extended Timed Au-
tomata models for model checking. That is, after these models were integrated
into a model checker, such as our previously proposed State Graph Manipula-
tors (SGM) model checker, we can verify safety-critical systems. An application
example is run to show the feasibility and benefits of the proposed model-driven
verification method for safety-critical systems. As observed, the checking results,
such as witnesses of property specifications representing hazards, provide more
concrete and useful failure analysis information than the conventional Fault Tree
Analysis (FTA).

Keywords: Safety-critical systems, Safecharts, FTO-failure, SO-failure,
NC-failure, Effective repair actions, Ineffective repair actions.

1 Introduction

Safety-critical systems are systems whose failure causes damages to its environment.
Traditional hazard analysis techniques, such as fault tree analysis (FTA), failure modes
and effects analysis (FMEA), failure modes, effects, and criticality analysis (FMECA)
have been successfully applied to several different real-world safety-critical systems
[12]. Recently, formal verification techniques such as model checking [4] has become
a promising verification method due to its automatic analysis capabilities. We propose
an extended Safecharts model [5]] to model and analyze failures and repairs in safety-
critical systems and integrate it into a formal verification tool. Our contributions are

F. Saglietti and N. Oster (Eds.): SAFECOMP 2007, LNCS 4680, pp. 451-H64] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

452 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

three-folds. First, according to the classification of failure modes, we propose an in-
tuitive representation of the faulty states in a safety-critical system using Safecharts
model. Second, we transform the Safecharts model into a semantically equivalent Ex-
tended Timed Automata (ETA) model that can be directly input to model checkers.
Finally, a compositional model checker, namely the State Graph Manipulators (SGM)
[13], is used to not only verify a safety-critical system formally, but also provide auto-
matic failure analysis results to help users rectify that system.

The remaining of this article is organized as follows. Section 2l describes the current
state-of-the-art in the verification of safety-critical systems. Section [3] describes our
work flow and how failure analysis is performed in model checking. The extension of
Safecharts to cover faults and repairs is given in Section] Section 3] shows the details
of the transformation from Safecharts to ETA. The implementation of our proposed
method in the SGM model checker is described in Section[@l An application example
is given in Section [7] along with several analysis results. The article is concluded and
future research directions are given in Section[§]

2 Related Work

The conventional hazard analysis techniques, such as FTA and FMEA, have been suc-
cessfully applied to several different real-world safety-critical systems. Nevertheless, a
major limitation of hazard analysis is that phenomena unknown to the analysts are not
covered in the analysis and thus hazards related to these phenomena are not foreseen.
Safety-critical systems are getting more and more complex and thus there is a trend
to use methods [3] that are more automatic and exhaustive than hazard analysis, for
example model checking.

The verification of safety-critical systems using formal techniques is not new [12]].
However, as noted by Leveson [[12]], this approach is inadequate because in the system
models we are assuming that all the components do not fail and the system is proved to
be safe under this assumption. However, the assumption is not always valid, so trans-
forming each hazard into a formal property for verification as in [9] is not sufficient.
As described in the following, our work on using Safecharts to verify safety-critical
systems contributes in several ways to the state-of-the-art in formal verification.

1. The Unified Modeling Language (UML) is an industry de facto standard for model-
driven architecture design. Safecharts, being an extension of the UML Statecharts,
blends naturally with the semantics of other UML diagrams for the design of safety-
critical systems. The work described in this article automatically transforms
Safecharts into the timed automata model which can be accepted by conventional
model checkers.

2. The extended Safecharts model allows and requires explicit modeling of compo-
nent failures and repairs within a newly proposed failure layer in the model. This
is very helpful not only for the safety design engineers but also for the safety ver-
ification engineers. Through its unique features of risk states, transition priorities,
and component failure and repair modeling artifacts, Safecharts can be successfully
used for verifying safety-critical systems.

Modeling and Automatic Failure Analysis of Safety-Critical Systems 453

3. The model checking paradigm helps generate witnesses to the satisfaction of prop-
erties that provide more accurate and informative safety analysis results than con-
ventional methods such as FTA.

3 Automatic Failure Analysis

The failure analysis performed in a model checker is as proposed and illustrated in
Figure [l A safety-critical system is first analyzed for all possible failures and corre-
sponding repairs. Safecharts are then used to model the functional, safety, and failure
characteristics of the system, according to the description in Sectiondl As described in
Section 3] these Safechart models are then automatically transformed into equivalent
ETA models that are input to the SGM model checker as system models. Each hazard is
then represented as a temporal logic property. On model checking the ETA against the
properties, we obtain witnesses to the hazard properties that represent how the system
might face a hazard. The witnesses are system traces that contain more information than
traditional minimum cut results from FTA.

Safety-critical

System/Component S Manual Analysis

A 4

Safechart model of §

ETA model of S

Failure-mode-related

property

.

| Model Checker (SGM) |

N

Satisfied! Unsatisfied! + counterexample

Fig. 1. Work flow of automatic failure analysis in model checking

4 Extending Safecharts

The main focus of the original Safecharts [3]], as defined in Definition 1, was on propos-
ing functional and safety layers. Failures are due to faults, but not all faults result in fail-
ures. In this work, we focus on failures and extend the original Safecharts with a more

454 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

route[x]: functional layer route[x]: safety layer
1 SET | | SET
K X
Return_route[0,2] signalfi] in FREE N\ r[signalli] in FAULTY “fsignalfi] in FAULTY
/release i, release k signal[k] in FREE V signal[k] in FAULTY] V signal[k] in FAULTY]
/allocate i, allocate k
| EVALUATE_REQ | | EVALUATE_REQ |
K
reject route request_route r[signalfi] in FAULTY
- - V signal[k] in FAULTY]
v v
* NOT SET | * NOT_SET |

Fig. 2. Safechart for route[x] with functional and safety layers

comprehensive modeling capability for different types of failures and repairs, in a new
and explicit failure layer. In this extension, we use a generic classification of failures
and repairs to help safety-critical system designers categorize the possible failures and
repair actions in the system to be modeled and verified.

4.1 Safecharts

Figure 2] shows the functional and safety layers of a Safecharts model route[x] for set-
ting a route of a railway system. The functional layer specifies the normal functions of
requesting and setting or rejecting a route. The safety layer enforces the safety restric-
tions for setting or unsetting a route. Notations Tand I’ in the safety layer will be defined
in Definition 1, which, respectively, restricts setting a route or enforces the release of a
route when any of the signals in that route is faulty. Recognizing the possibility of gaps
and inaccuracies in safety analysis, Safecharts do not permit transitions between states
with unknown relative risk levels [14]].

Definition 1. Safecharts

Given two comparable states s; and sq, a risk ordering relation < specifies their relative
risk levels, that is s; < so specifies s; is safer then so. Transition labels in Safecharts
have an extended form: e[fcond]/a[l, u)¥[G] where e, fcond, and a are the conven-
tional Statechart event, transition guard, and action, respectively, and / separates the
transition guard from the transition action. The time interval [I, u) is a real-time con-
straint on a transition ¢ and imposes the condition that ¢ does not execute until at least [
time units have elapsed since it most recently became enabled and must execute strictly
within w time units. The expression ¥[G] is a safety enforcement on the transition ex-
ecution and is determined by the safety clause GG. The safety clause G is a predicate,
which specifies the conditions under which a given transition ¢ must, or must not, exe-
cute. ¥ is a binary valued constant, signifying one of the following enforcement values:

— Prohibition enforcement value, denoted by 9. Given a transition label of the form
9 [G], it signifies that the transition is forbidden to execute as long as G holds.

— Mandatory enforcement value, denoted by ". Given a transition label of the form
[[,u) ' [G], it indicates that whenever G holds the transition is forced to execute
within the time interval [/, u), even in the absence of a triggering event.

Modeling and Automatic Failure Analysis of Safety-Critical Systems 455

4.2 Failure Modes

The failure modes of safety-critical systems can be classified into three types as defined
in the following [2]].

— Fail-To-Operate (FTO-failure): A system does not respond correctly to an abnormal
operating condition. This is a critical failure.

— Spurious Operation (SO-failure): A system initiates an automatic unexpected ac-
tion without the presence of an abnormal operating condition. This is also a critical
failure.

— Non-critical (NC-failure): In this case, maintenance of a system is required even
though the main service of the system has been preserved, that is it is neither an
FTO-failure nor an SO-failure in the safety-critical system. With this type of fail-
ure, a system can still work, but its performance may be poorer than expected. We
assume that when a system has an NC-failure, it must be repaired before other
critical failures can occur.

The representation of failure modes in Safecharts is given in Section .4l

Example: Take an automatic electric lamp as an example, which is supposed to be
turned on automatically within three seconds when the room is too dark, however if
it fails, then an FTO-failure occurs. In addition, if the lamp is turned on unexpectedly
when the room is bright, it is said that an SO-failure occurs. However, if the lamp blinks
after being turned on, we take this as an NC-failure.

After an FTO- or SO-failure, as shown in Figure [8]and Figure] respectively, when
more than one intermediate repair actions are needed to return to normal state, then we
assume that the component or system enters an NC-failure mode, which is an interme-
diate state between an FTO- or SO-failure and a normal state.

A component FTO- or SO-failure can lead to a system FTO- or SO-failure unless
this is prevented by fault-removal or fault-prevention techniques [2]]. In this work, we
assume that each component is under the control of its controller and the controllers
could be taken as error-free. We do not discuss controller fault tolerance techniques in
this work.

4.3 Safety Repair Actions

A system may return to normal operating condition after a failure is either automatically
or manually repaired. Repair actions of safety-critical systems can be classified into two
types as follows.

— Effective repair actions: A failure is completely eliminated after an effective repair
action is taken. We denote the set of all effective repair actions as U = {u}.

— Ineffective repair actions: A failure is not completely eliminated, but its severity
may be reduced after ineffective repair actions are taken. These repair actions could
be taken as intermediate safety actions. Let U’ = {1} denote the set of all ineffec-
tive repair actions. Moreover, U N U’ = ¢. a

456 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

For example, in an automatic electric lamp system, if the electric lamp is not turned on
automatically within three seconds when the room is too dark, an FTO-failure occurs.
We should turn it on manually to eliminate this failure. This repair action is effective
if the electric lamp becomes bright after we turn it on. Otherwise, it is an ineffective
repair action.

4.4 Representation of Failures and Repairs in Extended Safecharts

Using some conventional safety analysis technique, a designer can identify all the pos-
sible failures and their effects in a system to be modeled and verified. Further, based on
the classifications of failures and of repair actions, as described in Sections[£.2] and [4.3]
respectively, a system designer can categorize all the possible failures and correspond-
ing repair actions of the system. We now give the representations of these different
failures and repair actions in the extended Safecharts model.

Recall from Definition 1, in Safecharts, the transition label e[fcond]/a appears in
the functional layer, while [[,u)?[G] may appear in the safety layer. In this work, as
mentioned before, we propose a new failure layer, and three new symbols in Safecharts
to represent failure conditions, namely, inoperable ('), spurious (), and non-critical
(«P) failures, which are modeled in the failure layer of extended Safecharts.

In this work, we found that there is an interesting coupling between safety conditions
and failure conditions. Whenever a mandatory condition ([l,u) " [G]) is violated, an
FTO-failure ([u, 00)r'[G]) occurs. Whenever a prohibitory condition (1 [G]) is violated,
an SO-failure (1[G]) occurs. As far as the non-critical («+P) condition is concerned, it
can be used in more flexible ways than the other two critical failure conditions. System
designers can model an NC-failure for a component or a system wherever it is required.

Figures 3l [and[3]show the representation of different failure modes and their cor-
responding repair actions for a component or system modeled in Safecharts. Each com-
ponent or system may be modeled with one or more failure modes. The condition and
assignment label e[fcond]/a[l, w)¥[G] on a transition ¢, from the original Safecharts
(Definition 1), is now extended to cover both safety conditions as well as failure condi-
tions, as classified in the following.

1. Safety conditions: According to [3]], safety conditions are modeled into the func-
tional and safety layers.
— e[fcond]/a: Thisisjustanormal functional transition without any safety clause.
- e[fcond]/a 9 [G]: There is prohibition enforcement value on a transition ¢. It
signifies that the transition ¢ is forbidden to execute as long as G holds.
— e[fcond]/a|l,u) " [G]: There is mandatory enforcement value on a transition
t. It signifies that the transition is forced to execute within [/,u) whenever GG
holds.

2. Failure conditions: Failure conditions are modeled into the failure layer of
Safecharts.

- e[fcond]/alu, 00)P|G]: Transition ¢ represents an FTO-failure. It signifies that
under the condition G, if a corresponding mandatory transition ¢’ with label

Modeling and Automatic Failure Analysis of Safety-Critical Systems 457

e[fcond]/a[u,») 7 [G]

FTO e[fcond]/a<P[G]

fallure

nsition
[Transition ¢ | elfcond]/a‘] [G] NC-
Transition t failure
NC e[fcond]/a[l,u) " [G] elfcondl/a(G]
faHure e[fcond]/a[~G]
NC-
des(l)
' H
des(t)
SO- des(t)
, &

Fig. 3. FTO-failure in Safechart Fig.4. SO-failure in Safechart Fig. 5. NC-failure in Safechart

e[fcond]/a[l,u) I [G] is not executed within the time interval [I, u), then there
is a critical FTO-failure.

- e[fcond]/aq[G]: Transition ¢ represents an SO-failure. It signifies that un-
der the condition G, if a corresponding prohibitory transition ¢’ with label
e[fcond]/a 1 [G] is unexpectedly executed, then there is a critical SO-failure.

— e[fcond]/a <P [G]: Transition ¢ represents an NC-failure. The condition G
means that the main service of the safety-critical system is not supported as
good as expected. It signifies that repair actions are needed when G holds.

Here, we assume that when a component or system has failed, the failure must be
repaired before another failure can occur.

Let us take the automatic electric lamp system as an example again to illustrate the
three failure modes represented by the above described transitions. Table [I] shows the
conditions and assignments for normal safety operation and for the three possible failure
modes of the electric lamp.

In Figure[3 the transition from src(t) to des(t) has mandatory evaluation. By defini-
tion, the transition is supposed to be executed before the deadline w. If it fails, by the
failure definitions, we can specify that an FTO-failure has occurred. Similarly, we can
find an SO-failure may occur in Figure [l Note that there is an important concept here:
the transition from src(t) to des(t) is executed, therefore, in a real system, the des(t)
state appears to be the same as the SO-failure state. However, in modeling, we cannot
model the contradictory conditions of taking and not taking the safety transitions in the
same mode. In Safecharts modeling, we have to specify these conditions into two differ-
ent modes. When the safety transitions are executed under the expected semantics, then
the des(t) state is a correct final destination. Otherwise, this state represents a failure
state. As shown in Figure[5] we allow more flexible ways for system designers to model
non-critical failures, because non-critical failures are defined case by case. In our work,
we also assume that each type of failure could be recovered by some repair actions. If
not, there might be too many dead states in the model. Nevertheless, we do not focus on
how to deal with the dead states, except using them to specify properties representing
system hazards.

458 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

Table 1. Safecharts Normal operations and possible failure modes for the Electric Lamp System

Type of condition . .
(Transition Label) Safecharts Transition Label Descriptions
e: someone enters the room
Mandatory fcond: lamp is normally functioning
(e[fcond]/a[l,u) 7 [G]) a: automatically turn on the lamp

[l7 u) = [07 3)
G: insufficient light indoor
e: someone enters the room
Prohibitory fcond: lamp is normally functioning
(e[feond]/a 9 [G]) a: automatically turn on the lamp
G- sufficient light indoor

FTO electric lamp does not operate normally
(e[fcond}/a[u’ OO)P[G]) by the deadline time w.
SO electric lamp automatically turns on when
(e[fcond]/aG]) there is sufficient light indoor.
e: someone enters the room
feond: true
NC a: record non-critical problem

(e[fcond]/a <P [G]) G- the main service of the lamp is not supported
as good as expected, for example,
illumination is poor.

5 Transformation from Safecharts to Extended Timed Automata

The user-given Safecharts are automatically transformed into extended timed automata
(ETA) models [8], which are simply timed automata [1]] with discrete variables and
synchronization labels. We first show in detail how system designers might model their
safety-critical system in Safecharts, and then how the model is transformed into ETA
for model checking.

5.1 Transformation from Safecharts to ETA

To analyze failures automatically in model checking, one of the primary goals is to
model check the Safecharts model of a component or a system. However, Safecharts
cannot be accepted as system model input by most model checkers, most of which
accept only flat automata models. For example, extended timed automata (ETA) can be
accepted by SGM. The three Safecharts layers, namedly safety, functional, and failure,
must also be transformed into equivalent modeling constructs in ETA and specified as
properties for verification.

There are three types of states in Safecharts: OR, AND, and BASIC. An OR-state or
an AND-state, consists generally of two or more substates. All the substates in an AND-
state are active simultaneously, while an OR-state is in exactly one of its substates.

Modeling and Automatic Failure Analysis of Safety-Critical Systems 459

A BASIC-state is represented simply by an ETA mode. The translations for OR-states
and AND-states are performed as described in [11]].

Before we translate Safecharts to ETA, we need to introduce three different types of
transition urgency semantics [10]:

1. Eager Evaluation (¢): Execute the transition as soon as possible, i.e., as soon as a
guard is enabled. Time cannot progress as soon as a guard is enabled.

2. Delayable Evaluation (6): Can put off execution until the last moment the guard is
true. So time cannot progress beyond the falling edge of a guard, except when there
is another enabled transition outgoing from the same state.

3. Lazy Evaluation ()\): The transition may or may not be executed.

The transition condition and assignment label e[fcond]/a[l, u)¥[G] as described in
Section 4] can be translated to the following equivalent semantics in ETA.

- e[fcond]/a: There is no safety clause on a transition in Safecharts, thus we can
simply transform it to a similar transition in ETA. We have translated it in [6].

- e[fcond]/a 9 [G]: There is prohibition enforcement value on a transition ¢. It sig-
nifies that the transition ¢ is forbidden to execute as long as GG holds. We also have
performed this transformation in [6].

- e[feond]/a[l,u) ' [G]: There is mandatory enforcement value on a transition ¢. It
signifies that the transition is forced to execute within [/,u) whenever G holds. The
transformation to ETA was done in [[6].

- e[feond]/alu, o) [G]: As shown in Figure[@] the transformations of the safety and
the functional layers are same as those for a transition ¢’ with the mandatory en-
forcement value, that is, e[fcond]/a[l, u) I" [G]. A transition from some state src(t)
to an FTO-failure state in Safecharts, as depicted in Figure[3 will be translated into
a transition labeled with (timer > w)€ from state translator(t) to an FTO-failure
state in ETA, where translator(t) is a state generated during the transformation of
mandatory evaluation [6].

- e[fcond]/afG]: As shown in Figure[7] the transformations of the safety and the
functional layers are same as those for a transition ¢’ with the prohibition enforce-
ment value, that is, e[fcond]/a 9 [G]. The transition from some state src(t) to an
SO-failure state in Safecharts, as depicted in Figure @] will be translated into a tran-
sition labeled with (e[fcond A G]/a)* from state src(t) to an SO-failure state in
ETA.

- e[fcond]/a <P [G]: As shown in Figure[§] we translate a transition from some state
src(t) to an NC-failure state in Safecharts, as depicted in Figure[3] into a transition
labeled with (e[fcond A G]/a)* from state src(t) to an NC-failure state in ETA.

As shown in Figures [6l [7l and Bl the transitions representing repair actions in
Safecharts are translated into similar corresponding transitions, without any special
transformation. All the proposed transformations from the Safecharts layers to ETA
modeling artifacts are trivially equivalent in semantics.

6 Implementation

The proposed model extensions in Safecharts for explicit failure representation and the
related techniques for supporting failure analysis have all been integrated into the SGM

460 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

u

te: ([G] / timer := 0)° (e[fcondI\G]la)’\

(e[fcondA-G]/a)*

ty: (e[fcond] / a)* (timer 2 uy

translator(t)

FTO-failure

u

NC-
failure

ts: (timer2 IAtimer<u)®

NC-failure

des(t)

SO-
failure

Fig. 6. FTO-failure in ETA Fig.7. SO-failure in ETA

(e[fcondAG]/a)*

NC-failure

(e[fcondA-G]/a)*

des(t)

Fig. 8. NC-failure in ETA

model checker, on which we can perform verification and failure analysis. Mainly, what
we had done are listed in the following.

— Extend the semantics of Safecharts to include the failure layer,
— Flatten the extended Safecharts into ETA models, and
— Transform all safety and failure modeling artifacts into equivalent constructs in the
ETA models, which include the following.
e Transition priority calculation from Safechart risk bands,
e Support for prioritized transitions, and
e Support for urgent transitions.

Details of the implementation for supporting prioritized transitions in the SGM model
checker were given in [13]. The main issue is priority results in non-convex clock zones

Modeling and Automatic Failure Analysis of Safety-Critical Systems 461

which cannot be represented by a single difference bound matrix (DBM), a data-structure
for representing time in a model checker. We solved this issue by proposing an optimal
zone partitioning algorithm.

In our work, we also implemented support for urgent transitions in the SGM model
checker by proposing a novel zone capping operation that restricts the clock zone in a
mode (symbolic set of states) [[7]. Due to page-limit, this part of the work is out-of-scope
here and will not be described in details.

7 Application Example

To illustrate how the failure-extended Safecharts model aids in verifying safety-critical
systems, we use an automatic water sprinkler system that is found in almost all high-
rise apartments and garages for safety from fires. In such a system, the most important
functionality is that when the sensors detect an abnormally high temperature degree, the
controller sends a command to the sprinkler, which is supposed to start sprinkling water.
We assume that the controller polls the temperature sensor once every second. We have
used the extended Safecharts model to specify the relations between the failure state
and the normal operating state for the sprinkler system, as shown in Figure [0l where
clock is the triggering event for the system, and it arrives once every second. Totally,
four failure states are specified, of which two are FTO-failures and two are SO-failures.

To analyze the possible failures in this sprinkler system, we have to first introduce
its design. When the sensors detect an abnormally high temperature degree, it asserts
a signal F, which is polled by the controller. If the sprinkler system is in the Non-
sprinkling state, it is supposed to start sprinkling water within two seconds after the
assertion of signal F'. Otherwise, an FTO-failure occurs. When the sprinkler system
is in the Sprinkling state, if the sensors detect a normal temperature degree, then the
system is supposed to stop sprinkling within three seconds. Otherwise, there is also an
FTO-failure. It is prohibited that the sprinkler system transits from the Non-sprinkling
state to the Sprinkling state without an asserted signal F'. It is also required in the design
that the sprinkler system is prohibited from transiting from the Sprinkling state to the
Non-sprinkling state while the signal F' is asserted. Otherwise, an SO-failure occurs.

In Figure Ol F' = 1 represents abnormally high temperature, F' = 0 represents
normal temperature, R := 0 is the action to stop sprinkling, and R := 1 is the action
to start sprinkling. The sprinkler system is quite simple, thus only two effective repair
actions, namely stop sprinkling and start sprinkling, are modeled in this system. There
are no ineffective repairs and no NC-failure in this system.

We transformed the Safecharts model for this system automatically and generated
the ETA model as shown in Figure[IQl which was then input to the SGM model checker
for verification and failure analysis. As we can see, the ETA model in Figure[[Qlis much
more complex than the Safecharts model in Figure [0l Table 2] shows the transformation
results for the sprinkler system. Even for this small example, the Safecharts model gives
a reduction of 25% in the number of states and 25% in the number of transitions, com-
pared to the generated ETA model. For larger and more complex systems, our proposed
Safecharts with failure extensions will give greater benefits in terms of reduced sizes
of models, compared to the more complex ETA models. The designers can thus focus

462 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

clock/ R:=0[3,=) ¥ [F=0] clock/R:=1[2,) [* [F=1]

(R:=1)" (R=0)°

clock/R:=1 4[F=0] or clock/R:=1[0,2) *[F=1]

Sprinkling Non-Sprinkling

clock/R:=0[0,3) * [F=0] or clock/R :=0 9[F=1]
7 T~

clock / R:= 0 €[F=1] clock / R:= 19 [F=0]

(R:=1)° (R=0f"

Fig. 9. Sprinkler System Controller in Safecharts

their attention and time to failure identification, classification, and safety analysis, rather
than spending a lot of time and efforts in modeling them.

For this sprinkler system, we specified four different properties in CTL to analyze
the four failures in the Safecharts model, namely, F'T'O1, FTOs, SO;, and SO, as
follows.

EF(mode = HAZARD), where HAZARD € {FTOy, FTO,, 50,505}

On model checking, the sprinkler system model satisfied all of the above proper-
ties. Witnesses to the satisfaction of these properties, generated by SGM, helped us
in analyzing how the system would be faced with such hazards. For example, the
witness ((Non-Sprinkling, F = 0), (Non-Sprinkling, ' = 1), (Non-Sprinkling, F' =
1 A timer 2 2), (FT0O2)), shows that one possible way in which the sprinkler system
could face the F'T'O failure is when the system is not sprinkling (Non-Sprinkling), the
temperature becomes abnormally high (F' = 1), and the timer has expired (timer = 2).
This property witness generated from a model checker contains more information than
the minimum cut generated from Fault Tree Analysis (FTA) [12]], which is a conven-
tional and widely used analysis method for safety-critical systems. A minimum cut only

Table 2. Transformation Results for the Sprinkler System Example

Numbers of Modes Numbers of Transitions

Safecharts 6 12
(—25%) (—25%)

ETA 8 16

Modeling and Automatic Failure Analysis of Safety-Critical Systems 463

(R:=0)° (R:=1)°

(timer 2 3)° (timer 2 2)°

Translatory(t) Translator,(t)
t,: ([F=0)/timer:=0)° ‘ te: ([F=1)/timer:=0)°

ts: (timer 2 0 A timer < 2)°
ts: (timer 2 0 A timer < 3)°

t4: (clock/R:=0)
(clock[TrueA~(F=1)]/R:=0)" onopnmng
ty: (clock/R:=1)*
(clock[TrueA~(F=0)]/R:=1)
(R:=1)" —_— (R:=0)°

(clock[TrueA(F=1)]/R:=0)" (clock[TrueA(F=0)J/R:=1)"

Fig. 10. Sprinkler System Controller in ETA

shows the logical combination of different faults or failures in a system that results in
some hazard, however it cannot show the temporal sequencing of the faults that leads
to a hazard. The same logical combination could have different temporal sequences,
of which only some might result in a hazard and others would not. However, property
witnesses show the exact computation run that would result in a hazard. Hence, there is
more accurate information in a witness compared to that in a minimum cut.

Besides automatically generating a hazard witness for a single component failure,
model checking our failure-extended Safecharts can also be used to verify a common
safety-critical system property that specifies no single component failure results in a
system failure, where a system failure is defined as the simultaneous occurrence of two
component failures. We can thus check if the following property is satisfied.

AG=\/ [(mode(C;) = HAZARD) A (mode(C;) = HAZARD)) (1)
,J

where HAZ ARD is either an FTO-failure or SO-failure and C; is the ith component.

8 Conclusion

Nowadays, safety-critical systems are becoming more and more pervasive in our daily
lives. To reduce the probability of tragedy, we must use a formal and accurate method-
ology to verify whether a safety-critical system is safe or not. We have proposed a for-
mal method to verify safety-critical systems based on the Safecharts model and model

464 Y.-R. Chen, P.-A. Hsiung, and S.-J. Chen

checking paradigm. Our methodology can be applied widely to safety-critical systems
with a model-driven architecture. Through examples, we have shown the benefits of the
proposed verification method and system model. We hope our methodology can have
some real contribution in making the world a safer place to live in.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183—
235 (1994)

2. Bodsberg, L., Hokstad, P.: A system approach to reliability and life-cycle-cost of process
safety systems. IEEE Transactions on Reliability 44(2), 179-186 (1995)

3. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking: the
FSAP/NuSMV-SA safety analysis platform. In: Anderson, S., Felici, M., Littlewood, B.
(eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 49-62. Springer, Heidelberg (2003)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

5. Dammag, H., Nissanke, N.: Safecharts for specifying and designing safety critical systems.
In: Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems, October
1999, pp. 78-87. IEEE Computer Society Press, Los Alamitos (1999)

6. Hsiung, P.-A., Chen, Y.-R., Lin, Y.-H.: Model checking safety-critical systems using
Safecharts. IEEE Transactions on Computers 56(5), 692-705 (May 2007)

7. Hsiung, P.-A., Lin, S.-W., Chen, Y.-R., Huang, C.-H., Yeh, J.-J., Sun, H.-Y., Lin, C.-S., Liao,
H.-W.: Model checking timed systems with urgencies. In: Graf, S., Zhang, W. (eds.) ATVA
2006. LNCS, vol. 4218, pp. 67-81. Springer, Heidelberg (2006)

8. Hsiung, P.-A., Wang, F.: A state-graph manipulator tool for real-time system specification
and verification. In: Proceedings of the 5th International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA), pp. 181-188 (1998)

9. Johnson, M.E.: Model checking safety properties of servo-loop control systems. In: Proceed-
ings of the International Conference on Dependable Systems and Networks, pp. 45-50. IEEE
Computer Society Press, Los Alamitos (2002)

10. GoBler, G., Altisen, K., Sifakis, J.: Scheduler modeling based on the controller synthesis
paradigm. Real-Time Systems 23, 55-84 (2002)

11. Lavazza, L. (ed.): A methodology for formalizing concepts underlying the DESS notation.
In: ITEA (2001)

12. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading (1995)

13. Lin, S.-W., Hsiung, P.-A., Huang, C.-H., Chen, Y.-R.: Model checking prioritized timed au-
tomata. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 370-384.
Springer, Heidelberg (2005)

14. Nissanke, N., Dammag, H.: Risk bands - a novel feature of Safecharts. In: Proceedings of the
11th International Symposium on Software Reliability Engineering (ISSRE), October 2000,
pp- 293-301 (2000)

15. Wang, F.,, Hsiung, P.-A.: Efficient and user-friendly verification. IEEE Transactions on Com-
puters 51(1), 61-83 (2002)

	Modeling and Automatic Failure Analysis of Safety-Critical Systems Using Extended Safecharts
	Introduction
	Related Work
	Automatic Failure Analysis
	Extending Safecharts
	Safecharts
	Failure Modes
	Safety Repair Actions
	Representation of Failures and Repairs in Extended Safecharts

	Transformation from Safecharts to Extended Timed Automata
	Transformation from Safecharts to ETA

	Implementation
	Application Example
	Conclusion

