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The dynamic partial reconfiguration technology of FPGA has made it possible to adapt system function-
alities at run-time to changing environment conditions. However, this new dimension of dynamic hard-
ware reconfigurability has rendered existing CAD tools and platforms incapable of efficiently exploring
the design space. As a solution, we proposed a novel UML-based hardware/software co-design platform
(UCoP) targeting at dynamically partially reconfigurable network security systems (DPRNSS). Computa-
tion-intensive network security functions, implemented as reconfigurable hardware functions, can be
configured on-demand into a DPRNSS at run-time. Thus, UCoP not only supports dynamic adaptation
to different environment conditions, but also increases hardware resource utilization. UCoP supports
design space exploration for reconfigurable systems in three folds. Firstly, it provides reusable models
of typical reconfigurable systems that can be customized according to user applications. Secondly, UCoP
provides a partially reconfigurable hardware task template, using which users can focus on their
hardware designs without going through the full partial reconfiguration flow. Thirdly, UCoP provides
direct interactions between UML system models and real reconfigurable hardware modules, thus allow-
ing accurate time measurements. Compared to the existing lower-bound and synthesis-based estimation
methods, the accurate time measurements using UCoP at a high abstraction level can more efficiently
reduce the system development efforts.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Due to rapid technology breakthroughs, FPGAs devices, such as
Xilinx Virtex II/II Pro, Virtex 4, and Virtex 5, can be partially recon-
figured at run-time, which means that one part of the device can be
reconfigured while other parts remain operational without being
affected by reconfiguration. A hardware/software embedded sys-
tem realized with such an FPGA device is called a dynamically par-
tially reconfigurable system (DPRS), which enables more applications
to be accelerated in hardware, and thus reduces the overall system
execution time [21,22].

Our target applications focus on network security embedded
systems, where the cryptographic and hash functions are usually
computation-intensive, hard real-time, and non-adaptive to chang-
ing network conditions. They are usually designed as fixed ASICs,
which makes the network security system unable to adapt dynam-
ically to network security run-time requirements. An alternative is
to use reconfigurable logics such as the FPGA. There are two rea-
sons for implementing such functions using FPGA.
ll rights reserved.
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1. The regular arrays of logic cells on FPGAs are attractive for cryp-
tographic and hash hardware designs because of its parameter-
specific architecture. Many related researches [10–12,19] also
showed that implementing computation-intensive crypto-
graphic and hash hardware functions on the FPGAs can make
a network security system more efficient by taking advantage
of the specific architecture.

2. FPGA allows hardware functions to be dynamically reconfig-
ured. Thus, a DPRS architecture is desired for a network security
system that can dynamically adapt to changes.

Our target system is called a dynamically partially reconfigurable
network security systems (DPRNSS), in which the computation-
intensive cryptographic and hash designs, such as CRC, Message-Di-
gest algorithm 5 (MD5), RSA, Data Encryption Standard (DES), 3DES,
and Advanced Encryption Standard (AES), are implemented as par-
tially reconfigurable hardware functions for enhancing the system
performance and flexibility. Here, the configured hardware func-
tions running on the FPGA can be also called as hardware tasks.
Compared to a network security embedded system, a DPRNSS con-
tains not only software applications and hardware devices, but also
reconfigurable hardware functions. Thus, the development of such
a DPRS is much more complicated.
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To facilitate the DPRS design at a high abstraction level, the Uni-
fied Modeling Language (UML) [1], an industry de-facto standard, is
used to model and develop DPRS [5,14,17,18]. Through system
modeling, the functional interactions between the system and
the applications can be easily described and analyzed. However,
UML models of a DPRS are usually not customized, and thus
designers must model their DPRS designs again when different
applications are included. Furthermore, reconfigurable hardware
functions are usually individually implemented at design-time
without integrating with a unified interface. As a result, to incorpo-
rate hardware functions having different data interfaces with a
DPRS at run-time becomes very difficult, which not only reduces
system scalability but also increases development efforts.

For system requirement estimation, conventional UML models
cannot accurately evaluate system characteristics, for example,
usually the worst case execution time is used for estimating perfor-
mance, instead of the actual execution time. The problem is that
not only the simulation of such UML models of a DPRS is time con-
suming, but it might be even misleading, that is, an incorrect de-
sign could be verified by a simulator as being correct. Such
inaccurate system validation further leads to much more iterations
between the system modeling and implementation, thus delaying
system development. To solve the above problems, a novel UML-
based hardware/software co-design platform (UCoP)1 is thus pro-
posed, which contributes to the state-of-the-art in the following
ways.

� UML models of UCoP are specified as reusable models,
using which different user applications can be easily
employed in UCoP to analyze the functional interactions
among all system components. As a result, design time
and efforts are significantly reduced.

� To increase the system scalability, a partially reconfigura-
ble hardware task template is provided to integrate hard-
ware functions having different data interfaces in UCoP.
Designers can focus on their hardware designs without
going through the full partial reconfiguration flow, which
also reduces the system development efforts.

� The UML models of UCoP can be used to directly and accu-
rately validate the system correctness and performance at
a high-level phase instead of inaccurate time estimation
using simulation. Through the direct interaction with the
real hardware architecture, the number of iterations
between the UML modeling and the system implementa-
tion is reduced more significantly until the final system
is created.

This article is organized as follows. Section 2 discusses related
research work and compares them with UCoP. The target embed-
ded system is described in Section 3. The details of the partially
reconfigurable hardware architecture and the UML modeling are
illustrated in Section 4. Section 5 shows the implementation re-
sults of all dynamically partially reconfigurable hardware func-
tions, and provides a comparison between the proposed platform
and the related research. Finally, conclusions and future work are
described in Section 6.
2. Related work

The reasons for adopting reconfiguration techniques in network
security applications are described in this section. Further, existing
contemporary UML-based methodologies for reconfigurable
1 UCoP was first proposed in [6] by us. In this work, the use of UCoP and more
related experiments will be illustrated in details.
system design are also introduced and compared with the pro-
posed UCoP.

Owing to the popular use of the network, the needs for data
security and authentication are getting more and more important,
in which cryptography plays a key role. However, cryptographic
algorithms are usually computation-intensive, have hard real-time
requirements, and are non-adaptive to changing network condi-
tions. The algorithms also make different tradeoffs between secu-
rity and complexity. To allow multiple tradeoffs and to adapt to
changing network conditions at run-time, a data protective process
needs a high-speed and flexible embedded system. Wollinger and
Paar [19] illustrated the advantages of reconfigurable devices for
cryptographic applications in embedded systems, including archi-
tecture efficiency, resource efficiency, throughput, and algorithm
agility.

Besides much more efficient implementation of cryptographic
applications on the reconfigurable devices, higher hardware
resource utilization and system flexibility can be achieved using par-
tial reconfiguration. Lagger et al. [10] proposed a self-reconfigurable
pervasive platform for cryptographic applications. The authors com-
pared a full-software design with a coprocessor design that had an
FPGA device which could be partially configured with DES, 3DES,
and Route Coloniale 4 (RC4) hardware cores. Compared to the former,
the performance of the latter was significantly enhanced due to dy-
namic reconfiguration techniques. In other related researches such
as [11,12], the authors enhanced the performance of cryptographic
hardware designs significantly by leveraging the advantages of
reconfigurable FPGAs. These researches all demonstrated that
reconfigurable FPGAs are very suitable for implementing crypto-
graphic applications.

Besides low-level system implementation, high-level modeling
is also used for system development. Unified Modeling Language
(UML) [1], a de-facto standard language, is usually used to model
system functional interactions not only in the field of software
engineering, but also in embedded system development. In
[5,17], the authors proposed a complete UML-based design meth-
odology for reconfigurable architectures, which started with UML
models and ended with final implementation and deployment. It
included a model compiler to create executable applications from
system-level specifications for reconfigurable architectures. In
[14], a model-based approach for executable UML was proposed
to close the gap between the system specification and its model-
based execution on reconfigurable hardware. The UML specifica-
tions can be compiled to binary representations that were directly
executed on their proposed abstract machine platform, which was
implemented on a Virtex II FPGA. However, all these researches
[5,14,17] focus only on the functional code generation and not de-
sign space exploration. As a result, system development usually
needs several iterations between the UML modeling and the imple-
mentation phase until the final system is created.

Another UML-based design flow for dynamically reconfigurable
systems was proposed in [18]. The design flow not only generated
the system implementation from system-level specifications, but
also proposed a hardware/software partitioning method that sup-
ported a software-oriented strategy and automatic hardware/soft-
ware co-synthesis. The authors also established a reconfigurable
system architecture to support their design flow. However, only
fully reconfigurable architecture was supported, while the partially
reconfigurable architecture was not considered.

The above UML-based design flows [5,14,17,18] only simulated
the functional interactions between applications and a system,
thus the physical design correctness of the system could be verified
only after the UML models were synthesized into concrete system
designs. Graf et al. [8] proposed a model-level debugger that could
directly interact with the reconfigurable architecture. The debug-
ger integrated the Matlab Stateflow models with its target system,
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and consisted of a code generator for transforming the Stateflow
models into HDL code. Through the JTAG cable, users can debug
their configured system at the graphical model-level. However,
the debugger did not provide support for real-time tracing of the
functional interactions between applications and a system, thus
their model execution must be suspended while reading the sys-
tem state for debugging.

In this work, UML modeling is included in UCoP to analyze the
system-level functional interactions between user applications and
a DPRS. UML models of UCoP are classified into three categories,
including software application models, system management models,
and hardware configuration models. A DPRS only needs to be spec-
ified by customizing the three categories of reusable UML models,
and high-level functional analysis can thus be performed in UCoP.
UCoP further provides users with a partially reconfigurable hard-
ware task template to integrate their hardware functions into a
user-defined DPRS. As a result, users can focus on their hardware
designs without going through the full partial reconfiguration flow.
Through both the reusable UML models and the partially reconfig-
urable hardware task template in UCoP, the system scalability is
significantly enhanced, while design time and efforts for a user
can also be reduced.

In contrast to existing high-level time estimation methods
[5,14,17,18] used in contemporary DPRS development, the UML
models of UCoP interacts directly with the real hardware in a sys-
tem architecture, thus enabling accurate time measurements.
Users can accurately validate and analyze the correctness and
performance of their new hardware designs in UCoP at a high de-
sign level before a system is actually implemented. Moreover, in
contrast to the Matlab approach [8], UCoP supports real-time
tracing without suspending model execution. Therefore, develop-
ing a DPRS in UCoP is more efficient and accurate because not
only the time-consuming hardware/software co-simulation, such
as using the SystemC language, can be avoided, but also real-time
tracing can be provided for users to verify their DPRS. For our tar-
get DPRNSS, we leveraged the features and capabilities of recon-
figurable devices to implement cryptographic applications in
DPRNSS. Furthermore, the partial reconfiguration technique is
adopted to achieve higher hardware resource utilization and sys-
tem flexibility, while cryptographic and hash hardware functions
can be dynamically reconfigured into DPRNSS on demand at run-
time.
3. Dynamically partially reconfigurable network security
system

Before introducing the UCoP design platform, we first describe
our target DPRNSS architecture. In this section, the system require-
ments, the architecture design, the data flow, and the system fea-
tures for DPRNSS will be illustrated in details.
3.1. System requirements

The proposed DPRNSS must be able to support for widely-used
cryptographic functions, including RSA, DES, 3DES, and AES, for
data encryption/decryption and four hash functions, including
MD5, CRC32, CRC64, and CRC128, for data authentication. All
eight functions must be dynamically reconfigurable , that is, con-
figurable into DPRNSS at run-time to adapt to changing network
environment conditions. The reconfigurable functions must be
implemented as hardware in a Xilinx Virtex II FPGA with at most
15,000 slices, while their total amount of required logic resources
must be less than 10,000 slices. Furthermore, the static power
consumption of DPRNSS must be less than 600 mW. Furthermore,
the network security status must be classified into different
threat levels, and each cryptographic hardware function must
be associated with a level of vulnerability that presents the max-
imum network security threat level that the function can endure
for secure data transfers. DPRNSS must be able to monitor the
current network security threat level and must be able to dynam-
ically reconfigure a cryptographic hardware function into the sys-
tem to meet the network security needs, that is, newly
reconfigured hardware function has a level of vulnerability higher
than the currently detected network security threat level.
3.2. Architecture design

To realize the system requirements, a DPRNSS design architec-
ture as illustrated in Fig. 1 is created, which consists of five sys-
tem devices, including a microprocessor, an FPGA, a hardware/
software communication interface, a network interface, and an
off-chip memory. The DPRNSS is implemented as a DPRS, which
consists of several Partially Reconfigurable Regions (PRRs) in an
FPGA, while the reconfigurable hardware functions, namely Par-
tially Reconfigurable Modules (PRMs), are configured into PRRs.
For the partial reconfiguration of cryptographic and hash hard-
ware designs, two PRRs, namely PRR1 and PRR2, are implemented
on the FPGA. PRMs of cryptographic and hash hardware designs
can be dynamically reconfigured into the PRRs. All partial bit-
streams for cryptographic and hash hardware designs are stored
in an off-chip memory. Four categories of software components,
including attack monitor, configuration controller, system con-
troller, and software application functions, run on the micropro-
cessor. The attack monitor connects to the network interface
device to monitor the network status for detecting the current
network security threat level, and then for notifying the system
controller. The configuration controller is responsible for dynam-
ically reconfiguring the partial bitstreams into the FPGA, while
the system controller manages all control and data transfers in
the DPRNSS. The software application functions include real-time
applications, such as multimedia and online interactive
communication.
3.3. Data flow

In DPRNSS, the system controller receives encrypted data
(cypher text) through the network interface, which are then sent
through hardware/software communication interface to a hash
hardware design on the FPGA for authenticating the data integrity.
After authentication, the system controller sends the authenticated
data to a software application for further processing. If authentica-
tion fails, no software application is invoked. Based on the negoti-
ated encryption algorithm, the software application makes a
request through the system controller for a corresponding decryp-
tion hardware. For transferring data to the network the above steps
are reversed and the software application requests for encryption
hardware functions instead. It is assumed that during any time
period a cryptographic hardware design can guarantee the security
of data transfers only for a fixed number of network attacks. When
the current cryptographic hardware function cannot ensure the
security of data transfers due to increased network attacks, the sys-
tem controller starts negotiating with the other end-point system
to determine whether it can support another more secure crypto-
graphic algorithm. If the negotiation succeeds, the system control-
ler requests the configuration controller to reconfigure the newly
negotiated cryptographic hardware design into a PRR on the FPGA.
After reconfiguration is done, the system controller transfers a
complete message to the other end-point system to indicate that
the newly negotiated cryptographic algorithm will be used for fu-
ture data transfers.
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3.4. System features

Compared to a traditional Network Security Systems (NSSs),
DPRNSS can enable a greater number of cryptographic and hash
hardware functions to be executed even though the total amount
of required logic resources exceeds that available in the FPGA. Fur-
thermore, DPRNSS can provide lower static power consumption
and higher resource utilization, because cryptographic and hash
hardware functions are configured on-demand into a DPRNSS, in-
stead of integrating all hardware functions into a NSS at design
time. The related experimental results will be given in Section
5.2. Furthermore, the capability for dynamically adapting hard-
ware function, without switching off the system, is also very
important for real-time online system environments, because it
provides higher system flexibility compared to NSS. The attack
monitor in DPRNSS can detect the current network security threat
level, using which new cryptographic hardware functions can be
dynamically reconfigured into the FPGA to support secure and effi-
cient data transfers in the network.
4. UML-based HW/SW co-design platform

Though the resource utilization is higher and power consumption
is lower in DPRNSS, the development of such a system is more com-
plex than that of a traditional embedded system. Graphical func-
tional modeling is often used to analyze the functional interactions
among system components at a high abstraction level. For example,
the existing UML-based simulation methods [5,14,17,18] verify
system correctness and performance at the system level, where
behaviors and the timing characteristics of a real system design
are abstracted. As a result, the system correctness and performance
cannot be guaranteed even after a DPRS has been verified using sim-
ulation, which usually leads to additional design iterations between
the system modeling and implementation.

To bridge the widening gap between system models and design
implementation, a novel UML-based hardware/software co-design
platform (UCoP) is proposed for dynamically partially reconfigura-
ble systems. UCoP achieves its goals in three ways. Firstly, a
partially reconfigurable hardware architecture is included in UCoP.
Secondly, a task template is provided to integrate different partially
reconfigurable hardware functions. Thirdly, UCoP supports the
high-level model verification under real physical constraints, as de-
scribed in the following.

A novel feature in UCoP is the support for UML models to di-
rectly interact with real hardware designs that are configured at
run-time into an FPGA. During the simulation of UML models,
the software models can directly communicate with the hardware
designs in FPGA, thus the gap between models and actual imple-
mentations is effectively bridged in UCoP. To realize UCoP, we inte-
grated an FPGA platform-specific library into a UML modeling tool.
The platform library consists of APIs for data access by hardware
designs and for the FPGA configuration control. Users can invoke
these platform APIs directly in their UML models, and thus the
models can configure new hardware functions into the system
and interact with them by sending/receiving data. As a result,
hardware/software integration is easily achieved using UCoP. Fur-
ther, a user can also mix models of different levels of abstraction
during the design phase of a system. Thus, UCoP allows efficient
simulation through hardware, accurate time measurements of
hardware execution and configuration, and real-time debugging.
The enhanced accuracy and efficiency in UCoP effectively shortens
the overall design time by reducing the number of iterations be-
tween model refinement and design implementation. In the fol-
lowing subsections, the implementation details of UCoP will be
described, including the partially reconfigurable hardware archi-
tecture, the proposed partially reconfigurable hardware task tem-
plate, and the high-level UML modeling. Furthermore, DPRNSS
will be taken as an example for introducing the use of UCoP.
4.1. Partially reconfigurable hardware architecture

To realize UCoP, we chose a reference board, as illustrated in
Fig. 2, in which hardware functions run on the Peripheral Component
Interconnect (PCI) board, an XtremeDSP Development Kit-II [13]
from Nallatech, and the software functions run on the general-pur-
pose processor in a personal computer. The PCI board contains three
FPGA chips, including a Clock FPGA (Xilinx Virtex-II XC2V80) for
clock configuration, an Interface FPGA (Xilinx Spartan-II) with
pre-configured firmware for communicating over the PCI bus, and
a User FPGA (Xilinx Virtex-II XC2V3000) for configuring the user
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hardware designs. Besides the hardware part, the Field Upgradable
Systems Environment (FUSE) APIs and the PCI driver are provided
by the XtremeDSP Development Kit-II to facilitate FPGA reconfigura-
tion and communication over the PCI bus.

In this work, the partially reconfigurable hardware architecture
was implemented on the User FPGA. The dynamic area contains
two PRRs in which the cryptographic and hash hardware designs
can be (re)configured. The remaining area of the User FPGA is
the static area, which mainly comprises a Spartan–Virtex interface
to communicate with the Interface FPGA for transferring and
receiving data, and a synchronous FIFO to access the data stored
in the on-chip memory. By configuring the static full bitstream
for the static area on the User FPGA, the dynamically partially
reconfigurable hardware architecture can be initialized for com-
municating over the PCI bus, then the partial bitstreams for the
two PRRs are configured as required by the DPRNSS described in
Section 3. As shown in Fig. 1, for fitting different network security
needs at run-time, the Configuration Controller can reconfig-
ure the corresponding cryptographic or hash hardware designs,
thus adapting the system functions to the changing network envi-
ronments and threat level.

All data transfers in our current DPRNSS design are managed by
the System Controller, which is executed as a software applica-
tion. As a result, the processing results of a hash hardware design
need to be transferred to the System Controller, and then back
to the cryptographic hardware design. In the future, a Reconfigura-
ble Module Sequencer (RMS) [15] design will be integrated into
UCoP to support direct communication between cryptographic
and hash hardware designs. The RMS can help manage data trans-
fers between the hardware designs in two PRRs on the FPGA, with-
out transferring the data to and from the System Controller in
the OS. Thus, the communication overheads between the hardware
designs in the two PRRs can be further reduced.
: busmacro: data wire : control wire

8
8

8
8

Fig. 3. Partially reconfigurable hardware task template.
4.2. Partially reconfigurable hardware task template

Compared to the development of a traditional embedded sys-
tem, that of a DPRS is more difficult due to its complicated partial
reconfiguration design flow. However, the EA PR design flow is con-
tinuously repeated when new user-designed hardware functions
are integrated into a DPRS. As a result, the interactive interface
between user-designed hardware functions and the rest of the sys-
tem must be unified. The rest of the system and user-designed
hardware functions can be thus individually implemented, which
reduces design time and efforts. Therefore, a unified interface is re-
quired for the development of a DPRS.

To ease the integration of user-designed hardware functions
into the UCoP, a partially reconfigurable hardware task template
is proposed, which connects the user functions with the system
bus via the Spartan–Virtex interface as shown in Fig. 2. To use a
newly developed cryptographic or hash hardware IP in DPRNSS, a
designer has to simply integrate the new IP with the proposed
hardware task template because the template provides a common
communication interface between the IP and the rest of the
system.

The partially reconfigurable hardware task template is as shown
in Fig. 3. The word size required by all the cryptographic and hash
hardware functions is 32 bits for all kinds of data transfers. Thus,
the proposed template implements only 32-bit wide signals. It
consists of eight 32-bit input data signals, one 32-bit input control
signal, four 32-bit output data signals, and one 32-bit output con-
trol signal. To connect the reconfigurable part (the PRRs) with the
static part (the Spartan–Virtex interface) in User FPGA, Xilinx bus
macros [22] are inserted to allow correct communication and
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connection. The template also contains an optional Data Transfor-
mation Component (DTC) for unpacking incoming data and packing
outgoing data based on the I/O registers sizes in the cryptographic
or hash hardware IPs.

For implementing the dynamically partially reconfigurable
hardware architecture of DPRNSS, the Early Access Partial Reconfig-
uration (EA PR) flow [22] from Xilinx is adopted. Xilinx bus macros
are inserted between each PRR and the static area. After generating
the netlists for the static area and for all PRMs, a part of the EA PR
flow is followed to generate a full bitstream for the static area and
a partial bitstream for each PRM. Blank bitstreams are also gener-
ated for all PRRs, which can be used to reset the PRRs. As shown in
Fig. 4, the PR implementation flow consists of four phases, namely
budgeting, static logic implementation, PR block implementation,
and assemble.

A DPRS hardware architecture consists of a static area and a
reconfigurable area. In the EA PR flow, the design of the static area
must follow the first two phases, namely budgeting and static logic
implementation. The static area design can be reused across differ-
ent applications, and is thus integrated into UCoP such that users
can reuse it as required in different applications. As for as the design
of new hardware functions is concerned, we need to perform only
the last two phases of the PR implementation flow, namely PR block
implementation and assemble phases. Corresponding partial
bitstreams can thus be generated for each hardware function, with-
out going through all the four phases. Furthermore, the necessary
commands for generating partial bitstreams are integrated by UCoP
into a script file. Thus, users only need to integrate their new cryp-
tographic or hash hardware design with the proposed hardware
task template, synthesize it, and run the script, without explicitly
and manually going through the last two phases of the PR
Fig. 4. PR hardware
implementation flow step-by-step. Using UCoP, users inexperi-
enced in the partial reconfiguration technique can still easily en-
hance their IP designs with the capability for partial
reconfiguration and integrate them into a DPRS. UCoP thus signifi-
cantly reduces design efforts and enhances system scalability.

4.3. High-level UML modeling

To design a user-specific DPRNSS, a designer must first model
the required functions using UML. The basic DPRNSS architecture
design and implementation are modeled using UML as described
in Sections 3 and 4.1. The models can be classified into three cate-
gories, namely software application, hardware configuration, and
system management. The software application models describe
the software processes running on the microprocessor, while the
hardware configuration models describe the bitstreams used for
configuring hardware functions. The (re)configuration of all the
bitstreams and control and data transfers in the DPRNSS are man-
aged by the system management models. Thus, the system man-
agement models act as a bridge between the software
application and hardware configuration models.

4.3.1. DPRNSS architecture modeling
The class diagram for a basic DPRNSS is illustrated in Fig. 5,

where the AttackMonitor and Application classes are the
software application models, the PartialBitstream and Non-

prBitstream classes are the hardware configuration models,
and the SystemController and Configure classes are the sys-
tem management models. The AttackMonitor and Applica-

tion classes are responsible for monitoring the network status
and for system applications, respectively. The SystemContoller
creation flow.
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class manages all system operations, and is thus individually
associated with the AttackMonitor, Application, and Con-

figure classes. The PartialBitstream class models the partial
bitstream for each PRM, while the NonprBitstream class models
the bitstream for the static part of a DPRNSS architecture design.
The Configure class models the configuration of bitstreams, and
is thus associated with the PartialBitstream and the Nonpr-

Bitstream classes.
4.3.2. DPRNSS deployment modeling
The UML deployment diagram in Fig. 6 illustrates how the

DPRNSS classes in Fig. 5 are mapped to the physical devices of the
implementation platform in Fig. 2. The Processor node depends
on the SWApplication, AttackMonitor, Controller, and Con-

figuration components. The User_FPGA node depends on the
NonPRbitfile and PRbitfile components, while the Clock_-
FPGA node depends on the NonPRbitfile component. The SWAp-
plication, AttackMonitor, Controller, Configuration,
NonPRbitfile, and PRbitfile components are implemented as
the Application, AttackMonitor, SystemController, Con-
figure, NonprBitstream, and PartialBitstream classes,
respectively.
Processor Interface_FP

Controller

SWApplication

AttackMonitor Configurati

Application

SystemControAttackMonitor Configur

Fig. 6. Deployment dia
4.3.3. DPRNSS behavior modeling
Besides modeling the functional relationships and the physical

device mapping for the DPRNSS using the class and deployment
diagrams, respectively, UCoP uses the UML state machine diagrams
to model the detailed operations for each system components.
Fig. 7 illustrates the state machine diagram for the SystemCon-

troller class, which is responsible for starting and initializing
the DPRNSS. After the clock bitstream is configured into the Clock
FPGA, the full bitstream and then the two partial bitstreams are
configured into the User FPGA. When all configuration processes
finish, the DPRNSS shows which cryptographic and hash hardware
functions are configured in the two PRRs. Then, the Monitor state
is used to receive the requests for dynamically partially reconfigur-
ing the two PRRs according to the network security requirements
from the AttackMonitor class. Figs. 11 and 12 in the Appendix
illustrate the detailed operations for the other classes, except for
the NonprBitstream and the PartialBitstream classes be-
cause they model passive components containing pointers to the
bitstreams that are saved in memory.

4.3.4. DPRNSS validation framework
In this work, we adopt the Rhapsody tool for UML modeling and

simulation [4] because it can automatically generate C, C++, Java,
GA User_FPGA Clock_FPGA

NonPRbitfilePRbitfileon

PartialBitstreame NonprBitstream

gram for DPRNSS.



Fig. 7. State machine diagram for system controller class.

System
Management

Models

FUSE APIs

PCI Drivers

PCI Bus

Software
Application

Models

Hardware
Configuration

Models

HW
Function

template
PRR1

HW
Function

template
PRR2

Reusable UML Models

Bitstreams

Fig. 8. UML-based HW/SW co-design platform.

C.-H. Huang et al. / Journal of Systems Architecture 56 (2010) 88–102 95
and Ada code from UML class and state machine models. The capa-
bility of simulating UML models in Rhapsody is very helpful in ana-
lyzing system functionalities and component model relationships.
By using the specific action definition in Rhapsody, the transitions
in different state machine diagrams can trigger each other, as long
as, the classes are associated with each other. A transition could in-
clude a triggering event and at least one action. The event naming
convention is evName. The actions are the function operations, the
interaction with another state machine diagram, or both. Take the
transition from the Initial state to the ClockFPGAConfig state
of the SystemController class in Fig. 7 as an example. The action
getItsConfigureðÞ ! GENðevConfigClockÞ on this transition generates
an evConfigClock event that triggers the transition from Ini-

tial state to the ClockFPGAConfig state in the Configure state
machine diagram. After integrating the operations of the software
application models and the system management models, we use
the code generation capability of Rhapsody to generate a software
execution framework for DPRNSS. Furthermore, we use sequence
diagrams to analyze the functional interactions among the classes
in temporal order. The dynamic adaption of security levels based
on requests from the AttackMonitor class in DPRNSS is illus-
trated by the sequence diagram in Fig. 13, which shows how a par-
tial reconfiguration is triggered upon request and the newly
configured triple DES is used to do the next encryption. In the ani-
mation mode of Rhapsody, the state machine and sequence dia-
grams are simulated to validate the operations of DPRNSS. Thus,
the functional interactions among the system components can be
validated more intuitively, instead of only inspecting models. For
example, the highlighted states in the state machine diagram at
Fig. 7 indicate the current execution status.

Through the software framework generated by Rhapsody for
the DPRNSS the system functionalities can be validated; however,
the cryptographic and hash hardware designs are abstracted in the
UML models, which means system correctness associated with
physical constraints cannot be guaranteed. For example, the inac-
curate time estimation methods for cryptographic and hash hard-
ware designs could guarantee that data transfers with a specific
Quality of Service (QoS) can be achieved; however, in reality it is
not, which could cause a very serious problem, especially when
hard real-time constraints are violated. Though the partial recon-
figuration for cryptographic and hash hardware designs are re-
quested from two different controllers, due to the architecture
constraints, only one hardware function can be partially reconfig-
ured into the FPGA at a time. The system correctness is hard to
be guaranteed especially when the reconfiguration requests cannot
be expected because they are created according to the current net-
work status.

To provide accurate performance measurements and to meet
physical constraints, the platform FUSE APIs and the PCI drivers
provided by the XtremeDSP Development Kit-II must be integrated
with the software framework of DPRNSS as shown in Fig. 8. Instead
of doing this per application, UCoP integrates them directly into
the code generator of Rhapsody, so that the gap between applica-
tion models and system architecture constraints is effectively
bridged. As far as application models are concerned, the operations
for interacting with the hardware architecture must be modified to
follow the control method required by the FUSE APIs and the PCI
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drivers. Due to such an integration, through the animation mode of
Rhapsody, the functional interactions among the three models and
the real system hardware architecture can be, step by step, traced
in the sequence diagrams and the state machine diagrams. The
models can be rectified and then validated again efficiently. This
direct interaction with a real system hardware architecture by the
high-level application models allows users to analyze and validate
the system performance and correctness at a high-level phase,
which is very helpful, especially when the system is an adaptive
one.
5. Experiments

The UCoP platform was implemented on the XtremeDSP Devel-
opment Kit-II board connected to a host computer (Intel Core 2
1.86 GHz, 2GB RAM, Windows XP) over the PCI interface. The sys-
tem hardware architecture of the DPRNSS was created in the Xilinx
Virtex-II XC2V3000 FPGA (User FPGA), which contains 14,336
slices, 28,672 Flip-Flops, 28,672 LUTs, and 96 block RAMs. Four
hash hardware designs, including three variants of CRC and an
MD5, and four cryptographic hardware designs, including RSA,
DES, triple DES, and AES, were used in the DPRNSS. The other
two FPGAs, including Clock FPGA and Interface FPGA, are spe-
cific to the XtremeDSP development Kit-II board, and are used for
the configuration of its clock and communication interface, respec-
tively. Their measurements are not included in all experiments.

The DES implementation based on Electronic Code Book (ECB)
cryptographic mode contained a regular structure that lends itself
to pipelining and simple data manipulations to permit fast opera-
tions. The DES design was adopted in the triple DES design, where
each round of DES in the triple DES implementation was pipelined
in three stages. Both the DES and triple DES hardware designs were
acquired from Xilinx [20]. The AES implementation followed the
FIPS-197 document [3] and was based on ECB cryptographic mode.
Its architecture was not pipelined and hence only able to perform
multi encryption/decryption serially one after the other. A square-
and-multiply algorithm was used in the RSA implementation,
where the message value was squared for each bit of the exponent.
The MD5 implementation did not include the block padding, and
the 128 bits blocks padded needed be input in little endian mode.
The AES, RSA, and MD5 hardware designs were acquired from
OpenCores [2]. Three variants of the CRC hardware design were
generated using the CRC tool developed by Easisc [7]. All the above
hardware designs were implemented as partially reconfigurable
hardware designs.

Different security requirements could be met by configuring the
hash and cryptographic hardware designs dynamically into the
DPRNSS. To make efficient use of hardware resources, the PRMs
of similar sizes will be configured into the same PRR. In our current
Table 1
Resource usage for each PRM in PRR1.

HW design Slices

Used (#) %

CRC32 Original 97 0.6
PRM 183 1.2
Overhead 86 0.6

CRC64 Original 166 1.1
PRM 254 1.7
Overhead 88 0.6

CRC128 Original 281 1.9
PRM 345 2.4
Overhead 64 0.5

%: the utility rate in terms of all available resources;
Overhead: template overheads in PRM compared to original design.
implementation, the three variants of CRC hardware designs can be
individually (re)configured in PRR1, while the MD5 and the four
cryptographic hardware designs can be individually (re)configured
in PRR2. Due to the resource limitations of our current implemen-
tation, the MD5 hardware design and one required cryptographic
hardware designs cannot be configured in the FPGA at the same
time. Thus, the logic resources of the PRR2 are shared with the
MD5 designs and four cryptographic hardware designs. To support
a complete network security application having a hash and a cryp-
tographic data processing, one method is to store the processing
results of the MD5 hardware design in the synchronous FIFO com-
ponent of User FPGA. After reconfiguring one required crypto-
graphic hardware design into PRR2, the saved processing results
in the synchronous FIFO component are then transferred to the
reconfigured cryptographic hardware design for data encryption.
Another alternative method is to realize the cryptographic algo-
rithm as a software application, and thus the processing results
of the MD5 hardware design can be transferred to the software
cryptographic function for data encryption.

The following experiments will focus on demonstrating our
contributions, including an analysis of the resource overhead for
integrating the proposed hardware task template with each of
the hash and cryptographic hardware designs, a comparison be-
tween conventional and dynamically partially reconfigurable net-
work security systems, an accurate high-level validation for the
DPRNSS by the direct interactions between UML models and the
real system architecture. Furthermore, the proposed UCoP is not
restricted to the implementation of network security systems.
Rather, users may target a new application by adapting the soft-
ware application models, integrating and synthesizing their hard-
ware designs with the proposed hardware task template, and
using our provided script file to generate the corresponding partial
bitstreams.
5.1. Resource overhead analysis for PRMs

As shown in Table 1, the resource overheads incurred by the
hardware task template for enhancing all the CRC hardware de-
signs with the capability for partial reconfiguration are less than
one percentage of the available FPGA resources.

The implementation results of the five hardware designs that
can be configured in PRR2 are shown in Table 2. For enhancing
the five hardware designs with the capability for partial reconfigu-
ration, the PRMs have an average overhead of around 0.6% of the
available slices, 0.74% of the available Flip-Flops, and 0.08% of the
available LUTs. An exception is that integrating the AES hardware
design with the hardware task template require 0.3% lesser LUTs
than the original hardware design due to synthesis compiler opti-
mizations. The implementation results in Tables 1 and 2 show that
Flip-flops LUTs

Used (#) % Used (#) %

32 0.1 177 0.6
224 0.7 323 1.1
192 0.6 146 0.5

32 0.1 297 1.0
224 0.7 459 1.6
192 0.6 162 0.6

32 0.1 503 1.7
288 1.0 637 2.2
256 0.9 134 0.5



Table 2
Resource usage for each PRM in PRR2.

HW Design Slices Flip-Flops LUTs

Used (#) % Used (#) % Used (#) %

MD5 Original 1203 8.3 994 3.4 2227 7.7
PRM 1333 9.2 1250 4.3 2228 7.7
Overhead 130 0.9 256 0.9 1 <0.1

RSA Original 503 3.5 463 1.6 905 3.1
PRM 625 4.3 687 2.3 1002 3.4
Overhead 122 0.8 224 0.7 97 0.3

DES Original 3472 24.2 5302 18.4 5146 17.9
PRM 3581 24.9 5502 19.1 5226 18.2
Overhead 109 0.7 200 0.6 80 0.2

3DES Original 3657 25.5 5571 19.4 5363 18.7
PRM 3689 25.7 5635 19.6 5419 18.8
Overhead 32 0.2 64 0.2 56 0.1

AES Original 8268 57.6 1162 4.0 15,972 55.7
PRM 8311 57.9 1442 5.0 15,892 55.4
Overhead 43 0.3 280 1.0 �80 �0.3

%: the utility rate in terms of all available resources;
Overhead: template overheads in PRM compared to original design.

Table 3
FPGA resource usage for UCoP.

HW design Slices Flip-Flops LUTs BRAMs

Used % Used % Used % Used %

SyncFIFO 60 0.4 70 0.2 83 0.2 4 4.2
SVIface 577 4.0 515 1.7 964 3.3 0 0
PRR1 576 4.0 1152 4.0 1152 4.0 9 9.3
PRR2 8704 60.7 17,408 60.7 17,408 60.7 64 67
Total 9917 69.1 19,145 66.7 19,607 68.3 77 80.3

SyncFIFO: Synchronous FIFO; SVIface: Spartan–Virtex interface; BRAMs: Block
RAMs;
%: the utility rate in terms of all available resources.

C.-H. Huang et al. / Journal of Systems Architecture 56 (2010) 88–102 97
the overheads occurred by the hardware task template are almost
negligible, which means the capability for dynamic reconfiguration
can be achieved with negligible cost.
5.2. Comparing conventional and dynamically partially reconfigurable
network security systems

We compare the conventional network security system with
DPRNSS in terms of FPGA resource requirements and static power
consumption, where both DPRNSS and NSS receive the same data
from the network for processing. To support all the three CRCs,
MD5, and the other four cryptographic functions, a conventional
NSS requires all the eight functions to be implemented and inte-
grated into the system design, whereas a DPRNSS can support all
the eight functions by implementing only two different sized PRRs,
namely a small PRR1 and a large PRR2. As shown in Fig. 9, the small
PRR1 configured with CRC32 and the large PRR2 configured with
DES are highlighted for displaying the relative locations in the
implementation results of DPRNSS. The overall resource usages
for DPRNSS are given in Table 3, where the Spartan–Virtex inter-
face also includes the resources for bus macros and global buffers.
Fig. 9. Implementation result of DPRNSS.
Note that, due to limited routing resources in the FPGA device, the
FPGA resource utilization cannot be increased beyond 70%.

As shown in Table 4, a conventional network security system
with all cryptographic and hash hardware designs needs 18,284
slices (127.5%), 14,173 Flip-Flops (49.4%), and 31,673 LUTs (11
0.4%) in terms of the Xilinx Virtex-II XC2V3000 FPGA, without
including the switch circuits between all the hardware designs. This
shows that all the hardware functions used in the DPRNSS cannot be
accommodated in the NSS, when the NSS uses the same amount of
logic resources of the XC2V3000 FPGA. However, the proposed
DPRNSS needs at most 9293 slices (64.8%), 2315 Flip-Flops (8%),
and 17,576 LUTs (61.3%) in terms of the Xilinx Virtex-II XC2V3000
FPGA, which presents the maximal resource usage by the PRMs of
CRC128 and AES as given in Tables 1 and 2, respectively. This not only
illustrates that DPRNSS can be implemented in the FPGA device, but
it is also more efficient in resource usage than NSS.

In a conventional NSS, the non-executing hardware designs
cause the problem of static power leakage. However, in a DPRNSS
with two PRRs, only one cryptographic hardware design and one
hash hardware design exist simultaneously. To perform power
comparisons, we measured the static power consumption for each
hardware design in the User FPGA using the Xilinx XPower tool.
The results are given in Table 5 for all the eight hardware designs.
Considering the worst case of using maximum power for each of
the two PRRs, that is, CRC128 in PRR1 and 3DES in PRR2, the
DPRNSS requires 543.30 mW. However, a conventional NSS re-
quires a total static power consumption of 765.87 mW. Thus,
DPRNSS results in a power reduction of 29.1%. Furthermore, NSS
and DPRNSS need additional time for hardware function switching
and for partial reconfiguration, respectively, when they both sup-
port all the eight hardware functions. Here, the inter-arrival time
of two network attacks must be lesser than the partial reconfigura-
tion time of the required hardware function, and the security of
data transfers through DPRNSS can be thus guaranteed. As a result,
according to our measurement and estimations, a DPRNSS design
can save 62.7% resources (slices) and 29.1% power consumption
Table 4
Resource comparisons between NSS and DPRNSS.

Hash & Crypt FIFO SVI Total %

Slices (#) NSS 17,647 60 577 18,284 127.5
DPRNSS 8656 60 577 9293 64.8

Flip-Flops (#) NSS 13,588 70 515 14,173 49.4
DPRNSS 1730 70 515 2315 8

LUTs (#) NSS 30,590 83 964 31,637 110.4
DPRNSS 16,529 83 964 17,576 61.3

Hash & Crypt: the total amount of logic resources for hash and cryptographic
hardware designs for NSS and the maximum ones for DPRNSS; FIFO: Synchronous
FIFO; SVI: Spartan-Virtex interface;
Total: the total amount of required logic resources; %: the utility rate in terms of all
available resources.



Table 5
Static power consumption.

Region HW design Power (mW)

PRR1 CRC32 1.77
CRC64 2.02
CRC128 2.11

PRR2 MD5 11.67
RSA 7.42
DES 108.54
3DES 115.91
AES 91.15

Static area 425.28

Table 7
Configuration time for each PRM.

Region PRMs Configuration time (ms)

PRR1 CRC32 93
CRC64 94
CRC128 94

PRR2 MD5 828
RSA 766
DES 859
3DES 844
AES 843
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compared to NSS. Furthermore, although extra resource overheads
incurred by the hardware task template need to be added in the
hardware designs, new user-designed hardware functions can be
easily integrated in the DPRNSS, that is, the functional scalability
of the DPRNSS is higher than that of the NSS. Due to the dynamic
adaptation of functionalities, DPRNSS is more flexible to meet
changing network environments compared to NSS. Thus, UCoP eas-
ily allows such a DPRNSS design to be feasible and efficient. Table 6
gives some empirical comparisons between NSS and DPRNSS.

5.3. Direct interaction with hardware architecture at a high-level
phase

Due to the integration of the platform APIs in UCoP, UML mod-
els can interact directly with actual hardware designs, and display
the results of such run-time interactions in the state machines and
sequence diagrams during simulation, instead of only printing the
results on a remote terminal. Design errors can be easily detected
in UCoP because the interaction results appear within the models,
which is very useful for debugging. Thus, the time consuming code
instrumentation method for debugging is thus avoided by UCoP.

In conventional UML-based system development methodolo-
gies [5,14,17,18], the system performance can only be estimated
by simulating the UML models before the system is implemented.
In contrast, the support for UML models to directly interact with
the real system hardware architecture in UCoP makes system per-
formance evaluation much more efficient and accurate. Efficiency
is achieved similar to the hardware-accelerated simulation para-
digm, here the partially reconfigurable hardware designs are not
simulation models but actual hardware. Accuracy is achieved be-
cause the physical constraints in a DPRS are all taken into consid-
eration in UCoP, unlike in commercial methods where most
constraints are abstracted in the UML models.

5.3.1. Configuration time analysis
The configuration time for each partial bitstream in the

DPRNSS is given in Table 7. We can observe that the configuration
times for the PRMs configured in PRR1 are approximately the
same and that for the PRMs configured in PRR2 are also approxi-
mately the same. Note that the reconfiguration time is directly
proportionate to the bitstream size, which in turn is directly pro-
portionate to the size of the PRR. A commonly used method to
estimate configuration time is based on the size of the synthesized
Table 6
Comparisons between NSS and DPRNSS.

Required
resources

Static power
consumption

Functional
scalability

System
flexibility

NSS High High Low Low
DPRNSS Low Low High High
hardware design in terms of the FPGA resource usage, such as
LUTs or slices. This estimation method gives accurate results only
if the underlying model is 1-dimensional or 2-dimensional [9]. It
does not work with the existing modular-design based method
promoted by the Xilinx tools, such as PlanAhead. Using the esti-
mation method in [9], the configuration time of the AES hardware
design is estimated to be 16 times that of the RSA design because
the FPGA resource usage (#LUTs) of the AES hardware design is 16
times that of the RSA hardware design as given in Table 2. How-
ever, AES and RSA hardware designs use the same PRR, thus their
actual configuration times are similar. In DPRNSS, all crypto-
graphic hardware designs are placed in the same PRR, so the sizes
of their partial bitstreams are almost the same. Thus, the reconfig-
uration times for the cryptographic hardware designs in the PRR2

are also the same. The synthesis-based estimation method [9] can-
not guarantee the timing correctness and the performance of a
system until the final system is created. In contrast, by using UCoP
the real reconfiguration time is incurred so the users can more
accurately analyze the system performance even before the final
system is implemented.

5.3.2. Security analysis
In DPRNSS, the currently used cryptographic hardware design

can be reconfigured into a new one at run-time based on the net-
work security status. The four cryptographic hardware designs,
namely RSA, DES, 3DES, and AES, are mapped into four security lev-
els, from low to high, respectively. When the attack monitor de-
tects that the number of network attacks in the previous time
window is more than the number of attacks that the current cryp-
tographic hardware design can be susceptible to in a constant time
period, the DPRNSS sends a message to the remotely connected
system for querying whether it can support another more secure
cryptographic function of a higher level of security for future data
decryptions. After the negotiation is successful, the DPRNSS starts
to reconfigure its cryptographic hardware design into a more se-
cure cryptographic design for future data encryptions.

Note that in a real-time environment, DPRNSS can still be sus-
ceptible to network attacks when the inter-arrival time of two net-
work attacks is lesser than the configuration time of the required
cryptographic hardware design. As shown in Table 7, the maxi-
mum configuration time is 859 ms, which means that if two con-
secutive network attacks do not occur within 859 ms, then
DPRNSS can guarantee security by changing through dynamic
reconfiguration.

In the future, the DPRNSS will be implemented on another FPGA
device with more logic resources. If a request for partial reconfigu-
ration is received, a required cryptographic hardware design can be
pre-configured in another PRR, while the data is still being trans-
ferred to the original cryptographic hardware design. After the par-
tial reconfiguration finishes, the original data transfers are then
redirected to the new cryptographic hardware design for non-
interrupted encryption.



Table 8
Total latency analysis for each PRM.

Region HW design Type Estimated Measured
SF06 [16] (ls) Eq. (1) (ls)

PRR1 CRC32 Hash 35.78 22.61
CRC64 Hash 39.42 28.06
CRC128 Hash 52.10 39.41

PRR2 MD5 Hash 87.12 81.60
RSA Encrypt 41.86 53.99

Decrypt 41.86 54.60
DES Encrypt 74.25 75.33

Decrypt 74.25 74.60
3DES Encrypt 97.63 106.92

Decrypt 97.63 107.10
AES Encrypt 121.21 122.01

Decrypt 121.21 123.81
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5.3.3. Execution time analysis
Two different methods for the execution time estimation are

adopted to show the advantage of the direct interaction with the
real system hardware architecture in UCoP. In order to analyze
the execution process for each cryptographic and hash hardware
design, the execution time for each hardware design in the UCoP
needs to be first defined. Given input data of Din-bits, output data
of Dout-bits, data size of Dpci-bits for each data transfer iteration
over the PCI bus, data write and data read transfer time of dwr

and drd microseconds, respectively, for each iteration over the PCI
bus, initialization time of Tpci microseconds for starting data trans-
fer over the PCI bus, pure execution time of Te microseconds for a
hardware design in UCoP, the total latency is Ttotal as depicted in
Equation (1).

Ttotal ¼ Tpci þ
Din

Dpci

� �
� dwr

� �
þ Te þ

Dout

Dpci

� �
� drd

� �
ð1Þ

The measured total latency Ttotal includes not only the pure exe-
cution time Te of a processing iteration for a hardware design, but
also the time overheads of data transfers over the PCI bus. In [16],
the authors measured the time necessary to transfer sequences of
32-bit values for obtaining the lower-bound on data transfers
which is then used to estimate system performance. Using the low-
er-bound estimation method [16], the average time per register ac-
cess for different numbers of registers over the PCI bus were
measured as illustrated in Fig. 10, where Write/Read presents that
the time taken per operation when writes and reads are inter-
leaved. According to the experimental results in Fig. 10 and the
lower-bound estimation method [16], the total latency for each
hardware design can be estimated according to its number of reg-
ister accesses. For example, as shown in Fig. 10, data encryption
using the AES hardware design requires 17 register accesses, and
the average time per register access is 7.13 ls. As a result, accord-
ing to the lower-bound estimation method [16], we can estimate
the total latency for data encryption using the AES hardware de-
sign as 121.21 ls. The total latencies for all the cryptographic
and hash hardware designs using the lower-bound estimation
method are listed in the fourth column of Table 8. Compared to
the total latencies measured in UCoP, as shown in the fifth column
of Table 8, the results of the lower-bound estimation method [16]
is close to our measured results, but have inaccuracies ranging
from �23.3% to 58.2%. This shows the importance of direct interac-
tion with hardware in UCoP.

In UCoP, to obtain the pure execution time Te for a hardware de-
sign in UCoP, we first measured the time interval between the start
of data processing by a hardware design and the time when the
done signal is received by the UML models of UCoP via the PCI
Fig. 10. Average time per register access.
bus. This shows that the measured time consists of the pure execu-
tion of a hardware design and the latency of a register access. To
estimate and eliminate the access latency over the PCI bus, we fur-
ther conducted extensive experiments for the measurements of the
data read time drd and the data write time dwr over the PCI bus as
shown in Fig. 10, where we can observe that for larger number
of register accesses the average time per register access gradually
converges to a constant that is approximately 5700 ns. As a result,
the pure execution time Te for each hardware design in UCoP is the
originally measured time exclusive of the access latency over the
PCI bus. The pure execution time for all the cryptographic and hash
hardware designs measured in UCoP is listed in Table 9.

Another method we proposed in [9] to estimate the hardware
execution time considered the hardware simulation and the syn-
thesis results, where the pure execution time for each hardware
function was calculated by the number of clock cycles required
for a processing iteration and the estimated frequency from its
synthesis reports. Compared to the simulation and synthesis-based
method, the method proposed in UCoP is more accurate because
the execution time was obtained by actually measuring it. For
example the method in [9] estimates the execution times for the
3DES decryption and for RSA encryption as 1129 and 9366 ns,
respectively, which are both underestimated. Compared to the real
execution time as shown in Table 9, the estimation method [9] re-
sults in a worst-case inaccuracy of �90.8%. Due to the inaccurate
hardware execution time estimations, such as in [9,16], many more
iterations between the UML modeling and the implementation
phases are needed for the development of a DPRS. In UCoP, the di-
rect interaction of UML models with the hardware architecture
gives accurate measurements of the hardware executions, which
shows the superiority of UCoP over existing estimation methods.
Table 9
Pure execution time for each PRM.

Region HW design Type Exec time (ns)

PRR1 CRC32 Hash 6609
CRC64 Hash 6815
CRC128 Hash 6718

PRR2 MD5 Hash 6687
RSA Encrypt 18,090

Decrypt 18,030
DES Encrypt 6078

Decrypt 6082
3DES Encrypt 12,530

Decrypt 12,323
AES Encrypt 6605

Decrypt 6639



Fig. 11. State machine diagram for attack monitor and application classes.

Fig. 12. State machine diagram for configure class.
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6. Conclusions and future work

We proposed a UML-based hardware/software co-design plat-
form (UCoP) for dynamically partially reconfigurable network secu-
rity systems (DPRSNSS). Compared to the traditional network
security embedded system, our proposed hardware architecture
not only makes use of the advantages in implementing crypto-
graphic hardware designs in the FPGA, but can also be partially
reconfigured at run-time according to different security needs. A
partially reconfigurable hardware template was provided for the
users to easily integrate their cryptographic hardware designs
into the proposed platform, which makes the platform more
scalable. Furthermore, the UML models of the platform can
directly interact with the real system architecture so that the
users can more accurately estimate the power consumption,
the configuration time and the execution time of each hardware
design, and also the performance of the system at a high-level
modeling phase, thus significantly reducing the system develop-
ment efforts.

In the future, we will integrate a SystemC-based estimator for
hardware/software design partitioning and task scheduling so
that the system development on the proposed platform can be
more complete and robust. Moreover, the extensions of a hard-
ware design with the capability for dynamic swapping [9] will
be integrated into our partially reconfigurable hardware architec-
ture such that a higher system performance can be achieved.



Fig. 13. A sequence diagram for the DPRNSS.
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Appendix A. Other UML diagrams for DPRNSS

See Figs. 11–13.
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