
Accepted Manuscript

Model-Based Platform-Specific Co-Design Methodology for Dynamically Par‐

tially Reconfigurable Systems with Hardware Virtualization and Preemption

Chun-Hsian Huang, Pao-Ann Hsiung, Jih-Sheng Shen

PII: S1383-7621(10)00082-2

DOI: 10.1016/j.sysarc.2010.07.007

Reference: SYSARC 949

To appear in: Journal of Systems Architecture

Received Date: 15 October 2009

Revised Date: 16 April 2010

Accepted Date: 26 July 2010

Please cite this article as: C-H. Huang, P-A. Hsiung, J-S. Shen, Model-Based Platform-Specific Co-Design

Methodology for Dynamically Partially Reconfigurable Systems with Hardware Virtualization and Preemption,

Journal of Systems Architecture (2010), doi: 10.1016/j.sysarc.2010.07.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2010.07.007
http://dx.doi.org/10.1016/j.sysarc.2010.07.007

Model-Based Platform-Specific Co-Design Methodology

for Dynamically Partially Reconfigurable Systems with

Hardware Virtualization and Preemption

Chun-Hsian Huang, Pao-Ann Hsiung∗, Jih-Sheng Shen

Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan−621, ROC

Abstract

To facilitate the development of the dynamically partially reconfigurable
system (DPRS), we propose a model-based platform-specific co-design (MPC)
methodology for DPRS with hardware virtualization and preemption. For
DPRS analysis and validation, a model-based verification and estimation
framework is proposed to make model-driven architecture (MDA) more re-
alistic and applicable to the DPRS design. Considering inherent character-
istics of DPRS and real-time system requirements, a semi-automatic model
translator converts the UML models of DPRS into timed automata models
with transition urgency semantics for model checking. Furthermore, a UML-
based hardware/software co-design platform (UCoP) can support the direct
interaction between the UML models and the real hardware architecture.
Compared to the existing estimation methods, UCoP can provide accurate
and efficient platform-specific verification and estimation. We also propose
a hierarchical design that consists of a hardware virtualization mechanism
for dynamically linking the device nodes, kernel modules, and on-demand
reconfigurable hardware functions and a hardware preemption mechanism
for further increasing the utilization of hardware resources per unit time.
Further, we realize a dynamically partially reconfigurable network security
system (DPRNSS) to show the applicability and practicability of the MPC
methodology. The DPRNSS can not only dynamically adapt some of its hard-
ware functions at run-time to meet different system requirements, but also

∗Corresponding author: Tel.: +886-5-272-0411 ext. 33119; Fax: +886-5-272-0859;
E-mail address: hpa@computer.org (Pao-Ann Hsiung)

Preprint submitted to Journal of Systems Architecture August 13, 2010

determine which mechanism will be used. Our experiments also demonstrate
that the hardware virtualization mechanism can save the overall system exe-
cution time up to 12.8% and the hardware preemption mechanism can reduce
up to 41.3% of the time required by reconfiguration-based methods.

Keywords: UML, dynamically partially reconfigurable system,
hardware/software co-design

1. Introduction

FPGA devices, such as Xilinx Virtex II/II Pro, Virtex 4, and Virtex 5, can
be partially reconfigured at run-time, which means that one part of the de-
vice can be reconfigured while other parts remain operational without being
affected by reconfiguration. Through dynamic partial reconfiguration, more
and more applications can be accelerated in hardware at run-time, thus ef-
fectively reducing the overall system execution time [34]. Furthermore, much
more computing intensive applications can be executed as hardware functions
running on an FPGA, even though the total logic resource requirements of
all hardware functions are more than those of the used FPGA devices. A
hardware/software embedded system realized with such an FPGA device is
called a Dynamically Partially Reconfigurable System (DPRS) that can dy-
namically adapt some of its hardware functions at run-time to meet different
system requirements.

Through the partial reconfiguration technology, the hardware functions
can be also executed as hardware tasks in an embedded operating system,
similar to software tasks that can be dynamically created and removed at
run-time. Such an embedded operating system that supports the DPRS ar-
chitecture is called an Operating System for Reconfigurable Systems (OS4RS),
using which user applications can be executed as software tasks, hardware
tasks, or both according to system performance requirements. As a result,
such an OS4RS design with the DPRS platform is a self-adaptable system
design, in which its functionalities can dynamically change without human
intervention [17].

Many existing hardware/software co-design methodologies [4, 5, 6, 12,
23, 29, 31] have proposed different effective and innovative approaches for
the DPRS development; however, they only focus on parts of the DPRS
development without supporting the full design and verification flow. As a
result, there still exist many gaps in the DPRS development, even though

2

they have many remarkable research results. Three main problems in most
existing hardware/software co-design DPRS methodologies are described as
follows.

1. Model-platform information gap: Most UML-based design methodolo-
gies use time estimates for simulating the functional interactions be-
tween applications and a system. Furthermore, the simulation-based
methods cannot guarantee that all system behaviors are tested and
corrected. As a result, significantly more iterations are required for
rectifying the system design, and the physical design correctness can
be verified and estimated only after the UML models are synthesized
into concrete system designs.

2. Low system scalability: Reconfigurable hardware functions are usually
individually implemented at design-time without supporting a unified
communication interface. Therefore, to incorporate hardware functions
having different data interfaces with a DPRS at run-time becomes very
difficult, which does not only reduce system scalability but also in-
creases development efforts.

3. Limitation in infrastructure support for DPRS: Reconfigurable hard-
ware functions are usually managed as conventional hardware devices
in most DPRS design methodologies. Therefore, the enhancement of
system performance using partial reconfiguration technology is still lim-
ited, and thus makes the utilization of reconfigurable hardware func-
tions inefficient.

Besides enhancing parts of the DPRS development, if there is a more
complete hardware/software co-design methodology covering effective sys-
tem analysis, complete functionality verification, accurate performance es-
timation, and scalable system implementation, system development efforts
can be further reduced. This is the motivation and also the goal of this
work, in which we propose a Model-based Platform-specific Co-design (MPC)
methodology for dynamically partially reconfigurable systems with hardware
virtualization and preemption. The contributions of this work are illustrated
as follows.

• The UML models proposed in MPC are designed as reusable models,
using which different user applications can be effectively developed,
thus significantly saving design and analysis time. The detailed DPRS

3

behaviors specified by the UML models can be further used for model-
level system verification and estimation, thus bridging the gap between
high-level models and system implementation.

• To further enhance system scalability, the concept of the layered ap-
proach is introduced in our OS4RS design. Within the hierarchical
OS4RS design, we also propose a unified communication mechanism to
standardize the hardware/software communication interface such that
new hardware functions can be easily integrated with an OS4RS.

• Instead of the one-to-one relation between a device node, a kernel mod-
ule, and a hardware function in an embedded operating system, we
propose a hardware virtualization mechanism to effectively manage the
kernel resources of an operating system and the hardware logics. Thus,
it is now a many-to-one or one-to-many mapping between the hardware
functions configured on the FPGA and the software applications in the
OS4RS user space. Using the hardware virtualization mechanism, a
hardware function configured on the FPGA is virtualized such that it
can be accessed by more than one application at the same time. Fur-
ther, the processing results of a reconfigurable hardware function can
be directly transferred to another in the kernel space, without a large
time overhead in repeatedly transferring data between the user space
and the kernel space.

• We propose generic wrapper designs that can be used by hardware
functions for supporting dynamic swapping. As a result, high-priority
hardware tasks can interrupt low-priority hardware tasks in real-time
online system environments, which can further increase the utilization
of hardware logics.

The rest of the article is organized as follows. Section 2 discusses the
related DPRS design methodologies. The introduction of a DPRS design is
given in Section 3. Sections 4 introduces the proposed MPC methodology,
where Sections 4.1, 4.2, and 4.3 give the details of design and modeling,
verification and estimation, and system implementation phases, respectively.
The related experimental results and analysis are described in Section 5.
Finally, conclusions are described in Section 6.

4

2. Related Work

Similar to the development of a conventional embedded system, that of
a DPRS covers three main phases, including design and modeling, verifica-
tion and estimation, and system implementation phases. In the design and
modeling phase, Steinbach et al. [4] proposed a complete UML-based design
methodology for reconfigurable architectures to efficiently analyze the inter-
actions between all DPRS components. Furthermore, the UML-based design
methodology included a model compiler that can help designers to translate
the system-level specifications of reconfigurable architectures into executable
applications. Schattkowsky et al. [31] also proposed a model-based approach
for executable UML to close the gap between the system specification and its
model-based execution on reconfigurable hardware. The UML specifications
can be compiled to binary representations that were directly executed on
their proposed abstract machine platform.

In the verification and estimation phase, besides the functional verifica-
tion of a hardware design using RTL simulation, the interactions among all
DPRS components are usually simulated and then verified using the SystemC
language. The DPRS design methodology proposed by ITIV [5] included a
SystemC-based approach [7] for modeling and simulating the DPRS. Based
on the Register Transfer Level (RTL) SystemC, they implemented the spe-
cific operations for dynamic partial reconfiguration in the SystemC kernel.
The DPRS design methodology proposed by DRESD [29] also included a
SystemC-based design exploration framework [3], where the system function-
alities were described using the Transaction Level Modeling (TLM) technique
and mapped to a real system architecture. Instead of system verification us-
ing only simulation, an integrated design and verification methodology called
Symbad [6] first described a reconfigurable system using SystemC for func-
tional simulation. To exhaustively validate system correctness, the system
descriptions using SystemC were then abstracted for formal verification. As
a result, a DPRS could be more effectively and completely validated through
both simulation and formal verification. The above verification approaches
[3, 6, 7] only simulated the functional interactions between applications and
a system, thus the physical design correctness of the system could be veri-
fied only after the high-level system models were synthesized into concrete
system designs. The DPRS design methodology proposed by ITIV further
included a model-level debugger [11] that integrated the Matlab Stateflow
models with its target system. By using the JTAG cable, users can debug

5

their configured system at the graphical model-level.
In the system implementation phase, besides the standalone DPRS ar-

chitecture, the OS4RS design was integrated into the DPRS design method-
ologies [12, 26]. Thus, reconfigurable hardware functions are executed as
software applications that can be dynamically created and removed. Fur-
ther, the INDRA design methodology [12] proposed a hierarchical dynami-
cally reconfigurable system that facilitates the design of a suitable on-chip
communication infrastructure for partially reconfigurable systems. Dynamic
switching or relocation of hardware designs in reconfigurable logic has also
been proposed in the INDRA design methodology to enable the preemption
of low-priority hardware tasks by high-priority hardware tasks in real-time
online system environments.

Similar to the UML-based DPRS design methodologies [4, 31], the MPC
methodology adopts the MDA-based UML approach to make the DPRS de-
sign more realistic and applicable in an industrial setting. However, different
from the UML-based DPRS design methodologies [4, 31] that focused on the
functional code generation with poor support for design-space exploration,
the MPC methodology includes a complete and effective verification and es-
timation for a DPRS design.

Instead of only being able to simulate partial system behaviors, such
as the SystemC-based methods [3, 7], the MPC methodology uses formal
verification for exhaustively verifying the functional interactions between user
applications and a DPRS. Furthermore, though the SymbC methodology [6]
used model checking for exhaustive verification, translating the SystemC
descriptions of a DPRS for model checking was not intuitive enough because
they are based on different design points of view. In contrast, the verification
and estimation phase in the MPC methodology is completely model-based,
and thus the UML-based system specifications can be more intuitively and
easily translated into timed automata for model checking. For the physical-
aware verification and estimation, the model-level debugger [11] needed to
suspend its model execution while reading the system state for debugging.
However, the MPC methodology proposes a UML-based hardware/software
Co-design Platform (UCoP) that not only enables the user-specified UML
models to directly interact with the real system hardware architecture, but
also supports for real-time tracing of the functional interactions between
applications and a system.

For system implementation, the reconfiguration-based hardware preemp-
tion of INDRA [22] that required readback support from the reconfigurable

6

Microprocessor

Operating System

Microprocessor

p g y

HW/SW Communication Interface

PRR1FPGA ConfigurationPRR1 Controller

HW Communication Architecture

PRR2

HW Communication Architecture

OtherPRR2 Peripherals

(a) SoB-based DPRS Design

Mi
FPGA

Operating

Microprocessor

Configuration
System

g
Controller

HW/SW Communication Interface

Other
PRR1 PRR2

Other
Peripherals

(b) SoC-based DPRS Design

Figure 1: SoB-based and SoC-based DPRS Designs

logic and deep knowledge of the reconfiguration process for tasks, such as
state extraction from the readback stream and manipulation of the bitstreams
for context restoring. Another drawback is the poor data efficiency because
only a maximum of about 8% of the readback data actually contains state
information but all data must be readback to extract the state [22]. Different
from the reconfiguration-based method [22], the MPC methodology adopts
the design-based method that is self-sufficient because all context switching
tasks are taken care of by the hardware design itself through a switching cir-
cuitry and registers can be read out or preloaded by the switching circuitry.
The MPC methodology proposes two basic wrapper designs with different
standard interfaces such that any digital hardware design following the stan-
dard can be transformed into dynamically switchable by interfacing with the
wrappers. Further, reconfigurable hardware functions were managed as con-
ventional hardware devices in most of the OS4RS design [12, 26], and thus
the utilization of reconfigurable hardware functions is still limited. To fur-
ther enhance the utilization of reconfigurable hardware functions, the MPC
methodology proposes a hardware virtualization mechanism that enables the
virtualization of a reconfigurable hardware function to support more than
two software applications. The details of the MPC methodology will be
introduced in Section 4.

7

3. Dynamically Partially Reconfigurable System

Before introducing the proposed MPC methodology, we first introduce the
design of a dynamically partially reconfigurable system (DPRS). A DPRS is a
hardware/software embedded system capable of reconfiguring new hardware
functions into the system at run-time, and mainly consists of a microproces-
sor, an FPGA, and a hardware/software communication interface. Two types
of the DPRS architecture designs, namely System-on-Board (SoB)-based de-
sign and System-on-Chip (SoC)-based design as illustrated in Figure 1(a) and
Figure 1(b), respectively, can be developed. The main difference between the
SoB-based design and the SoC-based design depends on whether the micro-
processor is a separate chip device or is a core embedded within the FPGA
device.

According to the DPRS architecture design, we can classify the DPRS
components into three main categories, including hardware configuration,
system management, and software application as shown in Figure 2. The
hardware configuration category contains all the static and reconfigurable
hardware components. The reconfigurable components in an FPGA consists
of several slots called Partially Reconfigurable Regions (PRRs), which can be
reconfigured into different hardware functions at run-time. The static compo-
nents that cannot be reconfigured at run-time in an FPGA includes the static
functional blocks (other peripherals in Figure 1(a) and Figure 1(b)), a hard-
ware communication architecture that connects all hardware components in
an FPGA, and a configuration controller, such as Internal Configuration
Access Port (ICAP) or SelectMap embedded in the FPGA for configuring
the partial bitstreams into PRRs. The system management components are
responsible for managing the control and data transfers between hardware
and software in a DPRS. It mainly includes a system manager and a hard-
ware/software communication interface which includes the device drivers for
hardware and system communication devices, such as Peripheral Component
Interconnect (PCI) in the SoB-based DPRS design, or a system bus in the
SoC-based DPRS design. The software application category includes all user-
specified application functions. When we design a DPRS, there are mainly
two physical constraints imposed by the partial reconfiguration technology
as described in the following.

• Mutual exclusion: only one hardware function can be configured at a
time into a PRR; only one PRR can be reconfigured at a time. This is
the constraint imposed by the current FPGA devices.

8

Software Applications
Software

Application

System Manager
System

Microprocessor

HW/SW Communication Interface

System
Management

Communication

Configuration
C ll

HW Communication
A hi

Devices

Controller Architecture

Partially Reconfigurable Static Functional

Hardware
ConfigurationFPGA

y g
Regions Blocks

Figure 2: DPRS Components

• No invalid access: the software applications cannot interact with a
PRR when it is being reconfigured. This is to ensure the correct system
interactions between hardware and software.

4. Model-Based Platform-Specific Co-Design Methodology

The target applications in this work focus on multimedia and security
systems, in which computation-intensive functions are implemented as par-
tially reconfigurable hardware tasks in an OS4RS for enhancing system per-
formance and flexibility. As shown in Figure 3, MPC can be separated into
three phases, including modeling and design, verification and estimation, and
system implementation phases. The details of the proposed MPC methodol-
ogy are illustrated in the following sections.

4.1. Modeling and Design

The modeling and design phase focuses on analyzing the system-level
functional interactions between user applications and a DPRS. We adopt
Unified Modeling Language (UML), a defacto industry standard language,
for DPRS modeling. To efficiently analyze the DPRS behaviors, four stan-
dard UML models are adopted in MPC, including the class diagrams for
architecture modeling, the state machine diagrams for behavior modeling,
the sequence diagrams for interaction modeling, and the deployment dia-
grams for deployment modeling. Furthermore, based on the typical DPRS
design as described in Section 3, the UML models are classified into three
categories of reusable UML models, namely hardware configuration models,
system management models, and software application models.

9

Application
System

Specification Model
Checking

M t

Function

Application

UML UC P

Interface

Management

Modeling UCoP

Configuration

Communication

M d li d Verification and SModeling and
Design

Verification and
Estimation

System
Implementation

Figure 3: Model-Based Platform-Specific Co-Design Methodology

Based on the three categories of UML models, MPC provides basic UML
diagram patterns for designers to model their DPRS architecture and appli-
cations. As illustrated by the class diagram of MPC in Figure 4, the hardware
configuration models include the ReconfigHW and StaticHW classes which are
responsible for configuring the hardware functions into the PRRs and the sta-
tic area, respectively, in an FPGA. The system management models include
the SystemManager and ConfigManager classes which are responsible for
managing all control and data transfers in a DPRS and all FPGA configura-
tion, respectively. The software application models include the Interactor

and UserDefined classes which are responsible for providing the interac-
tive interface between software applications and hardware functions, and the
user-defined application, respectively. Besides modeling the functional rela-
tionships in a DPRS using the class diagram, MPC also provides state ma-
chine design patterns for the classes SystemManager, ConfigManager, and
Interactor to model a new application-specific component. On applying
the design patterns, the user-customized UML models are used to describe
the functional behaviors of a DPRS, without any platform-related informa-
tion, such as hardware configuration and execution time. Henceforth, we call
them functional UML models.

4.2. Verification and Estimation

The verification and estimation phase focuses on supporting an efficient
verification and accurate estimation mechanism, where the UML models
specified at the modeling and design phase are adopted as input models
of this phase. Thus, designers can use their UML models to directly verify
and estimate their DPRS design, instead of performing the simulation for a

10

Hardware Configuration Software Application

System Management

Figure 4: Class Diagram of MPC

DPRS independent from their specified UML models.
First, a formal verification method, model checking [9], is used to vali-

date the correctness of the DPRS functional behaviors. Using model check-
ing, all system behaviors are first described as timed automata, which are
then merged into a global state graph by applying parallel composition to
exhaustively validate the global system behaviors. However, the UML state
machine diagrams cannot be accepted as system model input by most model
checkers, which can accept only flat automata model. Thus, we apply a
flattening scheme [24] to transform the state concurrency and hierarchy in
the UML state machine diagrams into semantically equivalent constructs in
timed automata. Further, to exhaustively validate the interactions between
all DPRS components, partial reconfiguration requests in a user-given model
need to be abstracted such that all combinations of reconfigurable hardware
functions are model checked. As a result, the transitions triggered by partial
reconfiguration requests need to be distinguished from all the transitions in
the UML state machine diagram. We classify the transitions in the UML
state machine diagrams into two types, namely reconfiguration and general.
Reconfiguration transitions are triggered due to the partial reconfiguration
requirements, and general transitions are the other remaining transitions.
A transition in the extended UML state machine diagram of MPC has the
following syntax:

Transition := Event [Guard] / Action 〈Type〉
Event:= Event name

Guard:= Boolean Expression

Action:= Operation name (Arguments) [Duration, Deadline]

11

Type:= <Reconfiguration>, <General>
An Event represents the occurrence of a stimulus to trigger a state tran-

sition, a Guard is a Boolean expression representing transition trigger, and
an Action is an executable atomic operation having duration and deadline
that results in a change in state.

The combination of simultaneously executing hardware functions in a
DPRS changes with time and environment conditions. To model real-time
system behaviors, the previously proposed urgency semantics [16] are applied
to TA, and thus transitions in such Extended Timed Automata (ETA) are
associated with urgency types, including lazy and eager. Lazy transitions
need not be taken even if their triggers are satisfied, while eager transitions
are triggered as soon as possible. A transition in ETA of MPC has the
following syntax:

Transition := Condition / Assignment <Urgency>
Condition:= Boolean Expression, Clock Constraint

Assignment:= Operation name, Clock Resetting

Urgency:= <Lazy>, <Eager>
A Condition is a Boolean expression and/or a clock constraint that repre-

sents the transition trigger. An Assignment sets discrete variables to specific
integer values and/or resets clock variables.

The transitions in ETA are semi-automatically adapted to fit the DPRS
features and real-time system requirements using the model extensions. The
process of transition adaptation in ETA is in the following.

• If the type of a transition in the UML state machine diagram is recon-
figuration, the triggering condition of the corresponding transition in
ETA is defined as True for direct triggering; otherwise, the triggering
event and the guard of a transition in the UML state machine diagram
are mapped to the triggering condition of the corresponding transition
in ETA. By making the reconfiguration transitions non-deterministic,
all possible functional combinations of a DPRS are verified.

• If the type of a transition in the UML state machine diagram is re-
configuration, the corresponding transition in ETA is associated with
the eager urgency type, so that real-time reconfiguration is correctly
modeled.

After translating user-given UML state machine diagram into ETA, the
model checker can perform a verification procedure for exhaustively searching

12

the state space of the design, and thus show if the system satisfies a user-
specified property or violates it by giving a counterexample. The properties
are specified using Computation Tree Logic (CTL) [13]. CTL properties, such
as EF , AF , AG, AU , can all be defined [13], and they are briefly introduced
as follows, where p and q are atomic observations.

• Path qualifier: A, for all paths; E, for some paths.

• Temporal operators: Xp, p holds next time; Fp, p eventually holds in
the future; Gp, p always holds in the future; pUq, p holds until q holds.

Second, a UML-based hardware/software co-design platform (UCoP) [8,
21] as shown in Figure 5 is used for physical-aware system verification and es-
timation. To realize UCoP, we integrated the FPGA platform-specific library
into a UML modeling tool. The platform library consists of APIs for data
access by hardware designs and for the FPGA configuration control. Users
can invoke these platform APIs directly in the functional UML models cus-
tomized in MPC, and thus the models can configure new hardware functions
into the system and interact with them by sending/receiving data. The UML
models that consist of the functional UML models, platform APIs, software
executables, and hardware bitstreams are thus called interactive UML mod-
els in the PSV phase. As a result, UCoP allows accurate time measurements
of the total operation time, including the pure execution time of a processing
iteration for a hardware design and the time overheads of data transfers over
the PCI bus, and the hardware configuration time, and real-time debugging,
instead of only simulating the functional interactions between applications
and a DPRS, which thus solves the problem of model-platform information
gap.

To ease the integration of user-designed hardware functions into the
UCoP, a partially reconfigurable hardware task template (PR template) is
proposed, which connects the user functions with the hardware communi-
cation architecture. To use a newly developed hardware function in UCoP,
a designer has to simply integrate the new hardware function with the PR
template because it provides a common communication interface between the
hardware function and the rest of the system. The PR template implements
only 32-bit wide signals for all kinds of data transfers. It consists of eight
32-bit input data signals, one 32-bit input control signal, four 32-bit output
data signals, and one 32-bit output control signal. The PR template also

13

HW/SW Communication Interface

Microprocessor

Hardware
Function

PR template
PRR1

Hardware
Function

PR template
PRR2

FPGA

Interactive UML Models
OS

Software
Application

System
Management

Hardware
Configuration

Software
Executables

Platform
APIs

Hardware
Bitstreams

Figure 5: UML-Based HW/SW Co-Design Platform

contains an optional data transformation component for unpacking incom-
ing data and packing outgoing data based on the I/O registers sizes in the
hardware functions.

To implement the DPRS architecture, the Early Access Partial Recon-
figuration (EA PR) flow [34] from Xilinx that provides the most complete
support for partial reconfiguration technology in all industrial FPGA designs
is used in UCoP. A DPRS hardware architecture consists of a static area and
several PRRs. The static area design can be reused across different appli-
cations, and is thus integrated into UCoP such that users can reuse it as
required in different applications. Furthermore, the necessary commands for
generating partial bitstreams are integrated by UCoP into a script file. Users
only need to integrate their new hardware design with the PR template, syn-
thesize it, and run the script, without explicitly and manually going through
the last two phases of the PR implementation flow step-by-step. Using UCoP,
users inexperienced in the partial reconfiguration technique can still easily
enhance their IP designs with the capability for partial reconfiguration and
integrate them into a DPRS. Therefore, UCoP supports not only the indus-
trially standard UML modeling for system analysis but also the generation of
the partial bitstream following the EA PR standard. Through the capability
for the direct interactions between the system models and real reconfigurable
hardware designs, the PSV efforts can be thus significantly reduced.

Compared to the Matlab approach [11], UCoP supports real-time tracing

14

Microprocessor
OS

SW SW SW SW ApplicationApplication

OS

HW Control LibraryFunctionFunction

HW Task Management

dev/comm0 dev/comm2dev/comm1

ManagementManagement

dev/comm0 dev/comm2dev/comm1

module.o module.omodule.o
InterfaceInterface

FPGA
Comm-Component0 Comm-Component1CommunicationCommunication

PRR0 PRR1
PR Template PR TemplateConfigurationConfiguration

HW-IP Core HW-IP Core
gg

Figure 6: Hierarchical OS4RS Design

without suspending model execution. Thus, developing a DPRS in UCoP
is more efficient and accurate because not only the time-consuming hard-
ware/software co-simulation, such as using the SystemC language, can be
avoided, but also real-time tracing is provided for users to verify their DPRS.

4.3. System Implementation

The system implementation phase focuses on realizing the verified de-
sign of a DPRS and further enhancing system scalability and performance.
Similar to the OSI model used for computer network protocols, a layered
approach is introduced in our OS4RS design that enhances the transparency
of system design through a hierarchical design. As a result, the design of
each layer can be separately implemented and enhanced, which benefits the
development of an OS4RS. As shown in Figure 6, our hierarchical OS4RS
design consists of six layers, namely configuration, communication, interface,
management, function, and application layers. The configuration and com-
munication layers are implemented on the FPGA, while the other four layers
are realized in the OS4RS running on a microprocessor. The details of each
layer are described in the following sections.

15

4.3.1. Configuration layer

The configuration layer focuses on integrating new reconfigurable hard-
ware functions in the FPGA. To standardize user-designed hardware func-
tions having different data interfaces, the PR template [8] used in PSV is
adopted to connect user-designed functions to the communication compo-
nent designed in the communication layer. To further raise the utilization of
logic resources, different sizes of PRRs, which can be evaluated by the exiting
method, such as the reconfiguration-aware floorplacer proposed by Montone
et al. [25], are implemented on the FPGA. As a result, each reconfigurable
hardware function can be (re)configured into a best-fit PRR at run-time.

Another alternative is to use the proposed hardware preemption wrap-
pers [18, 19] for enhancing hardware functions with the capability of dynamic
swapping. Thus, high priority hardware tasks can interrupt low-priority tasks
in real-time embedded systems to increase the utilization of hardware space
per unit time. Further, the limitation in infrastructure support for DPRS
can be improved. Two basic wrapper architectures, namely Last Interrupt-
ible State Swap (LISS) wrapper and Next Interruptible State Swap (NISS)
wrapper, are proposed for controlling the swapping of a hardware circuit
into and out from a reconfigurable logic, such that all swap circuitry is im-
plemented within the wrappers with minimal changes to the hardware design
itself. As shown in Figure 7, the wrapper architectures consist of a context
buffer to store context data, a data path for data transfer, a swap controller
to manage the swap-out and swap-in activities, and some optional DTCs for
(un)packing data types. The difference between the two wrappers lies in the
swap-out mechanism and the hardware state in which the hardware design
is swapped out. The LISS wrapper stores the hardware context at each in-
terruptible state, thus the hardware design can be swapped out from the
last interruptible state whenever there is a swap request. The NISS wrapper
requires the hardware design execute until the next interruptible state, store
the context, and then swap out. The different swap-out processes and the
same swap-in process are described as follows.

• LISS wrapper swap-out: At every interruptible state, the context of
hardware IP is stored in a Context Buffer using the Wout State and
Wout cdata signals. When there is a Swap out request from the OS4RS
for some hardware task, the wrapper sends an Interrupt signal to the
microprocessor to notify the OS4RS that (1) the context data stored
in the context buffer can be read and saved into the communication

16

Wrapper

Figure 7: Wrapper Design

memory, and (2) the resources (columns) can be deallocated and reused
(reconfigured). The swap-out process is thus completed. This wrapper
can be used for hardware circuits whose context data size is less than
that of the context buffer, as a result of which all context data can be
stored in the context buffer using a single data transfer.

• NISS wrapper swap-out: When there is a Swap out request from the
OS4RS for some hardware task, the swap controller in the wrapper
sends a swap signal (asserted high), to the hardware design, which starts
the whole swap out process. However, the hardware design might be
in an unswappable state, thus execution is allowed to continue until
the next swappable state is reached. At a swappable state, the context
of hardware design, including current state information and selected
register data, is stored in a context buffer in the wrapper using the
Wout State and Wout cdata signals. The hardware design then sends
an acknowledgment W interrupt to the wrapper that the swap-out
process can continue. The wrapper sends an Interrupt signal to the
microprocessor to notify the OS4RS that the context data stored in
the context buffer can be read and saved into an off-chip memory. This
wrapper can be used when the context data size is larger than that
of the context buffer by repeating the process of storing into buffer,
interrupting microprocessor, and reading into memory. Finally when

17

all context data have been stored into the off-chip memory, the wrapper
sends a Swap fin signal to the task interface, thus notifying the OS4RS
that the resources occupied by the IP can be deallocated and reused.
The swap-out process is thus completed.

• Swap-in: When a hardware task is scheduled to execute, the OS4RS
configures the corresponding hardware design with wrapper and task in-
terface into the reconfigurable logic using the configuration controllers,
reloads the context data from the communication memory to the con-
text buffer in the wrapper, and sends a Swap in request to the swap con-
troller, which then starts to copy the context data from the buffer to the
corresponding registers in the design using Win State and Win cdata.
After all context data are restored, the swap controller sends a swap

signal to the hardware design, which then continues from the state in
which it was swapped out. It must be noted here that context data
might be of different sizes for different hardware designs, so data pack-
ing and unpacking are performed using the DTC within the wrapper.

The original hardware design also needs to be enhanced so that it can
interface with the LISS and NISS wrappers, which we call standardization.
Since a combinational circuit is stateless, it can be swapped out from the
reconfigurable logic as soon as it finishes the current computation. However,
a sequential circuit is controlled by a Finite State Machine (FSM) through
the present and next state registers. Generally, a hardware design has one
or more data registers for storing intermediate results of computation. The
collection of the state registers and data registers constitutes the task con-
text. A state is said to be interruptible if the hardware function can resume
execution from that state after restoring the task context. Not all states of a
hardware function are interruptible. For the FSM of a GCD function exam-
ple given in Figure 8, only the INIT, RLD, and CMP states are interruptible
because the comparator results are not saved and hence we cannot resume
from the NEG, EQ, and POS states.

The initial or the idle state is always interruptible. Any other state of a
hardware function can be made interruptible by adding or reusing registers
provided the computation can be resumed after context restoring. However,
extra resources are required, thus the benefit obtained by making a state in-
terruptible should be weighed against the overhead incurred in terms of both
logic resources and context saving and restoring time. In general, making a

18

Y_ld

X_eq_Y

X_lt_Y
X_gt_Y

INIT

MUX for X MUX for Y

Register Register

Comparator

Subtractor

Out Register

Controller
DataPath

Y_sel

X_sel

GCD

RLD

EQ

NEG

CMP

POS

IDLE

enable

W clk X_W_D_i Y_W_D_iWin_cdata_X Win_cdata_W_Go

Wout_cdata_X

Wout_cdata_Y

Win_State

Wout_State

int_handle

Store_ok

rel_handle

X_ld

swap

W rst

W_interrupt

W_D_o

Figure 8: Swappable GCD circuit architecture

state interruptible allows the hardware function to be switched at that state,
and thus the delays in executing other hardware tasks are reduced. Hence,
making a state interruptible brings no benefit to the hardware function itself,
instead it may shorten the overall system schedule. The decision to make
a state interruptible must be derived from an overall system analysis rather
than from the perspective of the hardware task itself.

A hardware function is standardized by making the context registers ac-
cessible by the wrapper and by enhancing the FSM controller such that the
hardware function can be stalled at each interruptible state. For the GCD
hardware function, its standardized version that is dynamically swappable is
shown in Figure 8, where the two registers are made accessible to the wrap-
per (swap circuitry) and the FSM is modified such that the GCD hardware
function can be stalled in the CMP state.

4.3.2. Communication layer

The communication layer includes the communication architecture used
for data transfers among all hardware components. Furthermore, a commu-
nication component is proposed to interact with a PRR, using which software
applications can access a PRR through software-accessible registers driving

19

(a) Logic Virtualization (b) HW Device Virtualization

Figure 9: Logic Virtualization and Hardware Device Virtualization

the signals in the PR template. The communication component is realized
using the OPB Intellectual Property Interface (IPIF) design, and thus the
processing results can be buffered in the communication component until
the OS4RS reads them.

4.3.3. Interface layer

Besides proposing a hardware preemption mechanism on the FPGA to
improve the limitation in infrastructure support for DPRS, we further pro-
pose a hardware virtualization mechanism [20] realized in the kernel space
of an OS4RS and the FPGA to enhance the utilization of reconfigurable
hardware function. Similar to the interactions between software applications
and hardware devices in a conventional embedded OS, software applications
in our OS4RS design also interact with reconfigurable hardware functions
through the device nodes, which does not sacrifice the generality in accessing
the hardware device design. The hardware virtualization mechanism consists
of the logic virtualization and the hardware device virtualization, and their
details are described as follows.

• Logic virtualization: Using the logic virtualization as shown in Fig-
ure 9(a), another device node (comm3) can be dynamically linked to
the required hardware function (HW1) such that it can be accessed by
Application2. Thus, Application2 can access HW1, while Application1
is accessing HW2. Through the many-to-one logic virtualization, a re-
quired hardware function can be virtualized such that it can be ac-
cessed by different software applications through different device nodes.
The processing results of the required hardware function are separately
transferred to the kernel modules corresponding to different software

20

applications, and then read back by the software applications in the
user space. This many-to-one mapping thus increases the utilization of
a hardware function.

• Hardware device virtualization: Using the hardware device virtualiza-
tion as shown in Figure 9(b), the kernel module corresponding to a
required hardware function (HW1) can be also dynamically linked to an-
other required hardware function HW2. Thus, the processing results of
HW1 can be directly transferred to HW2 through the kernel module, and
the final processing results of HW2 are sent back to the user space. This
is because, through the many-to-one logic virtualization, HW2 is shared
by different device nodes. As a result, the time overhead in repeatedly
transferring data between the user space and the kernel space can be
significantly reduced. This one-to-many mapping is thus a seamless
reconfiguration of the underlying hardware, without any change to the
software.

4.3.4. Management layer

The management layer contains a hardware task manager to not only
manage all data transfers between the kernel modules and the reconfigurable
hardware functions, but also to determine which mechanism will be used
when a request for a hardware function arrives. As shown in Figure 10,
the hardware task management employs all the three proposed techniques,
including hardware device virtualization, logic virtualization, and hardware
preemption.

When a request for a hardware function arrives, the hardware task man-
ager first checks if the required hardware function has been configured in a
PRR. If not, the hardware task manager checks if the priority of the required
hardware function is higher than that of any configured hardware function. If
not, the required hardware function will be configured in the FPGA only after
one of the configured hardware function finishes its execution and there is no
other higher priority hardware function waiting to be configured. Otherwise,
the hardware preemption mechanism is invoked to send a Swap out request
to a configured hardware function with lower priority. When the hardware
task manager receives a Swap fin notification, it requests the ICAP device
to configure the required hardware function into the FPGA.

When the required hardware function is already configured, the hard-
ware task manager checks if the request is received from the same software

21

Request a HW function

Does a PRR with the
required HW function

NO Is the required HW
function with higher

NO

exist?

YES

priority?

YES

Is the request from
Send the “Swap_out”

request to a HW function Select another NO
the same SW
application

with lower priority

W it f th “S fi ”

Se ec a o e
unused device node

Wait for the “Swap_fin”
notification

Link the unused Link the previously used

YES

device node to the
corresponding PRR

kernel module to the PRR with
the required HW function

Reconfigure the required
HW function

Logic Virtualization HW Device Virtualization HW Preemption

Figure 10: Hardware Task Management

application. If not, the logic virtualization is invoked to dynamically link
another unused device node to the corresponding PRR. Otherwise, the hard-
ware device virtualization is invoked to dynamically link the previously used
kernel module to the PRR with the required hardware function, and thus the
processing results of the previous hardware function can be directly trans-
ferred to the requested hardware function. Further, using the hardware de-
vice virtualization, when a pair of device node and kernel module is linked to
only one hardware function, the final processing results are thus transferred
back to the user space. For example, as shown in Figure 9(b), the main dif-
ference between the pairs comm1 and comm2 of device node and kernel module
is that the pair comm2 of device node and kernel module is connected to only
HW2, and thus the final processing results are transferred back to the user
space via the device node comm2. In contrast, the pair comm1 of device node
and kernel module is connected to both HW1 and HW2, and thus the processing
results of HW1 are transferred to HW2 via the kernel module, instead of being
transferred back to the user space via the device node comm1.

In our current implementation, the hardware task manager adopts a sim-

22

ple First-In-First-Out (FIFO) method for scheduling hardware tasks. To
efficiently use the hardware virtualization and preemption mechanisms to
adapt changing environment conditions and runtime user requirements, in
the future, the previously proposed Relocatable Hardware-Software Schedul-
ing (RHSS) method [15] will be further extended and integrated in the hard-
ware task manager.

4.3.5. Function layer

The unified kernel module is used in the interface layer to interact with
different reconfigurable hardware functions, where fourteen ioctl system
calls are adopted to only interact with the signals of the PR template, and are
not designed for a specific hardware function. Different hardware functions
have different interaction methods, and thus a hardware control library is
used to implement the interaction methods of all reconfigurable hardware
functions. As a result, a user-designed hardware function needs to be only
integrated with the PR template, and then to update the hardware control
library with its interaction method. Software applications can easily interact
with the new hardware function by invoking the APIs in the hardware control
library, thus further enhancing the system scalability.

4.3.6. Application layer

The topmost layer of the hierarchical OS4RS design is the application
layer. An application is defined as a set of functions, which could include
software and hardware tasks. Through the hardware control library, a soft-
ware task can interact with a hardware task using the ioctl system calls.

5. Experiments

To illustrate how MPC can be applied to a real system, we use a Dynam-
ically Partially Reconfigurable Network Security System (DPRNSS) as our
example. DPRNSS is mainly used to support the service of Secure Socket
Layer (SSL), for example, a Secure Shell (SSH) can request the DPRNSS to
configure different cryptographic or hash hardware functions for data authen-
tication and encryption/decryption, respectively. DPRNSS consists of five
system devices, including a microprocessor, an FPGA, a network interface,
a hardware/software communication interface, and an off-chip memory. For
the dynamically partial reconfiguration of cryptographic and hash hardware

23

functions, some PRRs are implemented on the FPGA. All partial bitstreams
for cryptographic and hash hardware designs are saved in an off-chip memory.

For the DPRNSS design, the basic controllers as shown in Figure 4 are
customized, including a configuration manager, a system manager, and an
interactor. Further, a negotiator is used in DPRNSS to allow a sender and a
receiver to use the same cryptographic and hash algorithms for data trans-
fer. The software application is a network multimedia application, which
receives in real-time 128 × 64 pixel images from a camera. The received
images are transferred to the cryptographic and hash hardware functions
for data processing, and then sent to a receiver on the network. To vali-
date DPRNSS, the negotiator and the network multimedia application are
modeled as a new Negotiator class customized from the UserDefined class
and in the Interactor classes, respectively, and then integrated with the
software application model customized from MPC. We adopt the Rhapsody
modeling tool [2] that has the powerful capability for code generation in C,
C++, Java, and Ada, as the UML modeler. Furthermore, we use the XMI
toolkit in Rhapsody to export the functional UML models in the XMI format.

For the new Negotiator class, its corresponding state machine diagram
modeled by using Rhapsody is illustrated in Figure 11. The evStart tran-
sition is first triggered from the Initial state, and then the Negotiate()

function is used to receive the requests from a receiver on the network for
data transfer. If the cryptographic and hash functions that are currently
configured in the FPGA are different from those requested by the receiver,
the action getItsSystemManager() → GEN(evAdapt()) on the evHWAdapt

transition generates an evAdapt event in the SystemManager state machine
to reconfigure the required hardware functions on the FPGA. Otherwise,
the action getItsSystemManager() → GEN(evStable()) on the evNoAdapt

transition generates an evStable event in the SystemManager state machine
to start data transfer. Thus, the DPRNSS can dynamically self-adapt the
cryptographic and hash functions to meet the requests from different receivers
on the network, without human intervention. Further, in the system imple-
mentation phase, the hierarchical OS4RS design, as described in Section 4.3,
would be realized in the DPRNSS design. The hardware task manager, as
described in Section 4.3.4, enables the DPRNSS itself to use the hardware
virtualization and preemption mechanisms to adapt to changing environment
conditions and runtime user requirements, without human intervention.

In the following sections, we show how the proposed MPC methodology
can solve the three main problems of the DPRS development described in

24

Initial

HWAdapt

evEndAdapt

Negotiation

evNoAdapt/getItsSystemManager()
->GEN(evStable());

evHWAdapt/getItsSystemManager()->
GEN(evAdapt());

evStart/Negotiate();

Figure 11: State Machine Diagram for Negotiator Class

Section 1 through the verification and estimation phase, the hardware vir-
tualization mechanism, and the hardware preemption mechanism. For the
system implementation phase, the XtremeDSP Development Kit-II [27] from
Nallatech and Xilinx ML310 platform [36] are adopted as our reference boards
for showing that the proposed MPC methodology can be applied to both the
SoB-based and SoC-based DPRS designs, respectively.

5.1. PIV using Model Checking

After successfully modeling DPRNSS by the functional UML models, the
model translator is used to transform the UML state machine diagrams into
ETA models. Here, we use SGM, which runs on an Intel Pentium 4 CPU
3.00GHz with 8 GB RAM, to validate the functional interactions among all
system components. We have verified nine versions of DPRNSS designs which
differ in the number of PRRs from 1 to 9. More PRRs in a DPRNSS means
greater flexibility and complexity. The CTL properties verified in MPC are
as follows, where we have shown only the properties for PRR1, while the
total number of PRRs in the system is nine.

• Mutual exclusion: AG(mode(SystemManager) = PRR1Config → evPR2
= 0 & evPR3 = 0 & evPR4 = 0 & evPR5 = 0 & evPR6 = 0 & evPR7
= 0 & evPR8 = 0 & evPR9 = 0)

• No invalid access: mode(SystemManager) = PRR1Config → A(PRR1-
Access = 0)U(EndPRR1Partial = 1))

• Starvation free : evPR1 = 1 → AF(mode(SystemManager) = PRR1-
Config))

25

In the CTL properties, “mode(SystemManager) = PRR1Config” means
that the SystemManager automaton stays in the PRR1Config state, which in-
dicates that PRR1 is being reconfigured. The variables evPRR1, evPRR1Access,
and evEndPRR1Partial with values equal to 1 show that the system manager
starts to reconfigure PRR1, the interactor is interacting with the hardware
function on PRR1, and PRR1 has been reconfigured, respectively.

Similar to the above CTL properties, the functional interactions with
each PRR in a DPRNSS are verified using the corresponding CTL proper-
ties, and thus the total number of the verified CTL properties are changed
with the number of PRRs. Table 1 shows the related information for Cases
A to I, including the number of PRRs, the numbers of the total ETA modes
and transitions before merging all ETA, and the number of verified CTL
properties. Our first experiment is mainly to verify the purely functional
interactions between DPRNSS components, that is, there is no clock vari-
able in ETA. However, because the requirements for partial reconfiguration
change over time and due to the environment conditions, the temporal fea-
ture is considered in our second experiment. The microprocessor and the
FPGA have different frequencies in DPRNSS, and thus we assign two differ-
ent clock variables to the software applications and the hardware functions.
Further, in a DPRS, the configuration controller usually has an independent
frequency different from the microprocessor and the FPGA to configure the
bitstreams. Thus, a third clock variable is assigned to the operations for
partial reconfiguration in our third experiment. As a result, each case in Ta-
ble 1 can be further separated into three situations, including ETA without
clock variables, ETA with two different clock variables, and ETA with three
different clock variables.

Figure 12 shows the numbers of ETA modes and transitions of the merged
ETA for all different situations and the memory usage and verification time
by SGM. Because the inherent characteristics of reconfigurable systems, whose
complexity is dependent on the number of PRRs, instead of functions, we

Table 1: The Related Information for Each Verified Case before Merging All ETA
Case A B C D E F G H I
#PRR 1 2 3 4 5 6 7 8 9
#Mode 17 18 19 20 21 22 23 24 25
#Transition 22 24 26 28 30 32 34 36 38
#Property 2 6 9 12 15 18 21 24 27

26

0
50

100
150
200
250
300

1 2 3 4 5 6 7 8 9

#M
od

e

#PRR

Without Clock Variables 2 Clock Variables
3 Clock Variables

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6 7 8 9

#T
ra

ns
iti

on

#PRR

Without Clock Variables 2 Clock Variables
3 Clock Variables

(a) Number of ETA Modes for DPRNSS (b) Number of ETA Transitions for DPRNSS

120
130
140
150
160
170
180

1 2 3 4 5 6 7 8 9
M

em
or

y
U

sa
ge

(M
B

)
#PRR

Without Clock Variables 2 Clock Variables
3 Clock Variables

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9

V
er

ifi
ca

tio
n

T
im

e(
se

c)

#PRR

Without Clock Variables 2 Clock Variables
3 Clock Variables

(c) Verification Time by SGM for DPRNSS (d) Memory Usage by SGM for DPRNSS

Figure 12: Verifying DPRNSS from 1 to 9 PRRs for configuring the cryptographic and
hash hardware functions

can observe that the numbers of ETA modes in Figure 12(a) and transitions
in Figure 12(b), however, still increase linearly when the number of PRRs
increases for any number of clock variables. Furthermore, the verification
time in Figure 12(c) also seem to increases linearly, while the memory usage
in Figure 12(d) is restricted to the range between 143 MB to 172 MB. By
applying transition urgency semantics and dead state checking of SGM, the
numbers of ETA modes and transitions of the merged ETA with three clock
variables become even close to these with two clock variables as shown in Fig-
ures 12(a) and 12(b). As a result, the occurrence of the state-space explosion
problem [9] can be alleviated to a certain degree in the validation of a DPRS
using SGM. The theoretical underpinning for the alleviation of state-space
explosion is the inherent restriction on the number of concurrently configured
functions in a DPRS. In generally, the maximum number of concurrently
configured function is equal to the number of PRRs, which is significantly
smaller than the number of reconfigurable hardware functions. Thus, model

27

checking in MPC verifies each different combination of concurrently config-
ured functions. However, to validate such timing requirements, simulation
needs much more exhaustive testbench or test vectors. This usually causes
much more iterations for rectifying and validating a DPRS design, especially
after the system has been implemented. Therefore, MPC integrates SGM in
PIV for providing efficient and exhaustive functional verification, instead of
simulation-based methods, and our experiments have demonstrated that the
state-space explosion problem does not occur.

5.2. PSV using UCoP

UCoP was implemented on a reference board, that is, the XtremeDSP
Development Kit-II [27] from Nallatech. The software applications run on a
microprocessor. The Field Upgradeable Systems Environment (FUSE) APIs
and the PCI driver are provided by the XtremeDSP Development Kit-II to
facilitate the FPGA reconfiguration and communication over the PCI bus.
Instead of doing this per application, UCoP integrates them directly into
the software code generator of the Rhapsody modeling tool. As a result,
through the animation mode of Rhapsody, the functional interactions among
the interactive UML models and the real DPRS hardware architecture can
be dynamically traced, step by step, in the sequence diagrams and the state
machine diagrams.

In order to analyze the execution process for each cryptographic function,
the execution time for each cryptographic hardware design in UCoP needs to
be first defined. Given input data of Din-bits, output data of Dout-bits, data
size of Dpci-bits for each data transfer iteration over the PCI bus, data write
and data read transfer time of δwr and δrd microseconds, respectively, for each
iteration over the PCI bus, initialization time of Tpci microseconds for starting
data transfer over the PCI bus, pure execution time of Te microseconds for
a hardware design in UCoP, the total operation time is Ttotal. As shown in
Equation (1), the measured total operation time includes not only the pure
execution time (Te) of a processing iteration for a hardware design, but also
the time overheads of data transfers over the PCI bus.

Ttotal = Tpci + (
⌈

Din

Dpci

⌉
× δwr) + Te + (

⌈
Dout

Dpci

⌉
× δrd) (1)

A common lower-bound estimation method [32] to evaluate the hardware
execution time is used to compare with UCoP for demonstrating the impor-
tance of accurate time estimation, where the time necessary to transfer se-

28

30
40
50
60
70
80

es
sin

g
Ti

m
e

(s
ec

)

Lower-bound UCoP

0
10
20
30
40
50
60
70
80

Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt

DES 3DES AES

Pr
oc

es
sin

g
Ti

m
e

(s
ec

)

Lower-bound UCoP

Figure 13: Estimation using Lower-bound Method and Measurement using UCoP

quences of 32-bit values was measured for obtaining the lower bound on data
transfers and then used to estimate system performance. In this experiment,
three cryptographic hardware functions, including Data Encryption Standard
(DES), 3DES, and Advanced Encryption Standard (AES), are adopted for the
image encryption/decryption in the DPRNSS. Figure 13 shows the process-
ing time in seconds for fifty 128×64 pixel image encryption/dcryption using
the lower-bound estimation method [32] and UCoP.

In a network multimedia application using the 3DES encryption with
a Quality of Service (QoS) for 50 image frames per 65 seconds, the time
for processing 50 image frames using the lower-bound estimation method
and using UCoP are around 61 and 72 seconds, respectively. This shows
that the lower-bound estimation method guarantee that the QoS can be
achieved, however in reality it is not, which could cause a very serious problem
especially when hard real-time constraints are violated. In this experiment,
the time underestimation using the lower-bound estimation method is from
1.1 seconds (DES encryption) to 11.9 seconds (3DES decryption). In contrast
to the inaccurate lower-bound estimation method, UCoP provides the exact
measured timing results. As a result, UCoP can effectively close the model-
platform information gap.

5.3. OS4RS Design using Hardware Virtualization Mechanism

In this experiment, we realized the DPRNSS design on the Xilinx ML310
platform with a Virtex II Pro XC2VP30 FPGA chip that has 13,696 slices.

29

The proposed hardware virtualization mechanism was realized in the PetaL-
inux embedded OS [28], which ran on a Xilinx MicroBlaze soft-core processor
[35] at 100 MHz. The network security reconfigurable system supported four
cryptographic hardware functions, including three variants of RSA having
different key and input data sizes in bits (RSA32, RSA64, and RSA128) and
RC6, and three hash hardware functions, including three variants of CRC
having different input data sizes in bits (CRC32, CRC64, and CRC128), by
implementing only two different sized PRRs, namely a small PRR1 and a large
PRR2. The reconfigurable hardware functions can be dynamically configured
in either PRR1 or PRR2, except for RSA128 which can only be configured in
PRR1. A current limitation in the proposed virtualization mechanism requires
the hardware functions to have the same I/O bandwidth. For example, RC6
and CRC32 both have 32-bit I/O interfaces, and thus can be configured for
hardware virtualization.

5.3.1. System Resource Analysis

Table 2 shows the system resource usage, including the logic usage, the
number of device nodes, and the number of kernel modules, using a con-
ventional embedded system, existing reconfigurable systems [12, 26], and a
reconfigurable system with hardware virtualization mechanism, respectively.
To support the transfer of encrypted real-time images on a network, all seven
hardware functions must be configured at design-time in a conventional em-
bedded system. Existing reconfigurable systems [12, 26] and the proposed
reconfigurable system with hardware virtualization mechanism both require
logic resources for the PRRs only as the PRRs can be reconfigured into differ-
ent hardware functions at run-time for fitting different system requirements.
However, reconfigurable hardware functions are still managed as conventional
hardware devices in the existing reconfigurable systems [12, 26], and the full
set of seven device nodes and seven kernel modules are required for the net-
work security reconfigurable systems. Through the hardware virtualization
mechanism, our OS4RS allows the system to work for all seven reconfigurable
hardware functions using only two device nodes and two kernel modules, in-
stead of seven as in the existing nodes. Thus, the number of device nodes
and kernel modules required in our OS4RS can be minimized to the number
of PRRs, instead of growing with the number of hardware functions. Since
the number of PRRs is usually much smaller than that of the hardware func-
tions, the hardware virtualization mechanism has basically placed a lower
bound on the number of device nodes and kernel modules.

30

Table 2: System Resource Comparison
Conventional Related [10, 33] Our

Logic 5,010 slices 2,975 slices 2,975 slices
Usage (7 HWs) (2 PRRs) (2 PRRs)

#Device #HW #HW #PRR ∼ #HW
Node (7) (7) (2 ∼ 7)

#Kernel #HW #HW #PRR ∼ #HW
Module (7) (7) (2 ∼ 7)

#HW: the number of hardware functions; #PRR: the number of partially reconfigurable regions.

5.3.2. Time Analysis

We compared the time required by a multimedia application for process-
ing 5 to 50 images in two cases: (a) conventional hardware reuse, and (b)
the proposed hardware virtualization mechanism. Figure 14 shows the re-
duced time using the logic virtualization and hardware device virtualization,
respectively, compared to that using the conventional hardware reuse, for
different cryptographic and hash function pairs.

In our first experiment, two multimedia applications simultaneously inter-
act with the same cryptographic hardware function, where each multimedia
application first captures real-time images from the camera, and then sequen-
tially transfers the captured images to the cryptographic and hash hardware
functions for data processing. Figure 14(a) shows the reduced time using
the logic virtualization, compared to that using the conventional hardware
reuse, for processing from five to fifty 128×64 pixel images. Here, one of the
RSA32, RSA64, RSA128, and RC6 hardware functions is shared between two
different multimedia applications for image encryption. We can observe that
the time reduced by using the logic virtualization becomes more and more
compared to that using the conventional hardware reuse, when the number
of captured images increases. The reduced time is up to 13% for RSA32, 6%
for RSA64, 4% for RSA128, and 10% for RC6 of the time required by using
the conventional hardware reuse. This is because with logic virtualization
the required cryptographic hardware function can be continuously accessed
by two different multimedia applications through different device nodes turn
by turn, without being blocked by one of the two multimedia applications,
and thus the time overhead for repeatedly closing and opening the device
node is alleviated.

In our second experiment, a multimedia application sequentially interacts

31

(a) Reduced Time using Logic Virtualization (b) Reduced Time using Hardware Device Virtualization

Figure 14: Reduced time using Hardware Virtulization Mechanism

with the cryptographic and hash hardware functions, where it first captures
real-time images from the camera, and then transfers the captured images to
the cryptographic and hash hardware functions for data processing. Figure
14(b) shows the reduced time using the hardware device virtualization, com-
pared to that using the conventional hardware reuse, for processing from 5
to 50 images. We can also observe that the time reduced by using the hard-
ware device virtualization becomes more and more compared to that using
the conventional hardware reuse, when the number of the captured images
increases. The reduced time is up to 7% for RSA32, 5% for RSA64, 5% for
RSA128, and 14% for RC6 of the time required by using the conventional
hardware reuse. This is because the results from the encryption functions can
be directly transferred to the hash hardware function for processing through
the kernel module, without transferring the data back and forth between the
user space and kernel space.

From the above experimental results, we can also observe that the hard-
ware virtualization mechanism allows greater increasing reduction in the to-
tal processing time, compared to the conventional hardware reuse, when a
multimedia application requires more and more iterations for the image cryp-
tographic and hash operations. As a result, in three RSA and CRC pairs, the
most significant time reduction appears on the 32-bit one, when the logic vir-
tualization and hardware device virtualization are used. These experiments
also demonstrate that not only the utilization of reconfigurable hardware
functions can be further increased, but the system performance can be also
significantly enhanced, when the hardware virtualization mechanism is used
in an OS4RS.

32

Table 3: Time overheads for swap-out and swap-in
V TE TR Swap-Out Swap-In Task Relocate

TW TSO TW TSI Our RBM
(µs) (µs) (µs) (µs) (µs) (µs)

N 387.9 11 388.0 5 388.0 776.0
GCD L 13,566.8 401.5 9 401.7 3 401.6 803.3 1,038.1

N 649.7 84 650.7 55 650.6 1,301.3
DES L 7,577.1 649.7 58 650.7 29 650.6 1,301.3 2,183.8

N 1,267.4 100 1,269.0 66 1,268.7 2,537.8
DCT L 577,209.9 1,254.2 68 1,255.5 34 1,255.2 2,510.7 4,278.2

V: Version; N: NISS wrapper, L: LISS wrapper, RBM: Reconfiguration-based method,

TE : execution time, TW : time overhead incurred by wrapper (in IP clock cycles).

5.4. DPRS Architecture using Hardware Preemption Mechanism

This experiment focuses on comparing the reconfiguration-based method
[22] with our proposed hardware preemption mechanism, where the Great-
est Common Divisor (GCD), DES, and Discrete Cosine Transform (DCT)
hardware functions are integrated with the LISS or NISS wrappers to be
swappable. Given context data of DC-bits, context buffer of DB-bits, data
transformation rate of RT bits/cycle, buffer data load rate of RB bits/cycle,
peripheral bus data transfer rate of RP bits/cycle, peripheral bus access time
of TA cycles, transition time of TI cycles to go to an interruptible state , and
reconfiguration time of TR cycles, the swap-out and swap-in processes require
time TSO and TSI , respectively, as shown in Equation (2).

TSO = TI +
⌈

DC

DB

⌉
×

(
DB

RT
+ DB

RB
+ TA + DB

RP

)
+ TR

TSI = TR +
⌈

DC

DB

⌉
×

(
DB

RT
+ DB

RB
+ TA + DB

RP

) (2)

In our current implementation, the software processing time is much more
than the hardware processing time. To clearly show our contributions to the
hardware preemption mechanism, we directly compared our design-based
method with another reconfiguration-based method (RBM) [22]. Table 3
shows the time overheads in swapping out and swapping in for all the ex-
amples. Comparing the time required for a task relocation, that is, one
swap-out and one swap-in, our proposed design-based method performs bet-
ter than RBM. From the experimental results, our proposed hardware pre-
emption mechanism can reduce 40.4% and 40.6% for the NISS wrapper, and

33

LV HDV

PRR2PRR1RC6 HP

CRC32DCT

HP: Hardware Preemption; LV: Logic Virtualization;
HDV H d D i Vi li iHDV: Hardware Device Virtualization;
Priority: CRC32 > RC6 > DCT

Figure 15: DPRNSS using both HW Preemption and Virtualization Mechanisms

40.4% and 41.3% for the LISS wrapper, respectively, of the time required
by reconfiguration-based methods, respectively, for the larger DES and DCT
examples. We are thus saving much time, which is important for hard real-
time systems. Even though additional reconfiguration time is required, the
swappable design would enable more hardware tasks to fit their deadline con-
straints, which makes the hardware-software scheduling in an OS4RS more
flexible for achieving higher system performance.

5.5. DPRNSSS using both HW Preemption and Virtualization Mechanisms

To show how system performance can be significantly improved using
both the hardware virtualization and preemption mechanisms, we use the
DPRNSS that contains only two PRRs, namely PRR1 and PRR2 as shown in
Figure 15, as an example. The DPRNSS receives an application APP2 request
for processing fifty images using the RC6 and CRC32 hardware functions with
a QoS requirement of total 90 seconds. While scheduling the execution of the
RC6 hardware function, because the DCT and CRC32 hardware functions
have been configured in PRR1 and PRR2, respectively, the PRR1 with a low-
priority DCT function, which has already executed for 100,000 μs, is selected
to configure the required RC6 function. Without the hardware preemption
mechanism, the RC6 hardware function will be configured in PRR1 only after
the DCT function finishes. According to our experimental results, it needs
477,209.9 (577, 209.9 − 100, 000) μs to finish the current DCT execution as
shown in Table 3 and 177,000 μs to configure the RC6 function. Note that

34

here we assume that the currently executing application APP1 (with require-
ment for the DCT hardware function) can also be preempted after one DCT
execution. If this is not the case, a much more delay will be encountered
without the hardware and software preemption. However, using the hard-
ware preemption mechanism, it needs only 1,268.7 μs for the NISS wrapper or
1,255.2 μs for the LISS wrapper to swap out the DCT function, and 177,000
μs to configure the RC6 function. The latency in starting to serve the im-
age processing application APP2 without and with the hardware preemption
mechanism is around 0.654 seconds and 0.178 seconds, respectively.

After hardware and software preemption, the required RC6 hardware
function is configured into PRR1. Using the conventional hardware reuse
method, the new image processing application APP2 must now wait until the
currently executing application APP1 closes the device node comm1 that is
linked to PRR1, and then the image processing application APP2 opens the
same device node comm1 to access PRR1 with the RC6 hardware function.
However, using the proposed logic virtualization design, the hardware task
manager can simultaneously use another pair comm2 of device node and kernel
module to connect to PRR1 and the new application APP2 starts accessing
PRR1 with the RC6 hardware function more quickly. The time saved by
not waiting for another application APP1 to close and open the device node
comm1, namely logic virtualization, is around 0.301 seconds according to our
experimental results.

Finally, using the hardware device virtualization, the processing results of
the RC6 hardware function in PRR1 can be directly transferred to the CRC32
hardware function in PRR2 through the kernel module in the pair comm2 of
device node and kernel module without going back and forth between the
OS kernel and the user levels, as introduced in Section 4.3.3. The total
amounts of time required for performing the image processing application
APP2 without and with the proposed hardware virtualization mechanism are
96.397 seconds and 85.336 seconds, respectively. As a result, without using
both the hardware preemption and virtualization mechanisms for DPRNSS,
the image processing application APP2 needs 97.051 (0.654+96.397) seconds,
that is, the QoS requirement cannot be achieved. However, using both the
hardware preemption and virtualization mechanisms for DPRNSS, the im-
age processing application APP2 needs only 85.514 (0.178 + 85.336) seconds,
that is, the QoS requirement can be achieved. The experimental results
demonstrate that system performance can be significantly enhanced, when
both the hardware preemption and virtualization mechanisms are used. This

35

performance improvement is very important, especially for a hard real-time
system.

6. Conclusions

In this work, we discovered an important characteristic of DPRS. Unlike
traditional systems, the verification complexity of DPRS is limited by the
amount of functionalities that can be concurrently executed in the system.
This observation allowed us to successfully apply model checking to DPRS,
which not only alleviates the occurrence of the state-space explosion problem
to a certain degree but also increases the verification coverage at the same
time. To bridge the model-platform information gap, UCoP was proposed for
platform-specific verification. UCoP supported direct interactions between
the UML models and a real DPRS architecture, which was a novel approach
to efficient system validation such that designers can have accurate execution
and configuration time measurements that aided in efficiently and correctly
verifying a DPRS.

To overcome the the limitation in infrastructure support for DPRS, we
proposed a hardware virtualization mechanism to dynamically link the device
nodes, kernel modules, and on-demand reconfigurable hardware functions
to fit different system requirements. Furthermore, through the proposed
hardware preemption mechanism, user-designed hardware functions can be
dynamically swapped out and then swapped in, thus further increasing the
utilization of hardware resources per unit time. We also proposed a hierarchi-
cal OS4RS design with the unified communication mechanism, using which
system scalability can be further enhanced without losing the generality in
accessing hardware designs.

In the future, to maintain a DPRS infrastructure to support the design
of self-adaptable systems [30], our previously proposed relocatable hardware-
software scheduling (RHSS) method [15] will be further extended and inte-
grated in the hardware task manager. Thus, system performance can be self-
optimized to adapt to changing environment conditions and runtime user re-
quirements. Further, the UML profile for Modeling and Analysis of Real Time
Embedded systems (MARTE) [1] will be integrated into MPC to support more
complete and efficient system analysis. To provide a more robust validation
mechanism for the DPRS development, MPC will next integrate a SystemC
platform called Perfecto [14] to rapidly explore the hardware/software parti-
tioning and scheduling alternatives at the modeling and design. As a result,

36

more detailed analysis at a highly abstract model-level and rapid and ef-
fective design explorations can be further supported in MPC, thus reducing
design and verification efforts more significantly.

References

[1] Object Management Group (OMG). http://www.omg.org.

[2] Rhapsody User Guide. Telelogic Inc, 2004. http://www.telelogic.com.

[3] C. Amicucci, F. Ferrandi, M. D. Santambrogio, and D. Sciuto. SyCERS: a SystemC
design exploration framework for SoC reconfigurable architecture. In Proc. of the
International Conference on Engineering of Reconfigurable Systems and Algorithm
(ERSA’06), pages 63–69, June 2006.

[4] B. Steinbach, C. Dorotska and D. Fröhlich . Automated Hardware-Synthesis of UML-
Models. In Proc. of the 2rd International DAC Workshop, UML for SoC Design
(UML-SOC’2006), June 2005.

[5] J. Becker, M. Hübner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. Dynamic
and Partial FPGA Exploitation. In Proc. of the IEEE Special Issue on Advanced
Automobile Technologies, volume 95, pages 438–452, 2007.

[6] M. Borgatti, A. Capello, U. Rossi, J. L. Lambert, I. Moussa, F. Fummi, and
G. Pravadelli. An Integrated Design and Verification Methodology for Reconfig-
urable Multimedia Systems. In Proc. of the Design, Automation and Test in Europe
Conference and Exhibition (DATE’05), volume 3, pages 266–271. IEEE CS Press,
March 2005.

[7] A. Brito, M. Kuhnle, M. Hübner, J. Becker, and E. U. K. Melcher. Modelling and
Simulation of Dynamic and Partially Reconfigurable Systems using SystemC. In Proc.
of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’07), pages 35–
40, March 2007.

[8] C.-H. Huang and P.-A. Hsiung. UML-Based Hardware/Software Co-Design Platform
for Dynamically Partially Reconfigurable Network Security Systems. In Proc. of
the 13th IEEE Asia-Pacific Computer Systems Architecture Conference (ACSAC),
August 2008. (doi:10.1109/APCSAC.2008.4625436).

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 1999.

[10] A. Donato, F. Ferrandi, M. D. Santambrogio, and D. Sciuto. Operating system
support for dynamically reconfigurable SoC architecture. In Proc. of the IEEE In-
ternational SOC Conference, pages 233–238, September 2005.

37

[11] P. Graf, M. Hübner, K. D. Müller-Glaser, and J. Becker. A Graphical Model-Level
Debugger for Heterogenous Reconfigurable Architectures. In Proc. of the 17th IEEE
International Conference on Field Programmable Logic and Applications (FPL’07),
pages 722–725. IEEE CS Press, August 2007.

[12] J. Hagemeyer, B. Keltelhoit, M. Koester, and M. Pomnann. A design methodology
for communication infrastructures on partially reconfigurable FPGAs. In Proc. of the
17th IEEE International Conference on Field Programmable Logic and Applications
(FPL’07), pages 331–338. IEEE CS Press, August 2007.

[13] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for
Real-Time Systems. In Proc. of IEEE International Conference Logics in Computer
Science, pages 394–406, 1992.

[14] P.-A. Hsiung, C.-H. Huang, and C.-F. Liao. Perfecto: A SystemC-based performance
evaluation framework for dynamically partially reconfigurable systems. In Proc. of the
16th IEEE International Conference on Field Programmable Logic and Applications
(FPL’06), pages 190–198. IEEE CS Press, August 2006.

[15] P.-A. Hsiung, C.-H. Huang, J.-S. Shen, and C.-C. Chiang. Scheduling and Placement
of Hardware/Software Real-Time Relocatable Tasks in Dynamically Partially Recon-
figurable Systems. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 2010. (to appear).

[16] P.-A. Hsiung, S.-W. Lin, Y.-R. Chen, C.-H. Huang, and W. Chu. Modeling and verifi-
cation of real-time embedded systems with urgency. Journal of Systems and Software,
82(10):1627–1641, October 2009. (DOI: http://dx.doi.org/10.1016/j.jss.2009.03.013).

[17] P.-A. Hsiung, M. D. Santambrogio, and C.-H. Huang. Reconfigurable System Design
and Verification. CRC Press, USA, ISBN: 978-1420062663, 2009.

[18] C.-H. Huang, S.-S. Chang, and P.-A. Hsiung. Generic wrapper design for dynamic
swappable hardware IP in partially reconfigurable systems. International Journal of
Electrical Engineering (IJEE), 14(3):229–238, June 2007.

[19] C.-H. Huang and P.-A. Hsiung. Software-controlled dynamically swappable hardware
design in partially reconfigurable systems. EURASIP Journal on Embedded System,
2008. Article ID 231940, 11 pages, doi:10.1155/2008/231940.

[20] C.-H. Huang and P.-A. Hsiung. Hardware resource virtualization for dynamically
partially reconfigurable systems. IEEE Embedded Systems Letters, 1(1):19–23, May
2009. (DOI: 10.1109/LES.2009.2028039).

[21] C.-H. Huang and P.-A. Hsiung. On the Use of a UML-Based HW/SW Co-Design
Platform for Reconfigurable Cryptographic Systems. In Proc. of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 2221–2224. IEEE Press,
May 2009.

38

[22] H. Kalte and M. Porrmann. Context saving and restoring for multitasking in recon-
figurable systems. In Proc. of the International Conference on Field Programmable
Logic and Applications (FPL’05), pages 223–228. IEEE CS Press, August 2005.

[23] B. Kettelhoit and M. Porrmann. A layer model for systematically designing dynam-
ically reconfigurable systems. In Proc. of the 16th IEEE International Conference
on Field Programmable Logic and Applications (FPL’06), pages 1–6. IEEE CS Press,
August 2006.

[24] L. Lavazza. A Methodology for Formalizing Concepts Underlying the DESS Notation.
EUREKA-ITEA project, 2001.

[25] A. Montone, F. Redaelli, M. D. Santambrogio, and S. O. Memik. A Reconfiguration-
Aware Floorplacer for FPGAs. In Proc. of the 2008 International Conference on
Reconfigurable Computing and FPGAs (RECONFIG08), pages 109–114. IEEE Com-
puter Society, 2008.

[26] M. Morandi, M. Novati, M. D. Santambrogio, and D. Sciuto. Core allocation and
relocation management for a self dynamically reconfigurable architecture. In ”Proc.
of 2008 IEEE Computer Society Annual Symposium on VLSI, pages 286–291, 2008.

[27] Nallatech. XtremeDSP Development Kit-II User Guide, Issue 4, 2004.

[28] PetaLogix. PetaLinux. http://www.petalogix.com/.

[29] M. Santambrogio and D. Sciuto. Design methodology for partial dynamic reconfig-
uration: a new degree of freedom in the HW/SW codesign. In Proc. of the IEEE
International Symposium on Parallel and Distributed Processing (IPDPS’08), pages
1–8, April 2008.

[30] M. D. Santambrogio. From reconfigurable architectures to self-adaptive autonomic
systems. In Proc. of the 2009 International Conference on Computational Science
and Engineering (CSE09), pages 926–931. IEEE Computer Society, 2009.

[31] T. Schattkowsky, W. Mueller, and A. Rettberg. A Model-Based Approach for Ex-
ecutable Specifications on Reconfigurable Hardware. In Proc. of the Conference on
Design, Automation and Test in Europe (DATE’05), pages 692–697. IEEE Computer
Society, March 2005.

[32] M. L. Silva and J. C. Ferreira. Support for Partial Run-Time Reconfiguration of
Platform FPGAs. Journal of Systems Architecture, 52(12):709–726, December 2006.

[33] J. A. Williams and N. W. Bergmann. Embedded Linux as a platform for dynamically
self-reconfiguring systems-on-chip. In Proc. of International Conference on Engineer-
ing of Reconfigurable Systems and Algorithms, June 2004.

[34] Xilinx. Early Access Partial Reconfiguration User Guide, UG208, 2006.

39

[35] Xilinx. MicroBlaze Processor Reference Guide, Embedded Development Kit, EDK
8.2i - UG081 (v6.3), August 2006.

[36] Xilinx. ML310 User Guide, Virtex-II Pro Embedded Development Platform, UG068
(v1.1.5), 2007. http://www.xilinx.com.

40

Chun-Hsian Huang received his B.S. degree in Information and Computer Education

from National TaiTung University, TaiTung, Taiwan, ROC, in 2004. He is currently

working toward his Ph.D. in the Department of Computer Science and Information

Engineering at National Chung Cheng University, Chiayi, Taiwan, ROC. He is a teaching

and research assistant in the Department of Computer Science and Information

Engineering at National Chung Cheng University. His research interests include

dynamically partially reconfigurable systems, UML-based hardware/software co-design

methodology, hardware/software co-verification, and formal verification.

Pao-Ann Hsiung, Ph.D., received his B.S. in Mathematics and his Ph.D. in Electrical

Engineering from the National Taiwan University, Taipei, Taiwan, ROC, in 1991 and

1996, respectively. From 1996 to 2000, he was a post-doctoral researcher at the Institute

of Information Science, Academia Sinica, Taipei, Taiwan, ROC. From February 2001 to

July 2002, he was an assistant professor and from August 2002 to July 2007 he was an

associate professor in the Department of Computer Science and Information Engineering,

National Chung Cheng University, Chiayi, Taiwan, ROC. Since August 2007, he has

been a full professor. Dr. Hsiung was the recipient of the 2001 ACM Taipei Chapter

Kuo-Ting Li Young Researcher for his significant contributions to design automation of

electronic systems. Dr. Hsiung was also a recipient of the 2004 Young Scholar Research

Award given by National Chung Cheng University to five young faculty members per

year. Dr. Hsiung is a senior member of the IEEE, a senior member of the ACM, and a life

member of the IICM. He has been included in several professional listings such as

Marquis' Who's Who in the World, Marquis' Who's Who in Asia, Outstanding People of

the 20th Century by International Biographical Centre, Cambridge, England, Rifacimento

International's Admirable Asian Achievers (2006), Afro/Asian Who's Who, and

Asia/Pacific Who's Who. Dr. Hsiung is an editorial board member of the International

Journal of Embedded Systems (IJES), Inderscience Publishers, USA; the International

Journal of Multimedia and Ubiquitous Engineering (IJMUE), Science and Engineering

Research Center (SERSC), USA; an associate editor of the Journal of Software

Engineering (JSE), Academic Journals, Inc., USA; an editorial board member of the

Open Software Engineering Journal (OSE), Bentham Science Publishers, Ltd., USA; an

international editorial board member of the International Journal of Patterns (IJOP). Dr.

Hsiung has been on the program committee of more than 50 international conferences.

He served as session organizer and chair for PDPTA'99, and as workshop organizer and

chair for RTC'99, DSVV'2000, and PDES'2005. He has published more than 150 papers

in international journals and conferences. He has taken an active part in paper refereeing

for international journals and conferences. His main research interests include

reconfigurable computing and system design, multi-core programming, cognitive radio

architecture, System-on-Chip (SoC) design and verification, embedded software

synthesis and verification, real-time system design and verification, hardware-software

codesign and coverification, and component-based object-oriented application

frameworks for real-time embedded systems.

http://ees.elsevier.com/jsa/download.aspx?id=24960&guid=e0a40cd3-529b-4779-ad36-99f4c271142f&scheme=1

Jih-Sheng Shen received his B.S. and his M.S. in Computer Science and Information

Engineering from the I-Shou University and the National Chung Cheng University,

Taiwan, ROC, in 2003 and 2004, respectively. His M.S. thesis was on the design and

implementation of on-chip crossroad communication architectures for low power

embedded systems. He is currently pursuing his Ph.D. in the Department of Computer

Science and Information Engineering at the National Chung Cheng University, Taiwan,

ROC. His research interests include the theories and the architectures of reconfigurable

systems, machine learning strategies, Network-on-Chip (NoC) designs, encoding

methods for minimizing crosstalk interferences and dynamic power consumption.

1. Chun-Hsian Huang’s Photo

http://ees.elsevier.com/jsa/download.aspx?id=24961&guid=45d97a91-5edc-4f89-a062-addea3f107f0&scheme=1

2. Pao-Ann Hsiung’s Photo

http://ees.elsevier.com/jsa/download.aspx?id=24962&guid=09bac788-af50-4cb4-93bd-2cbebca547ca&scheme=1

3. Jih-Sheng Shen’s Photo

http://ees.elsevier.com/jsa/download.aspx?id=24963&guid=527f91df-a0ce-458d-a5fa-cebb84e26b97&scheme=1

