
Mutation Coverage Estimation for Model
Checking

Te-Chang Lee and Pao-Ann Hsiung

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan−621, ROC

hpa@computer.org

Abstract. When engineers design a system, there is always a question
about how exhaustive the system has been examined to be correct. Cov-
erage estimation provides an answer to this question in testing. A model
checker verifies a design exhaustively, and proves the satisfaction of prop-
erty specifications. However, people have noticed that design errors exist
even after model checking is done, which goes to show that the question
“How complete is the model checking once done?” is still left relatively
unaddressed by model checkers, except for some state-based coverage
metrics and the coverage estimator for symbolic simulation in RED. As
a more complete solution, we propose several structural mutation models
and coverage metrics to cover different design aspects in a state graph
and to estimate the completeness of model checking, respectively. Once
a system state graph satisfies a given set of property specifications, we
estimate the coverage of completeness for the set of properties by ap-
plying some mutations to the state graph and checking if the given set
of properties is sensitive to the mutation. Our experiences on five ap-
plication examples demonstrate how the proposed coverage estimation
methodology helps verification engineers to find the uncovered hole.

1 Introduction

A model checker explores all possible states of a system model and proves if
it satisfies a given set of property specifications. If a system does not satisfy
a property specification, a model checker will provide a counterexample, that
is, a system computation to show how it ran into a wrong state. With the ca-
pability to exhaustively verify a system, this method has successfully verified
complex circuit designs and communication protocols. However, model checking
still faces some obstacles, we are not sure if a design will function correctly even
after model checking. At the worst, we may have checked a model satisfies a vac-
uous property, which does not check anything meaningful. Take as an example, a
property AG(req → AF(granted)) to check if a model is starvation-free. If there
are no requests issued in a system model, this property is indeed true. Though
we can detect such vacuous properties [3], but how do we know whether a given
set of properties fully verifies the whole model. Due to this need, Hoskote et al.
[9] defines a state coverage metric in symbolic model checking. The computa-
tion algorithm is based on mutating an observed signal at a certain state, and

F. Wang (Ed.): ATVA 2004, LNCS 3299, pp. 354–368, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Mutation Coverage Estimation for Model Checking 355

this state is covered if the truth values of properties are changed. Some other
research work [5,6,7,10] are all based on this state coverage metric, which do not
consider the computation runs or behavior of a system model. To obtain a more
comprehensive coverage, we propose coverage metrics that not only considers
the individual states, but also takes the behavior of models into consideration.

Coverage has been widely applied in simulation and testing in the recent few
decades. Various metrics have been proposed and applied to real world cases to
assess progress of the verification. A low coverage will allow lots of interesting
corner cases to escape, which always leads to functional failure. On the contrary,
100% coverage means that the corresponding kind of error is fully verified by the
given test patterns. Model checking faces the same situation, the given properties
may overlook some desired behaviors of a system. Based on our verification
experiences, we know there are lots in common between simulation and formal
verification. Because of the similarity, we can adapt existing test based coverage
techniques to ensure the quality and reliability of model checking. Some prior
researches also tried to apply coverage estimation to formal verification. Some
mutation metrics we proposed here are inspired by coverage metrics in testing.

In contrast to state coverage metrics [5,6,7,9,10] being static estimates on
model structure, our proposed metrics estimate the coverage of behavior for a
system design model. Six mutation models and coverage metrics are proposed
to address different aspects of a system design. We implement the six metrics
for coverage estimation, and integrate them into overall coverages. We provide a
comprehensive estimation of the target model with respect to the specifications.
We can prove that the proposed metrics are suitable for analyzing the model
checking efforts.

The remaining portion is organized as follows. Section 2 gives the coverage
approaches in simulation and pioneer researches in improving quality of formal
verification. Some related definitions are given in Section 3. Section 4 will for-
mulate each of our metrics and show how the values of coverage of metrics are
calculated. The overall estimation methodology is also described in this section.
In Section 5, we apply the new methodology to some real cases, we employ cov-
erage analysis to find the uncovered holes and specify more detailed properties
to uncover design holes. The article is concluded and future research directions
are given in Section 6.

2 Previous Work

Coverage estimation has been used to assess the quality of design and imple-
mentation verification for a long time. For both software and hardware, we feed
test cases into a program or a circuit and observe if outputs are correct. After
test for expected scenarios, most verification engineers think the verification is
done and prepare to tape out. However, due to design getting more and more
complicated, more unexpected errors escape from verification. Some of them
cause huge financial damage, even threatening peoples’ lives. To achieve more
reliable verification, coverage estimation is employed in general. Coverage pro-

356 T.-C. Lee and P.-A. Hsiung

vides a quantitative way to assess how thorough is the verification we have done.
Coverage-driven testing has been the main stream of modern hardware simula-
tion, which use coverage to direct the generation of test vectors for exercising
untested functions. Many coverage metrics have been been proposed and applied
in simulation. Each of them have been created for different needs.

Code coverage [13] measures how complete a piece of HDL code has been
exercised by a given set of test patterns. For example, statement coverage cal-
culates the percentage of lines of code stimulated during simulation, so that
designers can redirect the generation of test suite or modify the HDL program
to gain higher coverage. However, the interaction between modules, simultaneous
events, and sequences of events are not evaluated. In spite of these drawbacks,
this kind of metrics is simple and easy to understand, verification engineers treat
them as the basic requirements of design validation.

Fault simulation [14] is widely employed in gate-level circuit testing. It esti-
mates the fault coverage with respect to several kinds of fault model. By simu-
lating the test pattern upon faulty models, we can calculate how many injected
faults are detected by comparing the output to the original one. Fault coverage
is calculated as the proportion of detected faults to injected faults. Some gate-
level fault models can also be applied to higher-level designs [1,12]. We exploit
the principle in these techniques in our proposed formal approach. Experience
in testing shows that fault simulation is an effective way to reflect the target
fault and directs test pattern generation. Applying the adequate fault models
can make sure that interested faults are under verification.

There are some other prior approaches proposed to address the same problem
in formal verification. Vacuity detection [3] of the specification provides an an-
swer on the validity of individual properties. Some properties are trivially true
like antecedent failure. In their experience, about 20 percent formulae passed
vacuously during the first verification. Vacuity detection can avoid those mean-
ingless properties to decrease verification load. Another approach is to estimate
the coverage of a specification with respect to a system model [9,11]. Katz et al.
[11] suggested that the reduced tableau of a set of ACTL properties should be
bisimilar to the implementation. The relevance between the implementation and
the specification is compared to estimate verification coverage and to find out
the incompleteness of the model or the insufficiency of the specification. Hokote
et al. proposed a state coverage metric, which was inspired by mutation cover-
age [17]. They apply a mutation on an observable signal in a particular state. A
state is covered if the mutation leads to the violation of a given property. The
authors of [10] improve the algorithm from [9] to be more efficient and general.
The seminal work of Hoskote et al. [9] was also extended to LTL model checking
[5], to full CTL model checking [6], and to the simulation of specifications [4].
However, all these work are based on the state coverage metric. Chockler et al.
[7] made a brief survey of several different kinds of coverage metrics for formal
verification, but did not address the practicality of the metrics, nor provide any
application examples to show their usability.

Mutation Coverage Estimation for Model Checking 357

Wang et al. proposed several numerical coverage metrics for the symbolic
simulation of real-time systems [16]. Four criteria were introduced for analyzing
coverage metric properties. Coverage metrics were also proposed for region spaces
in that work. The coverage estimator for symbolic simulation was implemented
in the RED model checker for real-time systems.

In this work, we propose a formal coverage estimation methodology for ana-
lyzing the completeness of a set of specification properties in the model checking
of real-time systems. We use a mutation-based approach where a state-graph
model is mutated and it is checked if a given set of properties can distinguish
the mutation. Six different mutation models and corresponding coverage metrics
are proposed. In contrast to conventional state-based metrics, we also propose
behavioral (transition-based) metrics, which is similar in some respects to that
proposed in [16], except that it is used for estimating the model coverage by
a set of properties. The proposed mutation models and coverage metrics were
implemented in the State-Graph Manipulators (SGM) model checker [15].

3 System Model and Specification

Our system model with real-time clocks is based on the timed automata model
[2], which is defined as follows.

Definition 1. Mode Predicate
Given a set C of clock variables and a set D of discrete variables, the syntax of
a mode predicate η over C and D is defined as: η := false | x ∼ c | x − y ∼ c |
d ∼ c | η1 ∧ η2 | ¬η1, where x, y ∈ C, ∼ ∈ {≤, <,=,≥, >},c ∈ N , d ∈ D, and
η1, η2 are mode predicates.

Let B(C, D) be the set of all mode predicates over C and D.

Definition 2. Timed Automaton
A Timed Automaton (TA) is a tuple Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti, λi, τi, ρi)

such that: Mi is a finite set of modes, m0
i ∈ M is the initial mode, Ci is a set

of clock variables, Di is a set of discrete variables, Li is a set of synchronization
labels, and ε ∈ Li is a special label that represents asynchronous behavior (i.e.
no need of synchronization), χi : Mi �→ B(Ci, Di) is an invariance function
that labels each mode with a condition true in that mode, Ti ⊆ Mi × Mi is
a set of transitions, λi : Ti �→ Li associates a synchronization label with a
transition, τi : Ti �→ B(Ci, Di) defines the transition triggering conditions, and
ρi : Ti �→ 2Ci∪(Di×N) is an assignment function that maps each transition to
a set of assignments such as resetting some clock variables and setting some
discrete variables to specific integer values.

A system state space is represented by a system state graph as defined in
Definition 3.

Definition 3. System State Graph
Given a system S with n components modeled by Ai = (Mi, m

0
i , Ci, Di, Li, χi, Ti,

358 T.-C. Lee and P.-A. Hsiung

λi, τi, ρi), 1 ≤ i ≤ n, the system model is defined as a state graph represented
by A1 × . . . × An = AS = (M, m0, C, D, L, χ, T, λ, τ, ρ), where:

– M = M1 ×M2 × . . .×Mn is a finite set of system modes, for a system mode
m = m1.m2.mn ∈ M , we use the shorthand m(i) to denote the mode
mi.

– m0 = m0
1.m

0
2.m

0
n ∈ M is the initial system mode,

– C =
⋃

i Ci is the union of all sets of clock variables in the system,
– D =

⋃
i Di is the union of all sets of discrete variables in the system,

– L =
⋃

i Li is the union of all sets of synchronization labels in the system,
– χ : M �→ B(

⋃
i Ci,

⋃
i Di), χ(m) = ∧iχi(mi), where m = m1.m2.mn ∈

M .
– T ⊆ M × M is a set of system transitions which consists of two types of

transitions:
• Asynchronous transitions: ∃i, 1 ≤ i ≤ n, ei ∈ Ti such that ei = e ∈ T
• Synchronized transitions: ∃i, j, 1 ≤ i
= j ≤ n, ei ∈ Ti, ej ∈ Tj such that

λi(ei) = (l, in), λj(ej) = (l, out), l ∈ Li ∩ Lj
= ∅, e ∈ T is synchroniza-
tion of ei and ej with conjuncted triggering conditions and union of all
transitions assignments (defined later in this definition)

– λ : T �→ L associates a synchronization label with a transition, which repre-
sents a blocking signal that was synchronized, except for ε ∈ L.

– τ : T �→ B(
⋃

i Ci,
⋃

i Di), τ(e) = τi(ei) for an asynchronous transition and
τ(e) = τi(ei) ∧ τj(ej) for a synchronous transition, and

– ρ : T �→ 2
⋃

i Ci∪(
⋃

i Di×N), ρ(e) = ρi(ei) for an asynchronous transition and
ρ(e) = ρi(ei) ∪ ρj(ej) for a synchronous transition. �

For hardware and software designs, a property specification is usually ex-
pressed in some temporal logic. The SGM model checker chooses TCTL as its
logical formalism, as defined below.

Definition 4. Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following syntax:

φ ::= η | EGφ′ | Eφ′U∼cφ
′′ | ¬φ′ | φ′ ∨ φ′,

where η is a mode predicate, φ′ and φ′′ are TCTL formulae, ∼ ∈ {<,≤, =,≥, >},
and c ∈ N . EGφ′ means there is a computation from the current state, along
which φ′ is always true. Eφ′U∼cφ

′′ means there exists a computation from the
current state, along which φ′ is true until φ′′ becomes true, within the time
constraint of ∼ c. Traditional shorthands like EF, AF, AG, AU, ∧, and →
can all be defined [8].

4 Mutation Coverage Estimation

Coverage estimation techniques for formal verification such as model checking
are not as mature as that for simulation-based verification. A well-studied metric
is a purely state-based one [4,5,6,9], where an observed signal in a state is flipped

Mutation Coverage Estimation for Model Checking 359

(value toggled) to check if the satisfaction of any user-given property is affected
(model checking result toggled). If the model checking result differs after toggling
a signal value in a state, then the state is said to be covered. Intuitively, besides
an observed signal in a state, there are other basic elements in a state-transition
model that also needs to be covered [7,16]. This work provides some basic insights
to the coverage estimation techniques based on mutating other elements of a
system model.

This work is based on mutation coverage, which makes changes to a system
model and then checks if a given property suite can detect those changes. Mu-
tating a system model can be done is two ways: (1) Semantic Mutation, that is,
changing the value some basic elements in the model, e.g., variable values in a
state, clock resets along a transition, etc., and (2) Structural Mutation, that is,
changing the structure of the model, e.g., inserting or deleting a state or a tran-
sition. Currently, our work is focused on structural mutation for timed automata
with timed computation tree logic properties.

Similar to the conventional fault models in simulation-based testing, we pro-
pose structural mutation models that can be applied to system state-space rep-
resentations such as state graphs. Henceforth, unless explicitly mentioned, we
will simply use mutation models to denote structural mutation models.

A mutation model is a small change that is applied to some basic element
of a system model such as a mode or a transition of a state graph. Given a
state-graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a mutation model µ that is
applicable to some basic element b ∈ M ∪T , the resulting state-graph is called a
mutated state graph and is denoted as Aµ(b) = (M ′, m′0, C, D, L, χ′, T ′, λ′, τ ′, ρ′).
If Aµ(b), m′0
|= φ for some φ ∈ P then the mutation µ(b) is said to be covered
by φ and the mode or transition b is said to be covered by φ. A property φ is
said to be insensitive to a mutation µ(b) on a state graph A if Aµ(b), m′0 |= φ
unvacuously. A mutation µ(b) is said to be not covered by P if Aµ(b), m′0 |= φ
for all φ ∈ P .

4.1 Coverage Estimation Methodology

Our target mutation coverage estimation problem can be formulated as follows.
Given a system modeled by a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), a
set of properties specified as TCTL formulae P = {φ}, and a mutation model
µ, suppose A, m0 |= φ,∀φ ∈ P , estimate the completeness of P with respect to
A and µ, where completeness is the fraction of the mutations detected by some
property in P .

As shown in Figure 1, a solution to the above stated problem is proposed
as a mutation coverage estimation procedure that can be integrated with model
checking. Given a system state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a
set P = {φ} of TCTL property specifications, the mutation coverage estimation
procedure starts only after it is verified that A, m0 |= φ for all φ ∈ P . In
other words, if a system state graph violates some given properties, a designer
should revise the model or the properties before estimating the coverage. When
a state graph satisfies all given properties, a mutation model µ is applied to

360 T.-C. Lee and P.-A. Hsiung

Model

Checking

TCTL

Property

Specification

System

State

Graph

All

specifications

satisfied?

No

Model

Checking

Yes

Overall

Coverages

Coverage

Metric

Estimation

Verification

Complete
High Low

Refine

the

System

model

OR

Revise

the

Specifications

Mutated

Systems

Apply

Mutation

Models

Fig. 1. Coverage Estimation Methodology

some basic element b ∈ M ∪ T of the graph to obtain a mutated state graph
Aµ(b). Model checking is re-performed on the mutated graph and it is checked if
the mutation is covered (Definition 5). The application of mutation model and
the model checking are repeated for each mode or each transition depending on
the mutation model. After coverage estimation, if the value of a coverage metric
is too low, that is, smaller than some user-defined threshold value, then more
properties are to be specified by analyzing the uncovered parts in a state graph.

Definition 5. Covered Mutation
For a given system state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a set of
TCTL properties P = {ϕ}, suppose A, m0 |= ϕ for all ϕ ∈ P . Further, for a given
mutation model µ that is applied on some element b ∈ M ∪T of the state graph
A, suppose the mutated state graph is Aµ(b) = (M ′, m′0, C, D, L, χ′, T ′, λ′, τ ′, ρ′).
If Aµ(b), m′0
|= ϕ, for some ϕ ∈ P , then the mutation µ(b) is said to be covered
by P for A.

In this work, we propose several mutation models and corresponding
mutation-based coverage metrics to aid engineers in analyzing if a set of proper-
ties has covered most functionalities of a system. The proposed coverage metrics
are calculated automatically without any effort beyond model checking. Ideally,

Mutation Coverage Estimation for Model Checking 361

the coverage should achieve 100% for each proposed metric, which implies the
given set of specifications has covered every corner of a system design in each
design aspect. However, when a state space becomes large, it is really hard to
achieve 100% coverage for each metric, especially the transition-based ones.

The value of a coverage metric cov(A, P, µ) with respect to a mutation model
µ for a state graph A and a set of properties P is a ratio of the number of covered
mutations to the total number of mutations applied, where covered mutations are
as defined in Definition 5 and total number of mutations is the total number of
basic elements reachable in a state graph, to which the corresponding mutation
was applied.

cov(A, P, µ) = #Covered Mutations
#Total Mutations = |{b|∃φ∈P,Aµ(b) �|=φ}|

|{b}| (1)

In the above, the total number of mutations differ based on whether the
mutation was applied to system modes or transitions.

For a given state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a set {ϕ} of
TCTL formulae, the complexity of labeling in model checking A against ϕ is
| ϕ | × | A |, where | ϕ | is the number of sub-formulae in ϕ and | A |= |M |+ |T |
is the size of the state-graph. The complexity of our proposed mutation-based
coverage estimation is O(model checking) × |M | for state-based mutations and
O(model checking) × |T | for transition-based mutations.

If any entry of TCTL properties has zero coverage for all metrics, this prop-
erty is said to be vacuous. This feature is similar to vacuity detection [3].

4.2 Mutation Models and Coverage Metrics

Based on our verification experiences, we propose six different structural muta-
tion models and corresponding coverage metrics. Each mutation model charac-
terizes a different aspect of a system state graph and identifies different charac-
teristics of TCTL properties. In general, a more restricted property will cover
more parts of a system model. For example, when the time interval in a TCTL
formula gets shorter, the larger is the coverage. On the contrary, the satisfaction
of an eventuality property EFφ only requires a state satisfying φ along some
path. So, it always covers few states, but several transitions. In the following,
we will assess each mutation model and corresponding coverage metric when
verifying different kinds of properties. Metrics can also be combined together to
give overall estimations.

Mutated Initial. This model is a mode-based mutation that changes the
initial mode of a system state graph to be another one. Given a state graph A =
(M, m0, C, D, L, χ, T, λ, τ, ρ), the mutated initial model µinitial when applied to
a non-initial mode m ∈ M, m
= m0 gives a mutated state graph Aµinitial(m) =
(M, m, C, D, L, χ, T, λ, τ, ρ).

An initial state specifies the initial values of all variables in the system. For
a good system design, each initial value should be explicitly specified, that is,

362 T.-C. Lee and P.-A. Hsiung

there should be a unique initial state. If a property specifies initial values for
all variables, that is, it is satisfied only in a particular initial state, then the
corresponding coverage estimation metric will take a value of 100 %. Otherwise,
it will be a percentage of the number of non-initial states that cannot play
the role of an initial state. A formal definition of the coverage metric for this
mutation model is given in Equation 2.

cov(A, P, µinitial) = |{m|m∈M,∃φ∈P,Aµinitial(m),m �|=φ}|
|M |−1 (2)

Because this model changes only the initial mode to another one and because
the labeling algorithm in model checking does not distinguish between initial
and non-initial states, the labels in the modes need not be re-computed. Hence,
the coverage estimation procedure for this mutation model is constant for each
iteration.

Delayed Transition. This model is a transition-based mutation that delays
a mode transition by inserting a new mode between the source and destination
modes of the transition. For each transition e = (ms, md) ∈ T , a new mode m
is inserted between ms and md such that the following conditions are met: (1)
χ(m) = χ(ms), (2) the transition e′ = (ms, m) is non-deterministically timed
that is τ(e′) = true, and (3) the transition e is now changed to originate from m,
that is, e = (m, md). Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), the
delayed transition model µdelay when applied to a transition e = (ms, md) ∈ T
gives a mutated state graph Aµdelay(e) = (M ′, m0, C, D, L, χ′, T ′, λ′, τ ′, ρ′), where
M ′ = M ∪{mdelay}, mdelay is a newly introduced mode, χ′(m) = χ(m),∀m ∈ M
and χ′(mdelay) = χ(m), T ′ = T ∪ {(ms, mdelay), (mdelay, md)}\{e}, λ′(e′) =
λ(e′),∀e′ ∈ T\{e}, λ′((ms, mdelay)) = ε, λ′((mdelay, md)) = λ(e), τ ′(e′) =
τ(e′),∀e′ ∈ T\{e}, τ ′((ms, mdelay)) = true, τ ′((mdelay, md)) = τ(e), ρ′(e′) =
ρ(e′),∀e′ ∈ T\{e}, ρ′((ms, mdelay)) = ∅, and ρ′((mdelay, md)) = ρ(e).

The coverage metric corresponding to the delayed transition model is defined
in Equation (3).

cov(A, P, µdelay) = |{e|e∈T,∃φ∈P,Aµdelay(e),m0 �|=φ}|
|T | (3)

This metric provides a measure of whether the timing in a system design is
correct to the specification. The metric was inspired by the delay fault models
found in simulation-based coverage estimation.

Stuttering Mode. This model is a mode-based mutation that adds a self-loop
transition to a mode. Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), the
stuttering mode model µstutter when applied to a mode m ∈ M gives a mutated
state graph Aµstutter(m) = (M, m0, C, D, L, χ, T ′, λ′, τ ′, ρ′), where T ′ = T ∪ {e},
e = (m, m), λ′(e) = ε, τ ′(e) = true, ρ′(e) = ∅, and all other transitions have
unaltered synchronization labels, triggers, and assignments.

Applying the stuttering mode mutation model to a mode creates a single-
node strongly connected component (SCC) if the mode itself was not in an SCC

Mutation Coverage Estimation for Model Checking 363

before mutation. SCCs are required for infinite computation runs such as in
checking fairness constraints and in checking CTL properties such as EGφ and
AFφ. In hardware systems, such a mutation model has an effect of allowing
a component to remain in a particular state forever, while still synchronizing
with a clock along the looping transition. The coverage metric corresponding to
this mutation model is thus an estimation of the number of modes that could
be detected by the properties if they were to stutter. Though this metric is a
mode-based one, it actually estimates the progress of transitions or computation
runs.

cov(A, P, µstutter) = |{m|m∈M,∃φ∈P,Aµstutter(m),m0 �|=φ}|
|M | (4)

Skipped Mode. This model is a mode-based mutation that makes a non-
initial mode unreachable by redirecting all of its incoming transitions to all of its
child modes. Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), the skipped
mode model µskip when applied to a mode m ∈ M, m
= m0 gives a mutated
state graph Aµskip(m) = (M ′, m0, C, D, L, χ′, T ′, λ′, τ ′, ρ′), where M ′ = M\{m},
χ′(m′) = χ(m′),∀m′ ∈ M ′, T ′ = T\{e | e = (ms, m)} ∪ {e | e = (ms, md), ms,
md are the predecessor and successor modes of m, for each new transition e′ that
corresponding to a deleted transition e, λ′(e′) = λ(e), τ ′(e) = τ(e), ρ′(e) = ρ(e),
and all other transitions have unaltered synchronization labels, triggers, and
assignments.

This mutation model has a reversed effect compared to that of the Delayed
Transition model because skipping a mode implies a reduction of the compu-
tation run into a shorter one, which in turn, implies a shorter time is required
to reach the modes beyond the skipped one. The temporal sequence of modes
differs after mutation. This mutation model is not applied on the initial state
because it has no incoming transition.

Since the skipped mode mutation model tests the presence of each individual
mode, the corresponding coverage metric is an estimation on the number of
modes whose existence can be detected by a set of properties.

cov(A, P, µskip) = |{m|m∈M,m �=m0,∃φ∈P,Aµskip(m),m0 �|=φ}|
|M |−1

(5)

Removed Transition. This model is a transition-based mutation that deletes
a transition from a state graph. This mutation checks if the existence of a transi-
tion is detectable by a given set of property specifications. If a property is sensi-
tive to the existence of a particular transition, then it will not be satisfied in the
mutated state graph. Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), the
removed transition model µremoved when applied to a transition e = (ms, md) ∈
T gives a mutated state graph Aµremoved(e) = (M ′, m0, C, D, L, χ′, T ′, λ′, τ ′, ρ′),
where M ′ = M\{m | m ∈ M, m is unreachable after removing e}, χ′(m′) =
χ(m),∀m′ = m ∈ M ′∩M , T ′ = T\{e′ | e′ ∈ T, e′ is unreachable after removing
e}, and all remaining transitions in T ′ have the same synchronization labels, trig-
gers, and assignments as their original counterpart in T .

364 T.-C. Lee and P.-A. Hsiung

The coverage metric corresponding to the removed transition mutation model
gives an estimate on the number of transitions whose existence can be detected
by a given set of properties.

cov(A, P, µremoved) = |{e|e∈T,∃φ∈P,Aµremoved(e),m0 �|=φ}|
|T | (6)

Mutated Invariant. This model is a mode-based mutation and is a simpli-
fication of that proposed by Hoskote et al. in [9]. In this mutation, instead of
toggling the value of an observed signal in a state, its invariant is changed. This
is more of a semantic mutation than a structural one.

In our implementation, we have skipped the observability transformation
and the dual operation on observed propositions as defined in [9]. Further,
we mutate each mode twice: once with the false invariant and once with the
true invariant. Model checking is also done twice for each mutated mode.
Then, we take the union of the covered modes as the coverage for this
mutation model. If a mode with a false/true invariant does not affect the
satisfaction of any given property, then the mode is not covered. Given a
state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ), the mutated invariant model
µinv when applied to a mode m ∈ M gives two mutated state graphs
Aµinv(m,true) = (M, m0, C, D, L, χ′, T, λ, τ, ρ), where χ′(m′) = χ(m′),∀m′
= m
and χ′(m) = false, and Aµinv(m,false) = (M, m0, C, D, L, χ′, T, λ, τ, ρ), where
χ′(m′) = χ(m′),∀m′
= m and χ′(m) = true.

As defined in Equation (7), the coverage metric corresponding to the mutated
invariant mutation model gives an estimation on the number of modes that can
be detected once its invariant is set to false.

cov(A, P, µinv) = |{m|m∈M,∃φ∈P,(Aµinv(m,true),m0 �|=φ) ∨ (Aµinv(m,false),m0 �|=φ)}|
|M |

(7)

4.3 The Overall Coverages

After computing coverage respect to each metric, we can also calculate the over-
all coverages. The overall coverages show how many parts of a design were ever
covered by any metric and integrates all related metrics to show the holes that
were never covered in any metric computation for a given set of property speci-
fications.

Based on the basic element we apply mutation to, that is, the type of muta-
tion model, we classify the metrics into two categories.

– Mode Coverage Metrics: The metrics corresponding to mode-based muta-
tion models including Mutated Initial, Stuttering Mode, Skipped Mode, and
Mutated Invariant are called mode coverage metrics.

– Transition Coverage Metrics: The metrics corresponding to transition-based
mutation models including Delayed Transition and Removed Transition are
called transition coverage metrics.

Mutation Coverage Estimation for Model Checking 365

Definition 6. Overall Mode Coverage
Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a set of TCTL prop-
erties P = {φ}, the overall mode coverage is defined as ratio of modes covered by
any one of the four mode coverage metrics for P . Let the sets of covered states for
each of the mode coverage metrics be, respectively, CSinitial, CSstutter, CSskip,
and CSinv. These sets are defined in the numerators of the fractions in Equa-
tions 2, 4, 5, and 7, respectively. The overall mode coverage is then defined as
in Equation (8).

cov(A, P, µmode) = CSinitial ∪ CSstutter ∪ CSskip ∪ CSinv

|M | (8)

Definition 7. Overall Transition Coverage
Given a state graph A = (M, m0, C, D, L, χ, T, λ, τ, ρ) and a set of TCTL prop-
erties P = {φ}, the overall transition coverage is defined as ratio of transitions
covered by any one of the two transition coverage metrics for P . Let the sets of
covered transitions for each of the transition coverage metrics be, respectively,
CTdelay and CTremoved. These sets are defined in the numerators of the frac-
tions in Equations 3 and 6, respectively. The overall transition coverage is then
defined as in Equation (9).

cov(A, P, µtrans) = CTdelay ∪ CTremoved

|T | (9)

5 Experimental Results

We have implemented all the six proposed mutation models into the State Graph
Manipulators (SGM) model checker [15], which is a high-level model checker for
both real-time systems as well as systems-on-chip modeled by a set of timed
automata. Several optimizations were implemented into the mutated model gen-
eration and the coverage metric calculations. Due to page-limits, we skip this
part of the discussions.

We applied our proposed mutation models and estimated the coverage using
the corresponding proposed metrics for several practical design models that we
created in the course of this project work, including a simple timer, a bridge
model for the ARM AMBA bus architecture, an APB slave model in AMBA, a
traffic light controller, and a bakery scheduler. Table 1 shows the overall coverage
estimation results for the above examples along with the performance results of
the implemented coverage estimators. The model checker with coverage estima-
tion programs were executed on a Linux Mandrake 8.1 workstation with a 1.0
GHz Intel Pentium CPU and 512MB memory.

The simple timer is a timer with three stages. After a user-defined time
interval, the timer goes to the next stage. When the timer reaches a pre-defined
maximum value, it issues a reset signal. At the initial attempt, we specified three
properties to verify the timer model, which included checking the time progress
(AG(timer=0 → AF(timer > 0))), the initial behavior (timer = 1), and the
effect of reset (AG(reset=0 → AF(timer=0))). After applying our proposed

366 T.-C. Lee and P.-A. Hsiung

Table 1. Overall Coverage Estimation Results

State Graph (A) Graph Size |P | Time∗/ cov(A, P, µmode)(%)/
|M |/|T | Memory∗∗ cov(A, P, µtrans)(%)

Simple Timer 18/18 3 0.30/0.40 100.00/ 91.67
4 0.32/0.44 100.00/100.00

AMBA APB Bridge 10/24 8 0.45/0.01 100.00/ 91.67
AMBA APB Slave 26/168 3 1.46/0.08 100.00/100.00
Traffic Light Controller 253/542 5 210.89/1.70 90.00/ 79.17
Bakery Scheduler 1293/2073 5 2087.65/1.08 68.36/ 10.51

∗Time is in seconds, ∗∗Memory is in MB,
Note: the µinv model is not included in these overall estimations.

coverage metric estimation, as shown in Table 1, the mode coverage was 100
%, but the transition coverage was only 91.67 %. On analyzing the uncovered
traces generated by the SGM coverage estimator, we found one of the transitions
in the state graph model of the timer was not covered by the three properties.
The uncovered transition deasserts the reset signal after it was asserted. Later,
we wrote an additional property (AG(reset=1 → EF(timer=0))) to cover this
deassertion behavior and it was possible to achieve 100% transition coverage.

Table 2 shows the coverage metrics estimated for each mutation model. From
the numeric coverages, we get an idea of the completeness of the given proper-
ties. In Table 2, a threshold of 30% was assumed for high-lighting all coverages
that are below the threshold percentage. We observe that the AMBA APB slave
was the most uncovered application. Evidently, the three given properties are
insufficient and more are needed to perform a thorough verification of the model.
The other poorly covered application is the bakery scheduler. Though five prop-
erties were specified for this system, however the model itself was the largest in
size among all the examples, hence many more properties are required to have a
higher coverage. From the above two poorly covered examples, we can conclude
that poor coverages are a result of an unproportionate number of properties

Table 2. Coverage Metric Estimations for each Mutation Model

State Graph (A) |P | cov(A, P, µ) (%)
µinitial µdelay µstutter µskip µremove µinv

Simple Timer 4 100.00 94.44 5.88 100.00 94.44 100.00
AMBA APB Bridge 8 44.44 91.66 90.00 100.00 20.83 100.00
AMBA APB Slave 3 0.00 100.00 0.00 4.00 4.77 100.00
Traffic Light Controller 5 53.57 72.61 11.68 0.00 13.69 100.00
Bakery Scheduler 5 52.02 10.36 22.19 1.29 0.49 100.00

Boldface represents below threshold coverages (threshold = 30%).

Mutation Coverage Estimation for Model Checking 367

compared to the size of the system model. In other words, larger the system,
the more properties are required for a more complete verification. The two best
covered application examples are the simple timer and the AMBA APB Bridge,
which also show that it is relatively easier to achieve high coverages for small
and simple systems.

As far as mutation models are concerned, we can observe from Table 2 that
the µinv model achieved a 100 % coverage for all the examples, whereas the
µremove model achieved an above threshold coverage only for the simple timer.
These observations illustrate the different natures of the models and the relative
ease or difficulty with which we can achieve higher coverages for different muta-
tion models. Hence, it is deduced that not necessarily do we have to increase all
coverages. It depends on the characteristics of the application example itself as
described in the following.

Timing delay is an important factor in both the simple timer and the traffic
light controller examples, hence its coverage as modeled by µdelay was required to
be as high as possible. Currently, the obtained coverages of 94.44% and 72.61%,
respectively, are still quite low. Starvation is an undesired feature in the bakery
scheduler example, hence its coverage as modeled by µstutter was required to be
as high as possible. The five given properties achieved only 22.19% stuttering
mode coverage, which shows that more properties are required.

6 Conclusions and Future Work

We have proposed a coverage estimation methodology to give formal verifica-
tion a quantitative statistics on how exhaustive it is. Based on the estimation
and analysis of uncovered traces, the verification engineer can decide whether a
further verification iteration is required or not. Besides, the log file shows what
parts of a system model are not covered and thus need more properties to exer-
cise, or a user may also choose to refine the system model. Instead of focusing on
the static analysis of states as in several previous work, we proposed six different
mutation models and their corresponding coverage metrics to capture behaviors
of a model, which is also the most error-prone. The proposed estimation needs
no extra effort beyond conventional model checking. Further, the complexity of
estimation is acceptable in practice, as we have shown in Section 5. Future work
consist of proposing some semantic mutation models and coverage metrics and
making the structural mutation models more exhaustive and complementary.

References

1. M. Abramovici. Dos and don’ts in computing fault coverage. In Proceedings of the
International Test Conference (ITC’93), page 594, October 1993.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

368 T.-C. Lee and P.-A. Hsiung

3. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity
in ACTL formulas. In Proceedings of the International Conference on Computer-
Aided Verification (CAV’97), Lecture Notes in Computer Science 1254, pages 279–
290. Springer-Verlag, June 1997.

4. H. Chockler and O. Kupferman. Coverage of implementations by simulating speci-
fications. In Proceedings of the IFIP International Conference on Theoretical Com-
puter Science (TCS 2002), pages 409–421. Kluwer, August 2002.

5. H. Chockler, O. Kupferman, R. P. Kurshan, and M. Y. Vardi. A practical approach
to coverage in model checking. In Proceedings of the International Conference on
Computer Aided Verification (CAV’01), Lecture Notes in Computer Science 2102,
pages 66–78. Springer-Verlag, July 2001.

6. H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for temporal
logic model checking. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science 2031, pages 528–542. Springer-Verlag, April 2001.

7. H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for formal verifica-
tion. In Proceedings of the International Conference on Correct Hardware Design
and Verification Methods (CHARME), Lecture Notes in Computer Science 2860,
pages 111–125. Springer-Verlag, October 2003.

8. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. In Proceedings of the IEEE International Conference on Logics
in Computer Science (LICS’92), pages 394–406, June 1992.

9. Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao. Coverage estimation for symbolic
model checking. In Proceedings of the Design Automation Conference, pages 300–
305, June 1999.

10. N. Jayakumar, M. Purandare, and F. Somenzi. Dos and don’ts of CTL state cov-
erage estimation. In Proceedings of the Design Automation Conference (DAC’03),
pages 292–295. ACM Press, June 2003.

11. S. Katz, O. Grumberg, and D. Geist. “Have I written enough properties?” – A
method of comparison between specification and implementation. In Proceedings
of the Correct Hardware Design and Verification Methods (CHARME’99), Lecture
Notes in Computer Science 1703, pages 280–297. Springer-Verlag, September 1999.

12. Von-Kyoung Kim, Tom Chen, and Mick Tegetho. Fault coverage estimation for
early stage of VLSI design. In Proceedings of Ninth Great Lakes Symposium on
VLSI (GLSVLSI’99), pages 105–108, March 1999.

13. C.-N. Liu and J.-Y. Jou. Efficient coverage analysis metric for HDL design valida-
tion. In Proceedings of IEEE International Conference on Computers and Digital
Techniques, pages 1–6, January 2001.

14. W. Mao and Gulati. R. K. Improving gate level fault coverage by RTL fault
grading. In Proceedings of IEEE International Test Conference 1996, Test and
Design Validity, pages 150–159. IEEE Computer Society, October 1996.

15. F. Wang and P.-A. Hsiung. Efficient and user-friendly verification. IEEE Trans-
actions on Computers, 51(1):61–83, January 2002.

16. F. Wang, G.-D. Hwang, and F. Yu. Numerical coverage estimation for the symbolic
simulation of real-time systems. In Proceedings of the 23rd IFIP International Con-
ference on Formal Techniques for Networked and Distributed Systems (FORTE),
Lecture Notes in Computer Science 2676, pages 160–176. Springer-Verlag, Septem-
ber 2003.

17. M.R. Woodward. Mutation testing – an evolving technique. In Proceedings of IEE
Colloquium on Software Testing for Critical Systems, pages 3/1–3/6, June 1990.

	Introduction
	Previous Work
	System Model and Specification
	Mutation Coverage Estimation
	Coverage Estimation Methodology
	Mutation Models and Coverage Metrics
	The Overall Coverages

	Experimental Results
	Conclusions and Future Work

