
Formal verification of real-time embedded software
in an object-oriented application framework

P.-A. Hsiung, T.-Y. Lee, J.-M. Fu and W.-B. See

Abstract: With the rapid escalation in design complexity of real-time embedded software,
application frameworks have become an almost indispensable tool because they greatly ease the
work of a designer by performing tedious tasks on behalf of a designer and by reusing semi-
complete application codes. To ensure code quality and reliability, computer-aided analysis is also
performed for the generated application software in some frameworks. However, when the target is
real-time embedded systems, the correctness of the software in terms of satisfying all user-given
real-time and embedded constraints becomes a primary objective for such frameworks.
To guarantee correctness, formal verification in the form of model checking is a viable solution
due to its full automation capability. Nevertheless, little is known from either the existing literature
or industrial experience on how formal verification can be integrated into an object-oriented
application framework, whose primary purpose was previously only to design and generate
application software. This work contributes to the state-of-art technology by showing how a design
framework and a verification framework can be integrated. Three main issues are tackled: (i) what
to verify?; (ii) when to verify?; and (iii) how to verify? As a solution to these three issues the
authors propose a mapping from the object-oriented model to a formal model, a schedule-verify-
map strategy and a compositional verification methodology, respectively. These have been
implemented in a component-based framework and experiments performed to illustrate their
feasibility. Due to the incorporation of industry de-facto standards such as real-time unified
modelling language and real-time Java, in the proposed techniques it should now be possible for an
engineer to gain access to theoretically proven formal verification technologies that would
otherwise be considered to be inaccessible to an engineer unskilled in verification techniques.

1 Introduction

According to industry statistics, software accounts for as
much as 70% of the total functionalities in real-time
embedded systems including home appliances, information
appliances, personal assistants, wearable computers, tele-
communication gadgets and transportation facilities.
The main reason for the widespread use of embedded
software is its greater design flexibility compared to
hardware, but along with this advantage a designer is also
burdened with greater complexity in ensuring its correctness
due to the large number of valuations possible for a given
software variable. It is often found that an on-market real-
time embedded system fails due to some simple software
glitches, which could have been avoided if the software was
formally verified before deployment. Software glitches cost

the US economy $59.5 billion each year, according to a
recent study done by the US Department of Commerce’s
National Institute of Standards and Technology. All these
facts go to show that verifying the correctness of a software
is a demanding and important issue in the design phase of
a real-time embedded system.

To overcome the significant complexity issues in the
design of real-time embedded software, a designer often
resorts to using an object-oriented application framework,
which is a semi-complete application that allows code reuse
and automatic generation of the final software code.
Currently available application frameworks such as
SESAG [1, 2] and OORTSF [3–5] for designing real-time
embedded software, do not verify the correctness of the
generated code. The consequences of deploying faulty
software range from simple system failures such as a
malfunctioning microwave oven to fatal disasters such as
radiation leaks in a nuclear reactor. Thus, an application
framework without verification is basically incomplete. As a
solution, we show how formal verification can be integrated
into an application framework called VERTAF [6, 7], which
generates and verifies real-time embedded software code in
Java and C.

To guarantee the correctness of the automatically
generated real-time embedded software, instead of case-
by-case verification, the work presented in this article takes
a pioneering step in introducing formal verification into a
component-based object-oriented application framework.
Our goal will be to make this integration both seamless and
scalable. By seamless integration, we mean a software
designer using an application framework with verification

q IEE, 2004

IEE Proceedings online no. 20041102

doi: 10.1049/ip-cdt:20041102

P.-A. Hsiung is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan

T.-Y. Lee is with the Department of Electronic Engineering, National
Taipei University of Technology, Taipei, Taiwan

J.-M. Fu is with the Department of Electronic Engineering, Cheng Shiu
University, Kaohsiung, Taiwan

W.-B. See is with Aerospace Industrial Development Corporation,
Taichung, Taiwan

Paper first received 8th January and in revised form 30th July 2004

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 417

capabilities need neither be well versed in the theory of
formal verification nor be forced to learn how to verify
his=her target software. By scalable integration, we mean an
application framework can adapt the embedded verification
technology to a user’s system specification.

There are several issues to be addressed for the seamless,
scalable integration of formal verification and application
framework technologies as described in the following.

. What to verify? On one hand, an application framework
perceives a system as a collection of interacting components
or objects with possibly complex behaviours, whereas,
formal verification regards a system as a set of concurrent
real-time tasks with formal syntax and precise semantics.
There is a difference in the granularity and level of
abstraction between the two system models. If application
framework and formal verification are to be integrated, how
do we generate a precise formal model from an imprecise
object-oriented model?
. When to verify? The application framework is respon-
sible for synthesising a real-time embedded software,
whereas formal verification ensures the correctness of the
same software. The exact step(s) in the design process
where verification is to be performed is critical and affects
both the design time and design results. Thus, the question
here is: at what design step must verification be performed?
. How to verify? The application framework generates
software by going through a complete design methodology,
whereas formal verification analyses software by going
through a verification methodology. The two methodologies
might not be compatible in terms of data exchange formats
and mutual requirements. Hence, how can the two
methodologies work together with mutual benefits for a
common goal of generating correct executable software?

Our proposed solutions to the above issues are illustrated in
Fig. 1, described briefly as follows, and will be elaborated
on in the rest of this article.

. Formal object-oriented model and timed automata.
In VERTAF, an application designer uses the unified
modelling language (UML) profile for schedulability,

performance, and time specification and the real-time
specification for Java to specify the formal object-oriented
model (see Appendix A, Section 9.1) for a system. UML and
Java are industry de-facto standards, but being general-
purpose languages with real-time features added to them,
they still lack a semantically precise behaviour model that is
suitable for formal verification. For example, the exact time
extensions of the UML statecharts are not clearly defined.
Furthermore, UML is too general purpose, thus we need to
constrain the user’s model expressiveness such that
whatever restricted models are specified by the user will
eventually have a formal unambiguous semantics rep-
resented in a formal model such as timed automata [8],
which are accepted by model checkers for timed systems.
The formal object-oriented model is mapped into timed
automata, which are then used as system models for our
formal verification, thus solving the ‘what to verify?’
question. The mapping to timed automata will be described
in Section 3.
. Verification after scheduling but before code generation.
Scheduling is an essential step in the synthesis of real-time
embedded software and verification could be performed
either before or after scheduling. In response to the ‘when to
verify?’ question, it is proposed in this work that verification
be performed after scheduling but before code generation.
Reasons for this proposal and justifications for it will be
discussed in Section 4.
. Formal synthesis and model checking. Formal methods
have been applied to the synthesis [9–15] as well as the
verification [7, 16–20] of real-time embedded systems.
Application frameworks are a good platform for the
integration of these two classes of techniques. Using a
common system model such as timed automata, model
checking procedures can be called from synthesis algor-
ithms. The basic framework will be compositional verifica-
tion with modular packaging of verification techniques.
Further details will be given in Section 5.

The above proposed solutions to the technology integration
issues are currently being implemented in a component-
based object-oriented application framework called
VERTAF [6, 7]. VERTAF generates code for real-time
embedded systems using formal modelling and synthesis
techniques. A separate software component called Verifier
is being developed in VERTAF for encapsulating the
proposed solutions. Verifier is briefly described in
Appendix D, Section 9.4. In the course of introducing the
solutions, some running examples will be given to
illustrate the feasibility and success of the Verifier
component.

2 Previous work

Since our focus is on technology integration, we will
concentrate on the previous work related to object-oriented
application frameworks, formal synthesis and formal
verification.

Currently, there are very few component-based object-
oriented frameworks developed specifically for generating
code for real-time embedded systems. In the following, we
first summarise three such frameworks. Two recently
proposed application frameworks are the object-oriented
real-time system framework (OORTSF) [3–5] and SESAG
[1, 2], which have been applied to the development of
avionics software. Some design patterns related to real-time
application design were proposed and code could be
generated automatically. Scheduling and real-time
synchronisation issues such as asynchronous event handling

Fig. 1 Synthesis and verification components in an application
framework

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004418

and protocol hooking were not handled. Some other issues
related to application frameworks such as the flexibility of
specifying real-time objects, the ease of using the frame-
works, and the benefits of applying them were also
not described. Another more recent framework, called
VERTAF [6, 7], is an enhanced version of SESAG,
incorporating software component technology, formal
verification technology, industry standards such as UML
and Java, and multi-level reuse of code, design patterns, and
framework architecture. As an example of middleware
integration frameworks for real-time applications, TAO
real-time object request broker was designed by
Schmidt [21].

Cadena [22] is a design and verification framework for
CORBA component-model-based avionic applications that
use Boeing’s Bold Stroke middleware. Cadena does not
consider timing and scheduling in its design process.
Some other worldwide research projects targeting
embedded real-time software design include USA
DARPA’s MoBIES [23, 24], Germany LMU München’s
HUGO [25], Europe EUREKA-ITEA’s DESS [26], and
Sweden Uppsala University’s TIMES [27]. These projects
mainly use their own self-defined modelling techniques and
do not consider scheduling in the design process.

Automatic generation of real-time embedded software
code requires formal software synthesis, which has been
mainly performed for communication protocols [28], plant
controllers [10, 11, 13], and real-time schedulers [9, 14]
because they generally exhibit regular behaviours. Recently,
there has also been some work on automatically generating
code for embedded systems [29–33] as described in the
following. Lin [30, 31] proposed an algorithm that generates
a software program from a concurrent process specification
through an intermediate safe Petri net representation by
applying quasi-static scheduling. Later, Zhu and Lin [33]
proposed a compositional version of the synthesis method
that reduced the generated code size and was thus more
efficient. Sgroi et al. [32] proposed a software synthesis
method called quasi-static scheduling for a more general
Petri net model, namely free-choice petri nets. A necessary
and sufficient condition was given for a free-choice Petri
net to be schedulable. Schedulability was first tested for
a net and then a valid schedule generated by decomposing a
net into a set of conflict-free components which were then
individually and statically scheduled. Code was finally
generated from the valid schedule. Later, Hsiung [12]
integrated quasi-static scheduling with real-time scheduling
to synthesise real-time embedded software. A synthesis
method for soft real-time systems was also proposed by
Hsiung [34]. The free-choice restriction was first removed
by Su and Hsiung [35] in their work on extended quasi-static
scheduling. Recently, Gau and Hsiung [36, 37] proposed a
more integrated approach called time-memory scheduling
based on reachability trees. Balarin et al. [29] proposed
a software synthesis procedure for reactive embedded
systems modelled using codesign finite state machine [38]
and synthesised using the POLIS hardware-software
codesign tool [38]. This work cannot be easily extended to
other more general frameworks.

Besides software synthesis for Petri nets, synthesis has
also been performed for other formal models such as timed
automata. Given a dense real-time system modelled by a set
of timed automata and a (temporal) property given as a
formula in timed computation tree logic (TCTL) [16, 18],
a controller is synthesised such that it restricts the behaviour
of the system for satisfying the property. This is the
controller synthesis problem for dense real-time systems.
Recently, system parameters have also been taken into

consideration for real-time controller synthesis [39].
Controller synthesis for plants (also called supervisor
synthesis) was mainly performed in the discrete time
domain, with a large portion of classical work done by
Ramadge and Wonham [40, 41]. Around 1994, when timed
automata was proposed as a dense-time model for real-time
systems [8], controller synthesis was extended to dense real-
time systems [10, 13, 14], to hybrid systems [15], and to
multimedia scheduler synthesis [9].

Formal verification of general software that is found on
personal computers or workstations is a formidable task,
hence their correctness is generally validated through
analysis techniques such as apportioning [42]. In contrast
to general software, real-time embedded software can be
more easily verified. For example, model checking [43–45]
with assume-guarantee reasoning [46] is a viable method.
Assume-guarantee reasoning partitions a complex software
into modules that are individually verified to satisfy some
guarantees under some assumptions. Then, the assumptions
of each module are discharged (validated) through an
analysis of the guarantees of all other modules. Finally,
the system is verified to satisfy a property (implied by the
system guarantee) under given system assumptions by
a logical composition of all module guarantees. Details of
this procedure can be found in [46]. Model checking real-
time embedded software can be performed by first
modelling the software as a set of timed automata, then
they are scheduled according to user-given constraints, and
finally verified through a labelling algorithm of model
checking. Some details of this procedure can be found in
[44]. Model checking tools for real-time systems modelled
as timed automata include UPPAAL [47], KRONOS [48],
SGM [49], and RED [50]. Other work include hardware-
software timing coverification [20, 51] based on linear
hybrid automata, and the coverification strategy for
automatic mapping to linear hybrid automata [17].

3 Formal object-oriented model and timed
automata

As introduced in Section 1, we need to solve the issue of
‘what to verify?’ during the technology integration between
design and verification. It is shown in this Section how
an object-oriented model used by design engineers can be
related to the formal timed automata model used by
verification engineers of real-time embedded systems.
Since we emphasise formal verification, we will briefly
touch upon the object-oriented model (leaving the details to
the Appendix) and then go into details on the timed
automata model.

A formal object-oriented model was proposed in
VERTAF [6, 7], which consists of autonomous timed
objects (ATO) and autonomous timed processes (ATP).
An application designer specifies real-time embedded tasks
by describing ATOs using the real-time profile of UML and
the reference implementation of the real-time specification
for Java. VERTAF automatically generates the correspond-
ing semantic models called ATPs, which are used for
scheduling and code generation. Further details on ATO
and ATP can be found in Appendix A, Section 9.1 of
this article.

A timed automaton is composed of various modes
interconnected by transitions. Variables are segregated
into categories of clock and discrete. Clock variables
increment at a uniform rate and can be reset on a transition,
whereas discrete variables change values only when
assigned a new value on a transition. A timed automaton
may remain in a particular mode as long as the values of all

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 419

its variables satisfy a timed predicate, which is a conjunc-
tion of clock constraints, Boolean propositions, and
synchronisation labels.

The following definitions formally define the timed
automata model, where the sets of integers and non-negative
real numbers are denoted by N and R� 0; respectively.

Definition 1: Timed predicate. Given a set C of clock
variables, a set D of discrete variables, and a set Y of
synchronisation labels, the syntax of a timed predicate �
over C, D and Y is defined as:

� :¼ falsejx � cjx� y � cjd � cjsj�1 ^ �2j:�1

where x; y 2 C; d 2 D; s 2 Y ;�2 f�; < ;¼; �; >g;
c 2 N and �1; �2 are timed predicates.

Let B (C, D, Y) be the set of all timed predicates over
C, D, and Y. A timed automaton may go from one mode
to another mode, that is, it performs a transition, when
the triggering condition which is specified as a timed
predicate, is satisfied by the current valuation of clock
and discrete variables and a corresponding transition with
the same synchronisation label is also triggered. On a
transition, some clocks may be reset to zero and some
discrete variables may be assigned new integer values.

Definition 2: Timed automaton. A timed automaton is a tuple
Ai ¼ ðMi;m

0
i ;Ci;Di; Yi; wi;Ei; ti; riÞ such that:

. Mi is a finite set of modes;

. m0
i 2 M is the initial mode;

. Ci is a set of clock variables;

. Di is a set of discrete variables;

. Yi is a set of synchronisation labels;

. wi : Mi 7!BðCi;Di; YiÞ is an invariance function that labels
each mode with a condition true in that mode;
. Ei � Mi �Mi is a set of transitions;
. ti : Ei 7!BðCi;Di;YiÞ defines the transition triggering
conditions;
. ri : Ei 7! 2Ci[ðDi�NÞ is an assignment function that maps
each transition to a set of assignments such as resetting
some clock variables and setting some discrete variables
to specific integer values.

Definition 3: System state. Given a system S of n processes
fP1;P2; . . . ;Png modelled by a set of n timed automata,
fAijAi¼ðMi;m

0
i ;Ci;Di;Yi;wi;Ei;ti;riÞ; 1� i� ng; a state s

of system S is defined as a mapping from
f1; . . . ; ng [

S
i Ci [

S
i Di to

S
1�i�n Mi [N [R�0 such

that:

. 8i 2 f1; . . . ng; sðiÞ 2 Mi is the mode of Ai in s;

. 8i; 8x 2 Ci; sðxÞ 2 R�0 is the reading of clock x in s,
such that sðxÞ � ^iwiðsðiÞÞ; where � is a notation for
satisfaction of predicates by a state;
. 8i; 8d 2 Di; sðdÞ 2 N is the value of d in s, such that
sðdÞ � ^iwiðsðiÞÞ.

Definition 4: System transition. Given a system S of n
processes fP1;P2; . . . ;Png modelled by a set of n timed
automata, fAi jAi ¼ ðMi;m

0
i ;Ci;Di; Yi; wi;Ei; ti; riÞ; 1 �

i � ng; and two system states s and s0; there is a system
transition from s to s0 in S, in symbols s! s0; iff there is
an i, 1 � i � n such that:

. ðsðiÞ; s0ðiÞÞ 2 Ei;

. sðiÞ � tiðsðiÞ; s0ðiÞÞ;

. if tiðsðiÞ; s0ðiÞÞ does not have any synchronisation label,
then for all 1 � j � n and j 6¼ i; sð jÞ ¼ s0ð jÞ;

. if tiðsðiÞ; s0ðiÞÞ has a synchronisation label s 2 Yi such
that s 2 Yk for some 1 � k � n; k 6¼ i then for all 1 � j � n;
j 6¼ i, and j 6¼ k; sðjÞ ¼ s0ð jÞ and ðsðkÞ; s0ðkÞÞ 2 Ek;
. 8x 2 Xððx 2 riðsðiÞ; s0ðiÞÞ) s0ðxÞ ¼ 0Þ ^ ðx =2 riðsðiÞ;
s0ðiÞÞ) s0ðxÞ ¼ sðxÞÞÞ:

3.1 Generation of timed automata

We now show the relation between the object-oriented
ATO-ATP models and the timed automata model. In
general, the following four types of timed automata can
be generated from a general ATP based on the input/output
relationships among ATPs in a call-graph, which is a
directed graph G ¼ ðV;EÞ; where nodes in V represent
ATPs and arcs in E represent the call relationships (event
propagation) between two ATPs. The translation process is
described in Algorithm 1, where the type() function
distinguishes the different types of ATP and corresponding
timed automaton generated as shown in Figs. 2–5.

Algorithm 1: Generation of timed automata from ATP
Gen TA ðATP Set;Call GraphÞ
ATP Set¼fP11;P12; . . . ;P1k1

;P21; . . . ;P2k2
; . . .Pn1; . . .Pnkn

g;
Call Graph;
f
Step 1: For each ATP 2 ATP Set f
Step 2: Switch (typeðATP;Call GraphÞÞ f
Step 3: Case Nt=P: ATA ¼ create TA ðNtP TAÞ;

break; ==Fig. 2
Step 4: Case Nt=A: ATA ¼ create TA ðNtA TAÞ;

break; ==Fig. 3
Step 5: Case T=P: ATA ¼ create TA (TP); break;

==Fig. 4
Step 6: Case T=A: ATA ¼ create TA (TA); break;

==Fig. 5
Step 7: Default: ATA ¼ create TA ðevent TAÞ;

g
Step 8: ATA Set ¼ ATA Set [fATAg;

g
Step 9: Return ATA Set;
g

. Non-triggerable=passive (Nt=P). A non-triggerable=
passive timed automaton is generated from a solitary ATP
that has no input and no output event. System upkeep tasks
that require no input and produce no output constitute an
example of this type of ATP. Figure 2 illustrates such a
timed automaton.
. Non-triggerable=active (Nt=A). A non-triggerable=active
timed automaton is generated from an ATP that has no input

Fig. 2 Non-triggerable=passive timed automaton

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004420

event, but produces some output event. A periodic stimuli
generator task is an example of such an ATP. Figure 3
illustrates such a timed automaton.
. Triggerable=passive (T=P). A triggerable=passive timed
automaton is generated from an ATP that has some input
event but produces no output event. Final control and
actuator tasks are examples of such ATPs. Figure 4
illustrates such a timed automaton.
. Triggerable=active (T=A). A triggerable=active timed
automaton is generated from an ATP that has both input and
output events. Most real-time tasks are of this type such as
signal-processing, transmission protocols, etc. Figure 5
illustrates such a timed automaton.

In Figs. 2–5, x and y are clock variables, where x records the
elapsed time since the start of an ATP execution and y forces
an immediate state change upon entering the restart mode.
Other variables such as exectime, period, deadline are the
characteristics of an ATP execution. The init mode is used

for initialisation of an ATP. It is noted here that the explicit
modelling of status broadcast for an ATP is not necessary
because it is assumed in the timed automata model that each
timed automaton knows the status of all other timed
automata. The exec mode represents the execution of an
ATP. The delay mode enforces a delay before the task is
restarted so that period constraints are obeyed. The restart
mode simply checks if the elapsed time represented by the
value of clock x has exceeded the deadline or not. If not,
then the task is restarted, otherwise, an error mode is
entered, which means the ATP has violated its deadline
constraints. Lastly, input event and output event are events
which trigger the execution of an ATP or events that are
produced by an ATP for triggering an other ATP,
respectively.

In summary, a designer specifies his/her system by
describing ATOs, for which their semantic models ATPs are
generated automatically. Finally, each ATP is converted
into one of the above-described timed automata. ATP can be
used for simulation, scheduling and code generation. Timed
automata can be used for verification, synthesis and code
generation. In Section 3.2, we will illustrate this design
process using an example.

3.2 Autonomous intelligent cruise controller
example

An autonomous intelligent cruise controller (AICC)
system application has been developed and installed in a
Saab automobile by Hansson et al. [52]. The AICC system
can receive information from road signs and adapt the speed
of the vehicle to automatically follow speed limits. Also, with
a vehicle in front and cruising at lower speed, the AICC
adapts the speed and maintains a safe distance. The AICC can
also receive information from the roadside (e.g. from traffic
lights) to calculate a speed profile which will reduce emission
by avoiding stop and go at traffic lights. The system
architecture consisting of both hardware and software is as
shown in Fig. 6. AICC has a system bus called a controller
area network bus, through which all the sensors, actuators
and control systems communicate. The sensors are con-
nected by serial RS-232 interfaces to the bus. The software
development methodology used in [52] is based on sets of
interconnected so-called software circuits. Each software
circuit has a set of input connectors where data are received
and a set of output connectors where data are produced. We
model the software circuits in [52] as autonomous timed
objects in the formal object-oriented model.

As shown in Fig. 7, there are five ATOs (the dotted
blocks) specified by the designer of AICC for implementing
a BASEMENT system, namely short range communication
(SRC), intelligent cruise controller (ICC) regulator, final
control, supervisor and electronic servo throttle (EST).
BASEMENT is a vehicle’s internal real-time architecture
developed in the vehicle internal architecture project [52],
within the Swedish road transport informatics programme.
As observed in Fig. 7, each ATO (dotted block) may map to
one or more ATP (solid-line blocks). The arrows represent
function calls between ATPs. An ATP without an incoming
arrow (function call) represents a time-triggered method,
which executes periodically. Each ATO has a period T
associated with it. The call-graph and process table for the
AICC are shown in Fig. 7 and Table 1, respectively. There is
a total of 12 functions performed in five objects, out of
which 11 functions are to be implemented in software. Thus,
there are 11 ATPs in this system. Here, SRC and display are
identified as resources. This application took 5 days for
three real-time system designers using VERTAF. The same

Fig. 4 Triggerable=passive timed automaton

Fig. 5 Triggerable=active timed automaton

Fig. 3 Non-triggerable=active timed automaton

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 421

Fig. 6 AICC Example: system architecture in which SW stands for software and HW for hardware

Fig. 7 AICC example: call-graph with ATOs and ATPs

Table 2: AICC example: timed automata models

ATP Triggerability Type

1 Traffic light info no active

2 Speed limit Info no active

3 Preceding vehicle estimator no active

4 Speed sensor no active

5 Distance control yes active

6 Green wave control yes active

7 Speed limit control yes active

8 Coordination & final control hardware

9 Cruise switches no active

10 ICC main control yes active

11 Cruise info yes passive

12 Speed actuator yes passive

Table 1: AICC example: process table

ATP ATO Periodp Exec. timep Deadlinep

1 Traffic light info SRC 200 10 400

2 Speed limit info SRC 200 10 400

3 Preceding vehicle estimator ICCReg 100 8 100

4 Speed sensor ICCReg 100 5 100

5 Distance control ICCReg 100 15 100

6 Green wave control ICCReg 100 15 100

7 Speed limit control ICCReg 100 15 100

8 Coordination & final control Final Controly 50 20 50

9 Cruise switches Supervisor 100 15 100

10 ICC main control Supervisor 100 20 100

11 Cruise info Supervisor 100 20 100

12 Speed actuator EST 50 5 50

SRC: short range communication, ICCReg: ICC regulator, EST: electronic servo-throttle
�All times are in milliseconds
yImplemented in hardware

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004422

application took the same designers 20 days to complete
development. This significant decrease in design time was
because VERTAF automatically extracted the tasks and
constraints from the object specifications.

The 11 ATPs were scheduled by the Scheduler component
of VERTAF and then transformed into 11 timed automata by
the Verifier component of VERTAF based on the system
architecture description (Fig. 6), call-graph (Fig. 7), and
process table (Table 1). Based on the characteristics of ATP
models in the AICC example, timed automata models are
generated as shown in Table 2. It is observed that the ATPs
that are responsible for data collection or are reactive to
environment changes are modelled as non-triggerable=active
timed automata (ATP index: 1-4 and 9). Furthermore, the
ATPs at the terminating end of an execution path are modelled
as triggerable=passive timed automata (ATP index: 11 and
12). Lastly, all other ATPs are modelled as triggerable=active
timed automata (ATP index: 5, 6, 7 and 10).

The above description correlates the ATO-ATP model
with the timed automata model through a concrete real-
world example. We will return to this example in Section
5.5, where the synthesis and verification results for this
example will be described.

4 Verification after scheduling but before code
generation

Real-time embedded software can be synthesised by going
through three design phases, namely. (i) specification;
(ii) scheduling; and (iii) code generation. Specification is the
modelling of software as a set of communicating processes
such as a network of timed automata. Scheduling is restricting
the behaviour of a modelled software such that it satisfies all
user-given functional, temporal and spatial constraints. Quasi-
static scheduling [30–33] is an example of such scheduling.
Code generation is producing real-time embedded software
code in some programming language such as C. The main
issue here is: when should software be verified?

As illustrated in Fig. 8, verification can be performed at
three different stages: (i) after specification but before
scheduling; or (ii) after scheduling but before code
generation; or (iii) after code generation. On the one hand,
at the point after specification but before scheduling,
processes generally have some regions in their state-space
which will be eventually eliminated by scheduling. On the
other hand, at the point after code generation, the software
code is generally implementation-dependent and contains

coding technicalities that do not really contribute toward the
actual behaviour of the software. Hence, we propose to
verify software after scheduling but before code generation.
In the rest of this Section we will make a comparison
between conventional verification approaches and our
proposed approach. Finally, we will illustrate this compari-
son using a distributed polling system example.

4.1 Conventional verification approaches

Theoretically, verifying the given processes can be done
after either one of the stages during software synthesis
Verification scientists try to verify processes immediately
after process specification to find any specification errors.
This is called the verify-schedule-map (VSM) approach
(column 1 in Fig. 8). Design engineers try to verify the final
program after code generation. This is called the schedule-
map-verify (SMV) approach (column 3 in Fig. 8). Both of
these approaches encounter different degrees of state-space
explosion problems.

Verifying process specification explores unnecessary
regions in the state-space that would eventually not even
exist in the final software code. These regions are basically
those that will be eliminated after scheduling. The problem
becomes worse when the degree of non-determinism is high
in the specification. The degree of non-determinism ðdNDÞ is
the maximum number of different possible behaviours that
a system can have in any one state. Further details on
how dND affects verification are discussed in Appendix B,
Section 9.2.

Verification of software program code also indulges in
unnecessary state-space explosions and thus affects scal-
ability in the number or size of processes verifiable.
Software programs usually contain many auxiliary,
implementation-dependent variables, that contribute
towards neither the real behaviour of the software nor the
satisfaction of specified real-time constraints by the soft-
ware. As is well known, the state-space size explored during
verification increases exponentially with the number of
clock variables and largest integer constant used [16].
The state-space size also increases drastically with the
number of free variables. Software programs generally
contain a lot of variables, the number of which is not
optimised either by the software synthesis procedure or by
the software compiler.

In conclusion, both of the above approaches unnecess-
arily explore regions in the state-space that do not
contribute towards the actual goal of verification. Thus, in

Fig. 8 Options for verification stage in real-time embedded software synthesis

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 423

the following Section an approach is proposed called
schedule-verify-map (SVM) as illustrated by column 2 of
Fig. 8.

4.2 Proposed SVM approach

To overcome the difficulties in verification presented in the
preceeding Section, we propose an approach called SVM.
In SVM, verification is performed after scheduling but before
code generation. Since scheduling eliminates certain regions
in the state-space, SVM will obviously explore a much
smaller part of the state-space. The degree of reduction is
analysed in Appendix B, Section 9.2. Since the target of
verification is a set of scheduled processes and not program
code, SVM will also search a smaller state-space than the
engineers’ approach (verification after code generation).

Comparing the two conventional approaches, VSM
adopted by verification scientists and SMV adopted by
design engineers, and our proposed SVM approach, we have
the pros and cons of each summarised in Table 3. On com-
parison, it is observed that SVM is a good trade-off between
practical feasibility (column 3) and verification complete-
ness (column 5). Although VSM is more than complete, its
practical feasibility is often hindered by the exponentially
large state-space. SMV is the most practical among the three
approaches, yet it is an incomplete validation process
(mostly accomplished through simulation and testing that
covers less than 100% of the system behaviour). A more
detailed analysis on the SVM approach is presented in the
following Section.

4.3 Distributed signal polling system
example

This example illustrates not only how SVM explores a
smaller state-space compared to VSM, but also how
different scheduling techniques affect the sizes of the
state-spaces explored for verification.

As illustrated in Fig. 9, this application is a distributed
signal polling system that is generally located at each
entry=exit gate of a parking lot. In this example, each
process initialises a counter to 500 for the number of
vacant parking spaces. Then, it starts to poll for any car-
entry, car-exit, or check-count signal. When a signal is
detected, appropriate actions are carried out. The counter
value is decremented for a car-entry signal and
incremented for a car-exit signal. the counter value is
output for a check-count signal. After completing actions,
the polling process is repeated. Here, we need to verify

that a car is never allowed entry when there are no
vacant parking space available ðCount ¼ 0Þ:

Experiments were carried out for this example with and
without scheduling, the details of which are shown in
Table 4. Verification of a four-process signal polling
system required exploring 78 000 modes with 205 000
transitions when no scheduling was applied (the VSM
approach). This is a very large state-space, the construc-
tion of which requires a large amount of memory
(178 MB) and time (9608 s). For the SVM approach,
three scheduling techniques were applied to this example:
(i) post-signal scheduling; (ii) pre-signal scheduling; and
(iii) both post-signal and pre-signal scheduling. Post-
signal scheduling is the scheduling of the processes that
have detected signals concurrently. Pre-signal scheduling
is the scheduling of processes before any signal detection
is started. We observe from Table 4 that the three types of
scheduling techniques result in different sizes for the
state-space. Applying both post- and pre-signal scheduling
results in the smallest state-space. Applying pre-signal
scheduling results in a smaller state-space than applying
post-signal scheduling. This is consistent with our
intuition, pre-signal scheduling applies a much greater
restriction on the behaviour of the processes than post-
signal scheduling.

Table 4: The use of SVM and VSM into distributed signal polling system

n Schedule Approach Modes Trans Memory, MB Time, s

4 No VSM 78 347 205 578 178.12 9608.36

4 Post-signal SVM 1018 1255 6.57 34.20

4 Pre-signal SVM 29 41 10.69 82.19

4 Post=pre-signal SVM 22 26 5.48 27.06

Fig. 9 Distributed signal polling system

Table 3: A comparison of the three verification approaches

Verification approach Correctness Feasibility State-space size Completeness

VSM too sure vague exponentially large more than complete

SVM Sure largely reduced complete

SMV not sure practical small to medium incomplete

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004424

5 Formal synthesis and model checking

Having proposed solutions to the issues of ‘what to verify?’
in Section 3, and ‘when to verify?’ in Section 4, we will
discuss ‘how to verify?’ real-time embedded software in
this Section. Based on the proposed solutions, we
demonstrate how design and verification can be integrated
into an application framework. The design and verification
methodologies used in VERTAF are, respectively, formal
synthesis and model checking.

Formal synthesis is defined as a design method by which
a formally modelled real-time embedded system is sched-
uled and code synthesised to satisfy a set of real-time and
memory specifications. Several of the research works in this
area were discussed in Section 2. In contrast to conventional
engineering-type synthesis methods, formal synthesis
methods are precise and produce verifiable systems.

Model checking is defined as an algorithmic procedure by
which a system can be formally and automatically verified
to check if it satisfies a given logic specification.
For example, a concurrent real-time system modelled by
a set of timed automata can be model checked to see if it
satisfies a given TCTL specification [18]. Recently, model
checking has become a popular practical formal method
which is gradually being accepted by the industry and used
in collaboration with simulation techniques.

5.1 Compositional design and verification

Our target problem is formulated as follows:

Definition 5: Integration of verification into design. Given
a real-time embedded system described in an object-
oriented application framework using the formal object-
oriented model along with a set of temporal and memory
constraints, software that is automatically synthesised
must be formally verified to satisfy all the given
constraints.

Since the focus of this work is on verification, interested
readers may refer to [7, 12, 35–37] for further details on
how real-time embedded software is synthesised using
scheduling.

As a solution to the above posed problem, we propose the
following technology integration framework. Given a real-
time embedded system described using a set of ATOs
fQ1;Q2; . . . ;Qng and a set of constraints, the behaviour of
each ATO Qi is modelled using one or more ATP
fPi1;Pi2; . . . ;Piki

g each of which is in turn represented by
a timed automaton Aij¼ðMij;m

0
ij;Cij;Dij;Yij;wij;Eij;tij;rijÞ

and a TCTL specification f (c.f. definition 6) is generated
from the set of constraints.

Definition 6: TCTL formula. A TCTL formula has the
following syntax:

f ::¼ � j 9hf0 j 9f0U�cf
00 j :f0 j f0 _ f00 ð1Þ

Here, � is a timed predicate in Bð[Cij;[Dij;[YijÞ;f0;
f00 are TCTL formulae, �2 f< ; �; ¼; �; >g; and c 2 N :
9hf0 means there exists a computation, from the current
state, along which f0 is always true. 9f0U�cf

00 means there
exists a computation, from the current state, along which f0

is true until f00 becomes true, within the time constraint of
� c: Traditional shorthands such as 9}; 8h; 8}; 8U;^; and
! can all be defined as in [18].

As detailed in algorithm 2, we propose a compositional
integration framework, which provides an elegant inter-
action between software components and verification

manipulators. Here, a verification manipulator is a modular
packaging of verification techniques such as state-space
reduction and concurrent process merging.

Algorithm 2: Compositional design and verification in
application framework
Compositionally Design Verify ðATP Set;

Constraint Set; Call Graph; GÞ
ATP Set¼ fP11;P12; . . . ;P1k1

;P21; . . . ;P2k2
; . . .Pn1; . . .Pnkn

g;
Constraint Set; ==set of constraints
Call Graph; ==call graph
G; ==an empty graph
f
Step 1: f¼ Gen TCTLðConstraint SetÞ;

==f : TCTL specification
Step 2: ATA ¼ Gen TAðATP Set;Call GraphÞ;

==ATA Set : set of automata
Step 3: STA Set ¼ ScheduleðATA Set; Sched AlgÞ;

==STA Set : set of automata
Step 4: while ðjSTA Setj>1Þ f
Step 5: G ¼ MROFðG; STA SetÞ;

== merge related objects first
Step 6: r ¼ FBRSðGÞ; == find best reduction sequence
Step 7: Reduce ðG; rÞ; ==G : a state-graph

g
Step 8: If ððCounter Eg ¼ Model CheckðG;fÞÞ ¼¼

NULLÞ f
Step 9: Code GenðSTA SetÞ;
Step 10: Return True;

g
Step 11: Else return Counter Eg;
g

First, a TCTL specification formula f is generated by the
Gen_TCTL() procedure in step 1 algorithm 2, which is
adopted from the dense time extension of [53]. In step 2,
given a set of ATPs ATP Set¼fP11;P12; . . . ;P1k1

;P21; . . . ;
P2k2

; . . .Pn1; . . . ;Pnkn
g; Gen_TA() generates a set of timed

automata ATA Set ¼ fA11;A12; . . . ;A1k1
;A21; . . . ;A2k2

;
. . .An1; . . . ;Ankn

g such that Aij models Pij: The details of
this step were given in Section 3.1. In step 3, ATA Set is
then scheduled using some scheduling algorithm Sched A
lg by the procedure Schedule() into another set of timed
automata, STA Set ¼ fAs

11;As
12; . . . ;As

1k1
; As

21; . . . ;As
2k2
;

. . . ;As
n1; . . . ;As

nkn
g: Within our framework, Sched A lg is

taken as a timed version of extended quasi-static scheduling
[12, 35]. Verification is performed only after scheduling. It is
here that we use the strategy of verification after scheduling
but before code generation, which was described in
Section 4. In step 4 there is a ‘while’ loop which iterates
until the set STA Set becomes a singleton (i.e.
cardinality ¼ 1), which implies that the global state space
of the set has been constructed. Within each iteration,
MROF() in step 5 either merges the two most-related timed
automata from STA Set into a state-graph (defined later in
Section 5.2) or merges one timed automaton with a given
state-graph. MROF() will be given in detail in algorithm 3
in Section 5.2. Two timed automata in a set are said to be the
most-related to each other if no other pair of timed automata
shares a greater number of discrete variables, clock
variables, and synchronisation labels. This simple definition
can be further enhanced by taking other proximity factors
into consideration such as the number of common
neighbours, where a timed automaton is a neighbour of
another timed automaton if they communicate through
some variables or labels. Upon merging, the cardinality of
STA Set decrements by one. Next, FBRS() in step 6
searches for the best sequence r of reduction manipulators

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 425

which reduces the current state-space the most (described
later in Section 5.3). In step 7, the actual reduction of
the state-space is performed. After the global state-space
is constructed, it is model-checked by procedure
Model_Check() in step 8.

Since the proposed technology integration framework is
compositional, the global state-space of a given set of timed
automata is constructed iteratively such that in each iteration
two timed automata are selected for merging into one timed
automaton, which represents the state-space of their
concurrent behaviour. After merging in each iteration, the
intermediate state-spaces are then reduced using a sequence
of reduction techniques. Thus, there are two decisions which
affect verification scalability described as follows.

. Merge sequence: Section 5.2 answers the question of
which two timed automata to merge in each iteration.
. Reduction sequence: Section 5.3 answers the question of
what sequence of reduction techniques to apply to an
intermediate state-space in each iteration.

5.2 Merge related objects first

As a solution for the first decision issue on the selection of a
merge sequence, details of the MROF() procedure from
step 5 of algorithm 2 are given as follows. The selection of a
pair of timed automata for merging in an iteration affects
how large the intermediate state-space can grow. We use a
state-graph to symbolically represent a state space, as
defined in definition 7 and implemented in the state-graph
manipulators (SGM) tool [54–56], which is a comprehen-
sive, high-level, real-time system verification tool.

Definition 7: State-graph. Given a system S of n processes
fP1;P2; . . . ;Png modelled by a set of n timed automata,
fAi j Ai ¼ ðMi;m

0
i ;Ci;Di; Yi; wi;Ei; ti; riÞ; 1 � i � ng; a

state-graph is a tuple G ¼ ðR; r0; b;F; aÞ; where:

. R is a set of symbolic regions, where a region is a set of
system states (c.f. definition 3);
. r0 is an initial region in R;
. b : R! fhOBDDr;DBMri j r 2 Rg characterises each
region r with the following such that all system states in r
satisfy them:

(i) OBDDr is an ordered binary decision diagram
(OBDD) [57] satisfied by all the discrete variable
valuations;
(ii) DBMr is a difference-bound matrix (DBM) [58, 59]
satisfied by all the clock variable valuations;

. F is a set of system transitions (c.f. definition 4);

. a : F ! fhrs; rd; I;E; gig characterises each system tran-
sition f 2 F with the following:

(i) rs 2 R is the source region from which f originates;
(ii) rd 2 R is the destination region for f;
(iii) I � f1; . . . ; ng is a set of indices of processes which
make a transition as defined in definition 4;
(iv) E �

S
1�i�n Ei is a set of process transitions which

constitute f as defined in definition 4;
(v) g is a permutation of process indices in the set
f1; . . . ; ng; which is used for timed symmetry reduction
as described in Section 5.3.

The selection of timed automata for merging is classified
into syntax-based and semantics-based as described in the
following.

. Syntax-based. This is a sequential merging of timed
automata, based on their indices. Two timed automata that
have the lowest indices are first merged into a state-graph
and then the timed automaton with the minimum index is

merged into the newly constructed state-graph from a
previous iteration. The criteria for merging can also be size-
based, that is, merging is performed first for the timed
automata that have the smallest sizes (in ascending order)
or for the timed automata that have the largest sizes
(in descending order).
. Semantics-based. A proximity relationship is calculated
for each pair of timed automata based on some sharing
factors such as the number of shared discrete variables,
clock variables, synchronisation labels and the number of
common neighbours. A timed automaton is a neighbour
of another timed automaton if they communicate through
some variables or labels.

In the proposed formal object-oriented model, one ATO
may map to more than one ATP and each ATP has a
corresponding timed automaton. Thus, the number of timed
automata in a system is equal to the number of ATPs.
Suppose we are given a set of ATOs fQ1;Q2; . . . ;Qng;
whose behaviours are represented by the set of ATPs
fP11;P12; . . . ;P1k1

;P21; . . .P2k2
; . . . ;Pn1; . . . ;Pnkn

g; where
the behaviour of Qi is represented by fPi1; . . . ;Piki

g: Let
the set of timed automata that model the set of ATPs be
fA11; . . . ;A1k1

; . . . ;An1; . . . ;Ankn
g: After scheduling with

some algorithm, let the scheduled set of timed automata be
fAs

11;As
12; . . . ;As

1k1
;As

21; . . . ;As
2k2
; . . .As

n1; . . . ;As
nkn
g;

In this work, we adopt a hierarchical merge strategy which
includes both syntax-based and semantics-based methods as
described in the following steps.

1. Same family. This is a syntax-based method. Since the
ATPs that represent the behaviour of the same ATO are
more related to each other than with the ATPs of other
ATOs, we first merge all the ATPs of the same family
(i.e. the same ATO). Notationally, fAs

i1; . . . ;As
iki
g are

merged into Am
1 : Thus, after this step, instead of

P
1�i�nki

timed automata, there are now only n automata.
2. Near relatives. This is a semantics-based method.
Degrees of proximity are calculated for each pair of ATOs
based on the number of shared discrete variables, clock
variables, synchronisation labels and the number of
communication channels. The higher the number of shared
variables and communication channels, the higher is the
proximity degree. The pair with the highest proximity are
said to be near-relatives and are merged first. Notationally,
the following proximity function is defined for each pair of
timed automata:

pðAi;AjÞ ¼ Num Shared VariablesðAi;AjÞ

þ Num ChannelsðAi;AjÞ ð2Þ

Algorithm 3: The merge related objects first (MROF)
procedure
MROFðG1; TA SetÞ
a state-graph G1;
set of timed automata TA Set;
==Ai ¼ ðM0i ;m0 0i ; C0i;D

0
i; Yi; w

0
i;E
0
i; t
0
i; r
0
iÞ 2 TA Set; i � 1

f
Step 1: Select GraphsðG1;G2; TA SetÞ;

==G1;G2 :selected state-graphs
Step 2: Let Reach ¼ Unvisited ¼ fRinitg;

==Reach, Unvisited: set of regions,
==Rinit : r0 01 � r0 02 ; where r0 0i is an initial region

of Gi:
Step 3: While ðUnvisited 6¼ NULLÞ f
Step 4: R0 ¼ DequeueðUnvisitedÞ; ==R0 : a region
Step 5: For all out-going system transition f f

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004426

Step 6: R00 ¼ Successor RegionðR0; f Þ; Þ
==R00: a region

Step 7: If R00 is consistent and R00 =2Reach f
Step 8: Reach ¼ Reach [fR00g;
Step 9: Trans ¼ Trans [ffg;

== Trans : set of transitions
Step 10: QueueðR00;UnvisitedÞ;

g
g
g

Step 11: return G; ==G ¼ ðReach;Rinit; b; Trans; aÞ :
a state-graph

After the first step of merging same family timed
automata, Am

u and Am
v are are merged first if pðAm

u ;Am
� Þ ¼

max1�i�j�nfpðAm
i ;Am

j Þg:
The details of the MROF() procedure are given in

algorithm 3. First, either two timed automata are selected for
merging from a given set of timed automata TA Set or if a
state-graph G1 is given as input parameter for MROF(),
then one automata G2 is selected from TA Set for merging
with G1 (step 1). In this procedure, three data-structures are
maintained: (i) a queue of regions (Unvisited); (ii) a set of
reachable regions (Reach); and (iii) a set of system
transitions (Trans). Unvisited keeps a record of which
regions are yet to be explored, Reach keeps a record of all
the regions reached, and Trans keeps a record of all the
system transitions connnecting the regions in Reach. The
procedure starts from an initial region, Rinit; which is a
Cartesian product of the initial regions (modes) of the
selected state-graphs (timed automata). Initially, the initial
region is queued in Unvisited and recorded in Reach (step 2).
A region, R0; is dequeued from Unvisited and corresponding
to each outgoing transition e of R0 a successor region R00 is
constructed by the function Successor RegionðR0; eÞ
(steps 4, 5 and 6). If R00 is consistent and is not already in
Reach, then it is recorded in Reach and queued in Unvisited
for further exploration of its successors (steps 7 and 8). The
corresponding transition is also recorded in Trans (step 9).
The procedure loops until all regions in the queue have been
explored (steps 3–10). Finally, a state-graph constructed
from Reach and Trans is returned (step 11).

5.3 Find the best reduction sequence

A reduction technique is a procedure, which takes as input a
state-graph and reduces its size in terms of the number of
modes and transitions. A state-space can be represented by
a state-graph (definition 7) and a reduction technique can
be implemented as a modularly packaged manipulator.
We consider the following manipulators, which were
implemented in the SGM tool: timed symmetry reduction,
clock shielding, read-write reduction, and bypass internal
transition. The description of these manipulators and their
use in our technology integration framework are detailed
in Appendix C, Section 9.3. Experimental results on the
running AICC example, which was introduced in
Section 3.2, will be given in Section 5.5.

The reduction manipulators can all be applied to a state-
graph, but the sequence in which the manipulators are applied
has an impact on the verification scalability. Although the
manipulators all appear to be orthogonal to each other, the
information obtained or deleted by one manipulator may be
either useful or harmful to another manipulator. There is a
theoretical analysis of how an appropriate sequence can be
obtained in [56]. The given method needs to perform at least
four iterations of compositional state-space construction
before the best sequence is obtained. Since it is not quite
feasible in terms of the time required for complex systems to

iterate four times before deciding on an appropriate
sequence, we propose a more heuristic method based on
engineering experiences.

The following is how we obtained a heuristically optimal
reduction sequence for our framework.

. If there is no clock variable, skip the shield clock
reduction. If there is no discrete variable, skip the read-write
reduction technique.
. Always perform symmetry reduction after read-write
reduction because the information obtained from read-write
reduction is useful for symmetry reduction.
. Perform internal transition bypass after read-write
reduction and clock shielding because the information
obtained by the other two techniques are useful for deciding
if a transition is internal.
. Permutate the reduction sequence by deciding when to
perform symmetry reduction (after read-write).
. Generate the best sequence from the above experiments
and heuristics.

We have compared the above heuristic method of obtaining
the best reduction sequence with a theoretical method from
[56]. The results are the same for real-time embedded
systems.

5.4 Model checking

The details of the model checking procedure Model_
Check() called in step 8 of algorithm 2 are given in
algorithm 4. In this Model Check() procedure, first a
given TCTL specification formula f is decomposed into
a set of subspecifications, which are topologically sorted in
the nesting order, and enlisted in L (step 1). According to
this order, each subspecification f0 is used for labeling each
region in the state-graph (steps 2 and 3). A label is added to
a region if the OBDD and DBM of the region satisfies f0

(step 4). Each label merely indicates the predicate
satisfaction of a region with respect to a given TCTL
specification represented by the label. Finally, if the initial
region r0 does not have a label for f (i.e. G does not satisfy
f) (step 5), then a counter-example is generated and
returned (step 6). Otherwise, NULL is returned (step 7).

Algorithm 4: Model checking procedure
Model CheckðG;fÞ
a state-graph G;
TCTL formula f;
f
Step 1: L ¼ SubSpecListðfÞ;
Step 2: For each subspec f0 2 L f
Step 3: For each region r 2 R ==R : regions in G
Step 4: If ðr � f0Þ Add LabelðrÞ; g
Step 5: If ðlabelðr0;fÞ ¼¼ FALSEÞ :

==label for f assigned to initial region r0

Step 6: Return Counter EgðG;fÞ;
Step 7: Else return NULL;
g

5.5 Verifying AICC

Coming back to the running example introduced and
modelled in Section 3.2, we will now illustrate how the
AICC can be compositionally verified using the techniques
presented in the preceeding Sections

The timed automata models that were generated for the
AICC example (as listed in Table 2), were input to our
proposed compositional verification framework, which has
been implemented in the Verifier component of VERTAF
(see Appendix D, Section 9.4). The proposed approaches to

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 427

increasing verification scalability through different merge
and reduction sequences, as given in Section 5, were applied
to the set of timed automata, and the results are tabulated in
Table 5, which corroborates our claims.

Our experiments were performed on a Sun UltraSPARC-
II 450 MHz machine with a single processor and 1 GB
physical memory. We experimented with several different
versions of the set of timed automata models (columns 2 and
3 of Table 5), as described in the following.

. System model: With respect to the number of timed
automata, a full version consists of 11 timed automata,
while a simplified version consists of six timed automata
with indices 1,4,6,7,10,12 from Table 2. Simplification was
performed by removing some of the sensor tasks such as
speed limit info. System model consistency was preserved
after the simplification by ensuring that the removed local
execution paths do not affect any global verification results.
. Communication model: Two types of communication
models were considered: shared memory (SM) and message
passing (MP). In the SM model, shared variables were used
as primitives for data=control transfer. In the MP model,
send-receive events were used as primitives.

From the results in Table 5, we make the following
observations.

. The full version of 11 timed automata (rows 1 and 2)
required much more CPU time and memory space
compared to the simplified version of six timed automata
(rows 3–17). This is in agreement with our knowledge of
highly concurrent systems having larger state-spaces.
. With respect to the communication model, MP required
more time and memory compared to SM (compare row 3
with row 6). This is because MP uses events and
broadcasting is expensive with event-based communication,
whereas SM uses variables and broadcasting is automatic
through concurrent memory reads.
. Each system version was executed twice: first without
reduction and then with reduction. In agreement with our
intuition, application of reduction techniques resulted in

smaller state-spaces and lower time and memory usages
(compare rows 3 with 5 and 6 with 7).
. We also experimented with different merge sequences as
described in Section 5.2: mg1 is a sequential merge
according to the timed automata indices and mg2 is a near
relatives merge as defined by (2). Comparing rows 3 and 4,
the second sequence gives a better result in terms of a
shorter CPU time and memory space utilisations compared
to the first sequence. This corroborates our claims in
Section 5.2.
. We experimented with different reduction sequences as
described in Section 5.3. Comparing rows 7–17, the
reduction sequence hmg1; rw; sm; sc; biti in row 14 gives
the best results in terms of the smallest state-space size
(i.e. number of modes and transitions). The CPU time and
memory space usage are not a minimum (compare with row
10), because smaller state-spaces are sometimes obtained by
spending a little extra time and space.
. The first version of 11 timed automata (row 1) could not
execute to completion without reduction, which gives a
general idea of how extremely large sized the global system
state-space is.

All the above observations illustrate and corroborate our
proposed techniques as described in Section 5. Thus,
through this example we have shown how formal verifica-
tion can be integrated into a complex object-oriented
application framework and applied to a real-world industrial
example.

6 Conclusions

Using the proposed solutions to the issues in technology
integration of object-oriented application framework and
formal verification, a software engineer can be guaranteed a
verified correct code for his/her application. Issues related to
such a technology integration include deciding on what
to verify (system model), when to verify (selecting the stage
in a design process for verification) and how to verify
(integrating formal synthesis and verification algorithms).

Table 5: AICC example: state-space reduction and model checking

n Comm Sequence Regions Transitions Time, s Memory, MB

1 11 SM hmg1i >125 000 >1869 000 N/A out of memory

2 11 SM hmg1; rw ; sc; smi 270 1138 50 212.95 61.67

3 6 MP hmg1i 19 776 26 677 1390.78 210.90

4 6 MP hmg2i 19 776 26 677 234.38 76.64

5 6 MP hmg1; rw ; sc; smi 141 320 873.39 18.72

6 6 SM hmg1i 7912 16 557 303.20 52.00

7 6 SM hmg1; rw ; sc;bit; smi 101 290 182.49 5.69

8 6 SM hmg1; sc;bit; rw ; smi 88 232 257.81 6.30

9 6 SM hmg1; sc; rw ;bit; smi 94 258 212.48 5.52

10 6 SM hmg1; rw ;bit; sc; smi 114 366 183.78 5.78

11 6 SM hmg1;bit; rw ; sc; smi 108 369 201.35 6.17

12 6 SM hmg1;bit; sc; rw ; smi 100 281 202.86 6.18

13 6 SM hmg1; sm; rw ; sc;biti 349 3165 366.04 15.91

14 6 SM hmg1; rw ; sm; sc;biti� 71 180 192.52 6.21

15 6 SM hmg1; rw ; sc; sm;biti 92 259 197.99 6.19

16 6 SM hmg1; sm; sc; rw ;biti 321 3319 423.41 15.83

17 6 SM hmg1; sc; rw ; sm;biti 82 198 237.55 6.18

n: number of timed automata, Comm: communication model, Sequence: manipulator sequence, SM: shared memory, MP: message passing mg1 :

sequential merge, mg2 : near-relatives merge, rw: read-write, sc: shield-clock, bit: bypass internal transition, sm: symmetry
pbest reduction sequence

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004428

Solutions were proposed in this work for each of the above
issues, which include the generation of timed automata from
formal object-oriented models, the strategy of verification
after scheduling but before code generation for greater
verification scalability, and the compositional framework
for technology integration. A software component called
Verifier is implemented in the VERTAF application
framework for formal verification of generated software.
A real-world industrial example of a cruise controller was
given to illustrate the feasibility and success of our approach
for integrating formal verification into an application frame-
work. A smaller example was given to illustrate why
verification should be performed after scheduling but before
code generation.

Future research directions related to this work include
developing an API for users to implement their own
reduction and verification techniques. Furthermore, design
patterns can also be used as a basis upon which new
reduction techniques can be invented and applied to the
verification of real-time embedded software. Due to the high
complexity of real-time embedded systems, hierarchical
verification based on the assume-guarantee principle [60]
will be integrated into VERTAF in the near future.

7 Acknowledgment

This work was supported by project grants NSC90-2215-E-
194-009, NSC91-2213-E-194-008, NSC91-2215-E-194-
008, NSC92-2213-E-194-003, NSC92-2218-E-194-009
from the National Science Council, Taiwan, ROC.

8 References

1 Hsiung, P.-A.: ‘Object-oriented application framework design for real-
time systems’. Proc. 4th Int. Symp. on Real-Time and Media Systems
(RAMS), September 1998, pp. 221–227

2 Hsiung, P.-A.: ‘RTFrame: An object-oriented application framework
for real-time applications’. Proc. 27th Int. Conf. on Technology of
Object-Oriented Languages and Systems (TOOLS), September 1998,
pp. 138–147

3 Kuan, T., See, W.-B., and Chen, S.-J.: ‘An object-oriented real-time
framework and development environment’. Proc. OOPSLA’95,
Workshop #18, 1995

4 See, W.-B., and Chen, S.-J.: ‘High-level reuse in the design of an
object-oriented real-time system framework’. Proc. Int. Computer
Symp., December 1996, pp. 363–370

5 See, W.-B., and Chen, S.-J.: ‘Object-oriented real-time system frame-
work’ (Wiley, 2000), Chapter 16, pp. 327–338

6 Hsiung, P.-A., Lee, T.-Y., See, W.-B., Fu, J.-M. and Chen Chen, S.-J.:
‘VERTAF: An object-oriented application framework for embedded
real-time systems’. Proc. 5th IEEE Int. Symp. on Object-Oriented Real-
Time Distributed Computing (ISORC), Washington, DC, USA, April
2002, pp. 322–329

7 Hsiung, P.-A., Su, F.-S., Gao, C.-H., Cheng, S.-Y., and Chang, Y.-M.:
‘Verifiable embedded real-time application framework’. Proc. IEEE Int.
Real-Time Technology and Applications Symp. (RTAS), Taipei,
Taiwan, May 2001, pp. 109–110

8 Alur, R., and Dill, D.L.: ‘A theory of timed automata’, Theor. Comput.
Sci., 1994, 126, pp. 183–235

9 Altisen, K., Gößler, G., Pneuli, A., Sifakis, J., Tripakis, S., and
Yovine, S.: ‘A framework for scheduler synthesis’. Proc. Real-Time
System Symp. (RTSS), 1999

10 Asarin, E., Maler, O., and Pneuli, A.: ‘Symbolic controller synthesis for
discrete and timed systems’, Lect. Notes Comput. Sci., 1995, 999, pp. 1–20

11 Asarin, E., Maler, O., Pneuli, A., and Sifakis, J.: ‘Controller synthesis
for timed automata’. Proc. Conf. on System Structure and Control,
IFAC, July 1998

12 Hsiung, P.-A.: ‘Formal synthesis and code generation of embedded
real-time software’. Proc. Int. Symp. on Hardware/Software Codesign
(CODES), Copenhagen, Denmark, April 2001, pp. 208–213

13 Maler, O., Pnueli, A., and Sifakis, J.: ‘On the synthesis of discrete
controllers for timed systems’, Lect. Notes Comput. Sci., 1995, 900,
pp. 229–242

14 Wong-Toi, H., and Hoffman, G.: ‘The control of dense real-time
discrete event systems’. Technical Report STAN-CS-92-1411, Stanford
University, Stanford, CA, 1992

15 Wong-Toi, H.: ‘The synthesis of controllers for linear hybrid automata’.
Proc. Int. Conf. CDC, 1997

16 Alur, R., Courcoubetis, C., Halbwachs, N., and Dill, D.: ‘Modeling
checking for real-time systems’. Proc. IEEE Int. Conf. on Logics in
Computer Science (LICS), 1990

17 Fu, J.-M., Lee, T.-Y., Hsiung, P.-A., and Chen, S.-J.: ‘Hardware-
software timing coverification of distributed embedded systems’, IEICE
Trans. Inf. Syst., 2000, 83, (9), pp. 1731–1740

18 Henzinger, T.A., Nicollin, X., Sifakis, J., and Yovine, S.: ‘Symbolic
model checking for real-time systems’. Proc. IEEE Int. Conf. on Logics
in Computer Science (LICS), 1992

19 Hsiung, P.-A.: ‘Embedded software verification in hardware-software
codesign’, J. Syst. Archit., 2000, 46, (15), pp. 1435–1450

20 Hsiung, P.-A.: ‘Hardware-software timing coverification of concurrent
embedded real-time systems’, IEE Proc., Comput. Digit. Tech., 2000,
147, (2), pp. 81–90

21 Schmidt, D.: ‘Applying design patterns and frameworks to develop
object-oriented communication software’, Handbook of Programming
Languages (1997), vol. I

22 Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., and Ranganath, V.P.:
‘Cadena: An integrated development, analysis, and verification
environment for component-based systems’. Proc. 25th Int. Conf. on
Software Engineering (ICSE), OR, USA, May 2003, pp. 160–172

23 Kodase, S., Wang, S., and Shin, K.G.: ‘Transforming structural model
to runtime model of embedded software with real-time constraints’.
Proc. Design, Automation and Test in Europe Conf. (DATE), Germany,
March 2003, pp. 170–175

24 de Niz, D., and Rajkumar, R.: ‘Time Weaver: A software-through-
models framework for embedded real-time systems’. Proc. Int.
Workshop on Languages, Compilers, and Tools for Embedded Systems,
June 2003, pp. 133–143

25 Knapp, A., Merz, S., and Rauh, C.: ‘Model checking timed UML state
machines and collaboration’, Lect. Notes Comput. Sci., 2002,
pp. 395–414

26 Lavazza, L.: ‘A methodology for formalizing concepts underlying the
DESS notation’. Software Development Process for Real-Time
Embedded Software Systems, EUREKA-ITEA project (http://www.
dess-itea.org), D 1.7.4, December 2001

27 Amnell, T., Fersman, E., Mokrushin, L., Petterson, P., and Yi, W.:
‘TIMES: a tool for schedulability analysis and code generation of
real-time systems’. Proc. 1st Int. Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS), Marseille, France,
September 2003

28 Merlin, P., and Bochman, G.V.: ‘On the construction of submodule
specifications and communication protocols’, ACM Trans. Program.
Lang. Syst., 1983, 5, (1), pp. 1–25

29 Balarin, F., and Chiodo, M.: ‘Software synthesis for complex reactive
embedded systems’. Proc. Int. Conf. Computer Design (ICCD), October
1999, pp. 634–639

30 Lin, B.: ‘Efficient compilation of process-based concurrent programs
without run-time scheduling’. Proc. Design Automation and Test
Europe (DATE), February 1998, pp. 211–217

31 Lin, B.: ‘Software synthesis of process-based concurrent programs’.
Proc. IEEE/ACM Design Automation Conf. (DAC), June 1998,
pp. 502–505

32 Sgroi, M., Lavagno, L., Watanabe, Y., and Sangiovanni-Vincentelli, A.:
‘Synthesis of embedded software using free-choice Petri nets’. Proc.
IEEE/ACM Design Automation Conf. (DAC), June 1999

33 Zhu, X., and Lin, B.: ‘Compositional software synthesis of commu-
nicating processes’. Proc. Int. Conf. on Computer Design (ICCD),
October 1999, pp. 646–651

34 Hsiung, P.-A.: ‘Formal synthesis and control of soft embedded real-
time systems’. Proc. IFIP Int. Conf. on Formal Techniques for
Networked and Distributed Systems (FORTE), August 2001, pp. 35–50

35 Su, F.-S., and Hsiung, P.-A.: ‘Extended quasi-static scheduling for
formal synthesis and code generation of embedded software’. Proc.
10th IEEE/ACM Int. Symp. on Hardware/Software Codesign
(CODES), CO, USA, May 2002, pp. 211–216

36 Gau, C.-H., and Hsiung, P.-A.: ‘Time-memory scheduling and code
generation of real-time embedded software’. Proc. 8th Int. Conf. on
Real-Time Computing Systems and Applications (RTCSA), Tokyo,
Japan, March 2002, pp. 19–27

37 Hsiung, P.-A., and Gau, C.-H.: ‘Formal synthesis of real-time
embedded software by time-memory scheduling of colored time Petri
nets’, Electron. Notes Theor. Comput. Sci., April 2002

38 Balarin, F., et al.: ‘Hardware-software co-design of embedded
systems: the POLIS approach’ (Kluwer, 1997)

39 Hsiung, P.-A.: ‘Synthesis of parametric embedded real-time systems’.
Proc. Int. Computer Symp. Workshop on Computer Architecture, 2000,
pp. 144–151

40 Ramadge, P.J., and Wonham, W.M.: ‘Supervisory control of a class of
discrete event processes’, SIAM J. Control Optim., 1987, 25, pp. 206–230

41 Ramadge, P.J., and Wonham, W.M.: ‘The control of discrete event
systems’, Proc. IEEE, 1989, 77, pp. 81–98

42 Iyer, S., and Ramesh, S.: ‘Apportioning: a technique for efficient
reachability analysis of concurrent object-oriented programs’, IEEE
Trans. Softw. Eng., 2001, 27, (11), pp. 1037–1056

43 Clarke, E.M., and Emerson, E.A.: ‘Design and synthesis of synchro-
nization skeletons using branching time temporal logic’, Lect. Notes
Comput. Sci., 1981, 131, pp. 52–71

44 Clarke, E.M., Grumberg, O., and Peled, D.A.: ‘Model checking’
(MIT Press, Cambridge, MA, 1999)

45 Queille, J.-P., and Sifakis, J.: ‘Specification and verification of
concurrent systems in CESAR’, Lect. Notes Comput. Sci., 1982, 137,
pp. 337–351

46 Pasareanu, C.S., Dwyer, M.B., and Huth, M.: ‘Assume-guarantee model
checking of software: A comparative case study’, Lect. Notes Comput.
Sci., 1999, 1680, pp. 168–183

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 429

http://www.dess-itea.org
http://www.dess-itea.org

47 Bengtsson, J., Larsen, F., Larsson, K., Petterson, P., Wang, Y., and
Weise, C.: ‘New generation of UPPAAL’. Proc. Int. Workshop on
Software Tools for Technology Transfer (STTT), July 1998

48 Daws, C., Olivers, A., Tripakis, S., and Yovine, S.: ‘The tools
KRONOS’, Lect. Notes Comput. Sci., 1996, 1066, pp. 208–219

49 Wang, F., and Hsiung, P.-A.: ‘Efficient and user-friendly verification’,
IEEE Trans. Comput., 2002, 51, (1), pp. 61–83

50 Wang, F.: ‘Efficient data-structure for fully symbolic verification of
real-time software systems’, Lect. Notes Comput. Sci., 2000, 1785,
pp. 157–171

51 Hsiung, P.-A.: ‘Timing coverification of concurrent embedded real-
time systems’. Proc. 7th IEEE/ACM Int. Workshop on Hardware
Software Codesign (CODES), Rome, Italy, May 1999, pp. 110–114

52 Hansson, H.A., Lawson, H.W., Stromberg, M., and Larsson, S.:
‘BASEMENT: A distributed real-time architecture for vehicle appli-
cations’, Real-Time Syst., 1996, 11, (3), pp. 223–244

53 Roubtsova, E.E., van Katwijk, J., Toetenel, W.J., Pronk, C., and
de Rooij, R.C.M.: ‘Specification of real-time systems in UML’,
Electron. Notes Theor. Comput. Sci., 2000, 39, (3)

54 Hsiung, P.-A., and Wang, F.: ‘A state-graph manipulator tool for
real-time system specification and verification’. Proc. 5th Intl. Conf.
on Real-Time Computing Systems and Applications (RTCSA),
October 1998, pp. 181–188

55 Hsiung, P.-A., and Wang, F.: ‘User-friendly verification’. Proc. IFIP,
TC6/WG6.1 Joint Int. Conf. on Formal Description Techniques For
Distributed Systems and Communication Protocols & Protocol
Specification, Testing, And Verification (FORTE/PSTV), October 1999

56 Wang, F., and Hsiung, P.-A.: ‘Automatic verification on the large’.
Proc. 3rd IEEE High-Assurance Systems Engineering Symp. (HASE),
November 1998, pp. 134–141

57 Bryant, R.E.: ‘Graph-based algorithms for Boolean function manipu-
lation’. IEEE Trans. Comput., 1986, 35, (8)

58 Alur, R., Courcoubetis, C., Dill, D., Halbwachs, N., and Wong-Toi, H.:
‘An implementation of three algorithms for timing verification based on
automata emptiness’. Proc. IEEE Int. Conf. Real-Time Systems Symp.
(RTSS), 1992

59 Dill, D.: ‘Timing assumptions and verification of finite-state concurrent
systems’, Lect. Notes Comput. Sci., 1989, 407

60 Hsiung, P.-A., Cheng, S.-Y., and Lee, T.-Y.: ‘Compositional verifica-
tion of synchronous real-time embedded systems’. Proc. 2002 VLSI
Design/CAD (VLSI) Symposium, Taitung, Taiwan, August 2002,
pp. 187–190

61 Stewart, D.B., Volpe, R.A., and Khosla, P.K.: ‘Design of dynamically
reconfigurable real-time software using port-based objects’, IEEE
Trans. Softw. Eng., 1997, 23, (12)

62 Kim, K.H.: ‘APIs for real-time distributed object programming’, IEEE
Comput., 2000, 33, (6), pp. 72–80

9 Appendices

9.1 Appendix A: formal object-oriented
model [6]

As a compromise between the object-oriented model used
by system engineers and the formal model used by system
analysts, a formal object-oriented model is proposed for
introducing formal verification into an application frame-
work. The syntax and semantics of the model are presented
in the rest of this section. In terms of syntax, the model
consists of a uniform representation called an autonomous
timed object (ATO) for task specification by a software
designer. Semantically, the model consists of a uniform
representation called an autonomous timed process (ATP)
for modelling the behaviour of all tasks, which can be used
for verification after transforming into other formal models.

9.1.1 An ATO: An ATO incorporates advantageous
features of two object models, namely port-based object
(PBO) [61] and time-triggered message-triggered object
(TMO) [62]. PBO is suitable for modelling embedded
objects with standard nterfaces such as in, out and
resource ports. Like PBO, ATO also adopts a standard
interface for objects. Unlike PBOs, ATOs need not be
independent and ATO methods (functions) need not be of
a single type (the cycle method for both periodic and
aperiodic tasks). Only the external interface of an ATO
is adopted from PBO, while the internal methods are
adaptations of those defined in TMO. TMO is a
syntactically simple and natural but semantically power-
ful extension of the conventional object structure. Its basic
structure consists of four parts: (i) an object-data-store

section; (ii) an environment-access-capability section;
(iii) a spontaneous-method section; and (iv) a service-
method section. TMO has been used for developing APIs
for real-time distributed object programming. A distinc-
tive feature of TMO is the spontaneous method, which is
triggered by a timer, instead of by an event.

Algorithm 5: ATO for AICC supervisor
ATO supervisor
f
Step 1: in double speed; ==input port
Step 2: in int ICC control;
Step 3: signal int switch sig; info sig; ==internal

signals
Step 4: out int final control; ==output port
Step 5: res display LCD; ==resource port
Step 6: conf display size; ==configuration port
Step 7: ttm poll switchð100; 100; switch sigÞ;
Step 8: ttm show infoð100; 100; info sigÞ;
Step 9: ttm gen controlð100;100;switch sig; info sig;speed;

ICC control; final controlÞ;
g

The basic structure of our proposed ATO is illustrated in
Fig. 10. There are four types of ports leading to and from
an ATO, namely: (i) configuration; (ii) in; (iii) out; and
(iv) resource ports. An ATO is initialised through the
configuration ports. Instantiation is required because an
ATO may be a generic class or a generic component.
For example, a protocol stack component specified as an
ATO may contain some parameters (counters, timers,
access rates, . . .) which need to be assigned constant values
before the protocol stack is deployed for use. After
instantiation, an ATO may be configured either as a periodic
or an aperiodic task. For aperiodic task configuration, it may
be activated through resource ports that are connected to
sensors or through events implemented in a shared memory.
For periodic task configuration, ATO is activated by a timer.
Upon activation, ATO reads data from in ports, executes
corresponding methods, computes results, and writes data
on out ports. ATO interface is suitable for modelling
embedded objects due to its generic format. An example
ATO for the AICC supervisor object (refer to Fig. 7 and
Table 1) is illustrated in algorithm 5.

Within ATO, there are two types of methods, namely
event-triggered methods and time-triggered methods.
Event-triggered methods are conventional object methods
that execute only when called by another object, that is, it is
triggered by a method call. It is used for modelling aperiodic
task execution, since aperiodic tasks are also triggered by
some incoming event. Time-triggered methods are object
methods that were created due to the requirement of a timely
and predictable behaviour from real-time systems. They are

Fig. 10 An ATO

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004430

also called spontaneous methods in TMO. The execution of
time-triggered methods does not require any incoming
event, instead it is started upon reaching a prespecified time
point. As far as inter-ATO interactions are concerned, using
an event-triggered method is one way of interacting, and
another way is through global and local state variable
tables as defined in the PBO model. State variable tables
have a smaller overhead when implemented in a shared
memory than message passing mechanisms. Thus, they are
more appropriate for embedded systems.

9.1.2 An ATP: Every syntactic model must have a
semantic model, which controls precisely how the model
must behave in a dynamic environment. Corresponding to
the ATO model, we next define its dynamic behaviour using
an ATP model. Each instance of an ATO has one or more
corresponding ATP, which means there may be more than
one ATP associated with a generic ATO in a system under
design. The number of ATPs associated with a generic ATO
usually depends on the number of use cases the ATO has
(just as in UML).

Figure 11 illustrates a basic ATP. Upon an ATO
declaration, a new ATP is created, which is then configured
into an instantiated object process. A newly created process,
being unaware of the current system state, is updated
through its in ports. This updated state is a stable state in
which a process resides until it receives an interrupt.
There are two types of interrupts that an ATP can receive:
(i) event; and (ii) timer. An event interrupt indicates an
aperiodic or sporadic task, and a corresponding event-
triggered method is executed. A timer interrupt indicates a
periodic task, and a corresponding time-triggered method is
executed. After each method execution, all related temporal
constraints are checked for violation or satisfaction. If a
constraint is violated, then the ATP enters an error state.
ATP is reset by an error handling routine and then enters an
updated state. A kill signal may be received before or after
method execution, which terminates the process.

A standard uniform process model, in the form of ATP,
increases the predictability of a real-time embedded
application and also its ease of analysis and its verification
scalability. In contrast to the framework process defined for
PBO, ATP is not independent. When an ATP receives an
event, it knows which ATP is the generating source of the
event. All such events passed among ATPs are recorded in
an event table, such that a record consists of the source ATP,
the destination ATP, the event type and the associated
variable values. The event table can also be represented as a
call-graph, which is a directed graph GC ¼ ðVC;ECÞ; where
nodes in VC represent ATPs and arcs in EC represent the call
relationships (event propagation) between two ATPs. This
graph is useful for schedulability test, resource allocation,
scheduling, and conflict resolution. Besides the event table,
another table called the process table records all the ATPs in
a system. A record in the process table consists of the ATP
index, the associated ATO methods, and the execution time,
period, deadline, type of priority (fixed or dynamic) and
resource requirements for each method. The resource
requirement is specified as a real-numbered vector, where
each element corresponds to some system resources such as
memory, processor utilisation, etc. and the real-number
corresponds to the amount of each resource required by the
particular ATO method.

9.2 Appendix B: analysis of the verification
approaches

To analyse the advantage of the schedule-verify-map
(SVM) strategy in comparison with conventional
approaches, we first define the concept of state non-
determinism in a system, and then use it to quantify the
benefits obtained by SVM.

Definition 8: State non-determinism. Given a system S
of n processes fP1;P2; . . . ;Png modelled by a set of n
timed automata, fAijAi¼ðMi;m

0
i ;Ci;Di;Yi;wi;Ei;ti;riÞ;1�

i� ng; and a state s of system S, the state non-determinism
of s is defined as the total number of system transitions
ðs! s0Þ; whose occurrence at s is non-deterministic
(arbitrarily decided), where s0 is a successor system state.
Notationally, we have the following definition for the state
non-determinism ð ðsÞÞat s:

 ðsÞ¼P1�i�noðsðiÞÞ ð3Þ

where oðmÞ is the number of outgoing transitions of a mode
m, which are non-deterministic.

In general, not all state non-determinism ð ðsÞÞ at a state
(s) can be quasi-statically scheduled. We denote by qssðsÞ
those non-determinism that can be quasi-statically schedu-
led. In notations:

 qssðsÞ ¼ P1�i�noqssðsðiÞÞ ð4Þ

where oqssðmÞ is the number of outgoing transitions of a
mode m, which are non-deterministic and can be quasi-
statically scheduled.

Considering the overall effect of quasi-static scheduling
on verification complexity, we have the following results.
First, given a state s of a system S, since all quasi-statically
scheduled non-determinisms have been eliminated before
SVM, the reduction obtained is a multiplicative factor of
 qssðsÞ for a state s. Second, along a computation run of a
system (that is, a sequence of alternating states and system
transitions), the combined effect of state non-determinisms
at a state s and a successor state s0 is multiplicative.
This means that the combined non-determinism isFig. 11 An ATP

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 431

 qssðsÞ � qssðs0Þ: Thus, the overall reduction effect of
quasi-static scheduling on a system behaviour can be
quantified by the total number of non-determinisms,
CqssðSÞ; resolved by quast static scheduling for a system
S, as follows.

CqssðSÞ ¼ Ps2ReachðSÞ qssðsÞ

¼ Ps2ReachðSÞP1�i�noqssðsðiÞÞ ð5Þ

where Reach (S) is the set of reachable states of system S.
Here, the resolution of a set of non-determinisms at a

state, s, means instead of considering all possible successor
states, s0; due to the concurrent non-determinisms in each
process, quasi-static scheduling has fixed (that is, scheduled)
only one of the successor states as a valid scheduled state,
where s! s0: Hence, the total number of computation runs
that SVM explores isCqssðSÞ times less than that explored by
the VSM approach for a system S.

Taking limits on CqssðSÞ; we find that it is a double
exponential term in the number of system processes, n, and
in the size of the reachable state-space jReachðSÞj; as given
in the following:

CqssðSÞ ! ðdNDÞn�jReachðSÞj ð6Þ

where dND is the maximum degree of non-determinism of
all processes, p1; p2; . . . ; pn: This shows a double exponen-
tial decrease in the number of computation runs that need be
explored by SVM compared to VSM.

The above was an analytical comparison between the
proposed SVM approach and the VSM approach. For a
comparison between SVM and SMV, it is difficult to
analyse theoretically since each final generated program
code might contain different number of auxiliary variables
and data structures. Nevertheless, the number of compu-
tation runs explored by SMV will be definitely larger than
that by the SVM approach due to an increase in state-space
size with an increase in the number of variables.

9.3 Appendix C: state-graph reduction
techniques

In the following, we assume the system under design is

modelled by a set of timed automata fAijAi ¼ ðMi;m
0
i ;Ci;

Di; Yi; wi;Ei; ti; riÞ; 1 � i � ng and the state-graph under
reduction is G ¼ ðR; r0; b;F; aÞ:

9.3.1 Timed symmetry reduction: A system
modelled by a set of timed automata is said to be symmetric
if the automata differ at most by their indices, that is, they
are identical on permutation of their indices. For such
symmetric systems, a reduction in the size of the state-
graphs can be obtained through identification of symmetric
regions. A set Rs of regions in a state-graph is said to be
symmetric if there exists a permutation g : I ! I on the
automata indices I ¼ f1; . . . ; ng such that EðbÞðrÞ; gÞ ¼
bðr0Þ; for all r 6¼ r0 2 Rs; where is defined as follows:

EðbðrÞ; gÞ ¼ hEðOBDDr;gÞ; EðDBMr;gÞi ð7Þ

where EðOBDDr;gÞ and EðDBMr;gÞ are OBDD and DBM
with indices permuted according to g; respectively.

One of the regions in a set of symmetric regions is
preserved in a state-graph and the other regions are deleted.
System transitions connected to the deleted regions are then
connected to the one representative region left from the
symmetric set. Each of these redirected transitions is
associated with a permutation label g; e.g. g ¼ ð2; 1Þ;
which means ‘permute index 1 with index 2 and vice-versa’.

These redirected transitions can be further reduced by a
symmetry-based procedure similar to the one for the system
states.

The representative region, that is left in a symmetry set, is
selected by first sorting all variables according to some
arbitrary order and then selecting the region that has the
least value for the first differentiating variable. Reduction of
all symmetric sets of regions leaves one representative in
each set and thus the size of a state-graph is reduced. For
example, suppose two system states M1 and M2 are identical
in all respects, except for their two respective invariants
h ¼ 1 ^ k ¼ 2 ^ x � 0 and h ¼ 2 ^ k ¼ 1 ^ x � 0; as
implemented by OBDDs and DBMs, with h and k
as discrete variables and x as a clock variable. Upon
application of the permutation g ¼ ð2; 1Þ; the latter becomes
identical to the former. If hx; h; ki is the order selected for
the variables, then M1 will be selected as the representative
system state and M2 will be deleted. Thus, we have one less
nodes in the state-graph.

This reduction technique is very useful for our integration
framework because the underlying formal object-oriented
model is symmetric. All objects and functions have a
uniform ATO-ATP representation. This manipulator results
in large reductions when applied to systems developed using
our framework.

9.3.2 Clock shielding: Given a state-graph, if the
values of a clock variable are different in two regions, but
the clock is either never read or is always reset before being
read, then that clock variable should not be a distinguishing
factor between the two regions. In plain terms, those two
regions can be considered to be the same if they differ only
in the values of that clock variable. For such an
identification of the two regions, the clock is shielded in
both the regions by ignoring its values.

Formally, a clock variable c 2 [iCi can be shielded
in the DBM representation of clock constraints, DBMr; of
a region r 2 R if either of the following conditions is
satisfied:

. 9 a region r0 2 R such that:
(i) r0 is reachable from r, i.e. there exists a path or a
sequence of regions connected by system transitions from
r to r0 in the state-graph G;
(ii) c is reset along an incoming transition f 2 F of r0,
i.e. 9f 2 F; að f Þ ¼ hrs; rd; I;E; gi; rd ¼ r0; c 2 riðeÞ; for
some i 2 I; e 2 E \ Ei;
(iii) along all paths from r to r0; neither does c appear in
any invariant of a system state nor in any triggering
condition of a system transition, i.e. c =2 wisðiÞÞ; 8i 2
f1; . . . ; ng; 8s 2 r00; 8r00 in all paths from r to r0 and
c =2 tiðeÞ; 8i 2 I; 8e 2 E; 8f ¼ hrs; rd; I;E; gi that occur in
all paths from r to r0:

. For all regions r0 reachable from r, neither does c appear
in any invariant of a system state in r0 nor does it appear in
any triggering condition of a system transition reachable
from r, i.e. c =2 wisðiÞÞ;8i 2 f1; . . . ; ng; 8s 2 r0; and c =2 tiðeÞ;
8i 2 I; 8e 2 E; 8f ¼ hrs; rd; I;E; gi with rd ¼ r0:

Reduction through clock shielding is useful for our frame-
work because: (i) our target systems are concurrent with
many software components and objects modelled by timed
automata; and (ii) they are real-time. Hence, there are
many clocks within a real-time embedded system, on
which the clock shielding manipulator can be applied.
Furthermore, each ATO also has one or more time-triggered
method(s), which also depend on clocks. Thus,
this manipulator becomes handy in reducing state-space
sizes.

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004432

9.3.3 Read-write reduction: Whereas the clock
shielding technique focuses on clock variable valuations,
the read-write reduction technique is targeted at discrete
variables. Recall that in the compositional approach (see
algorithm 2), an intermediate state-graph is obtained in each
merge iteration, which represents the state-space of a partial
system. Based on this distinction between a partially
composed system and a yet uncomposed system part,
read-write reduction analyses the exact values which
discrete variables do or do not take in each region of a
composed state-graph.

Given a system S of n processes fP1;P2; . . . ;Png
modelled by a set of n timed automata, fAi jAi¼ðMi; m0

i ;
Ci;Di;Yi;wi;Ei;ti;riÞ;1� i�ng; let SC be the composed part
and SnSC be the uncomposed part of system S. For a given
discrete variable d 2 [1�i�nDi; let DSC

ðdÞ be the set of
values written to d by processes in SC; but not by processes
in SnSC: With the above notations, the following theorem
constitutes the core rationalisation for the read-write
reduction technique.

Theorem 1: Given a composed part SC of system S, a
discrete variable d, and a finite run segment hr0; r1; . . . ; rki
such that for all i; 0 � i< k; region ri goes to region riþ1

without making an assignment to d on any transition of any
process in SC; then the following hold:

. if there is an assignment d :¼ c; on an incoming transition
of region r0; then for all i; 0 � i< k; ri � ^c02DSC

ðdÞnfcgd 6¼ c0;
. if there is a triggering condition d ¼ c and no assignment
on an incoming transition of region r0; then for all i; 0 �
i< k; ri � ^c02DsCðdÞnfcgd 6¼ c0;
. if there is a triggering condition d 6¼ c and no assignment
on an incoming transition of region r0; then for all i; 0 �
i< k; ri � d 6¼ c:

Proof: The results follow easily from the following three
facts: (i) a discrete variable changes value only when
assigned a new value by an assignment on a transition;
(ii) all uncomposed processes in SnSC will never write
values to d from the set of values DSCðdÞ; and (iii) all
composed processes in SC will not assign any value to d
along the run segment.

For implementation, each of the deductions on discrete
variable valuations from theorem 1 was conjuncted with the
OBDD (invariant) of each region in a state-graph. This
conjunction can be done either as a post-processing after the
state-graph is constructed or on-the-fly while it is being
constructed. By considering such deducted values of
discrete variables, system transitions that have contradicting
triggering conditions, cannot possibly happen and are thus
deleted from the state-graph. Reduction of the state-graph is
thus achieved.

This manipulator is useful for our framework because
besides time-triggered methods, an ATO also has one or
more event-triggered method(s), which depend on some
type of communication variables or channels. Thus, they
also have many discrete variables and the read-write
reduction technique can thus reduce intermediate state-
graph sizes.

9.3.4 Bypass internal transition: Recall again
that in the compositional approach (algorithm 2),
two state-graphs are selected for merging into a single
state-graph, which is then reduced in each iteration. Thus, at
any stage of the merge-reduction process, there is always a
composed (merged) part of the system and an uncomposed

(yet-to-be merged) part. Some behaviours that are internal
to a composed part may be invisible to the processes in the
uncomposed part. Based on this insight, a composed
state-graph can be reduced by eliminating such
internal behaviours. A formal treatment is given in the
following.

Given a system S of n processes fP1;P2; . . . ;Png
modelled by a set of n timed automata, fAi j Ai ¼ ðMi;
m0

i ;Ci;Di; Yi; wi;Ei; ti; riÞ; 1 � i � ng; let SC be the
composed part and SnSC be the uncomposed part of system
S. Let DSC

� [1�i�nDi be the set of discrete variables
accessed (read or written) by the processes in SC only and
not by any process from SnSC: A discrete variable d is said
to be internal with respect to SC and a given TCTL
specification f if the following two conditions are satisfied:
(i) d 2 DSC

; and (ii) d is not in f.
For example, all local variables of a process are internal

in any state-graph.
A system transition reads and writes discrete variables

through its triggering condition and assignments, respect-
ively. A system transition is said to be internal to SC if it
accesses only internal variables. Accessing any clock
variable, either local or global, results in a non-internal
transition because the elapse of time is in general a globally
visible action.

Once all internal transitions are identified in a state-graph,
each one of them is bypassed by per-forming the following
steps:

. for each internal transition f ¼ hrs; rd; I;E; gi 2 F;

. if bðrsÞ ! bðrdÞ and bðrsÞ ! f then:
(i) for each successor transition f 0 ¼ hrd; r0d; I0;E0; g0i 2 F
(ii) add a new transition f 00 ¼ hrs; r0d; I0;E0; g0i in F,

. delete transition f from F.

Once all the internal transitions are bypassed, there may be
some regions which become unreachable and are thus
deleted from the state-graph. An example of such an
unreachable region is one that has only a single incoming
internal transition.

Bypass internal transition is again a useful reduction
manipulator for our framework due to its inherently
compositional characteristic.

9.4 Appendix D: verifier: a VERTAF
component

The proposed solutions to design and verification technol-
ogy integration issues are being implemented in an object-
oriented application framework called VERTAF [6, 7].
VERTAF generates code for real-time embedded systems
using formal modelling and synthesis techniques. A separate
software component called Verifier is being developed in
VERTAF for encapsulating the proposed solutions. Verifier
has several parts as follows.

. model generator. This part is responsible for automati-
cally generating timed automata models. When input a set
of ATPs, model generator transforms it into a set of timed
automata as de-scribed in Section 3.1. If the input consists of
a set of ATPs and a schedule as generated by the scheduler
component of VERTAF, then the model generator produces
a set of timed automata within which the schedule
information is integrated. Interested readers may refer to
[19] for further details on schedule information integration.
This part eliminates the learning curve that an engineer
might have to undergo if he=she had to learn how to model
using timed automata without prior experience.
. Merge manipulator. This part is responsible for
producing a state-graph from two component timed

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004 433

automata, which represents their concurrent behaviours.
As discussed in Section 5.2, different sequences for merging
are possible and all have been implemented in this part of
Verifier.
. Reduction manipulators. Within the Verifier component,
we are currently integrating the SGM tool [35, 49, 54, 55]
which is a high-level, modularised verification tool for real-
time systems. SGM allows complete user-flexibility in
applying varied manipulator sequences to an application as
a result of which verification scalability is increased easily.
This part consists of the state-graph reduction techniques
implemented as modular manipulators from SGM.

All reduction manipulators discussed in Appendix C can
be used to reduce state-graphs derived from the merge
manipulator.
. Model checker. This part is responsible for actually
verifying if a reduced state-graph satisfies a given TCTL
specification. As discussed in Section 5.4, a compositional
model checker is developed. The main difference of this
model checker from the conventional ones found in
UPPAAL [47] or KRONOS [48] tools is that it is
compositional. It can be applied to intermediate state-
spaces to possibly get answers before the complete global
state-space is constructed.

IEE Proc.-Comput. Digit. Tech., Vol. 151, No. 6, November 2004434

	footer1:

