
EXPLOITING HARDWARE AND SOFTWARE LOW POWER TECHNIQUES FOR ENERGY
EFFICIENT CO-SCHEDULING IN DYNAMICALLY RECONFIGURABLE SYSTEMS

Pao-Ann Hsiung† and Chih-Wen Liu

Department of Computer Science and Information Engineering,
National Chung Cheng University, Chiayi, Taiwan 621, ROC.

†Email: hpa@computer.org

ABSTRACT

Currently, the hardware and the software tasks in reconfig-
urable systems are either scheduled separately at run time
or co-scheduled statically, which results in high power con-
sumption and low performance. This work proposes run-
time co-scheduling of hardware and software tasks by us-
ing the slack time, which is introduced due to reusing hard-
ware task configurations, for dynamically scaling the pro-
cessor voltage such that preceding software tasks consume
lesser power. At the same time, the reuse of hardware task
configurations also result in lower power consumption and
higher performance due to fewer number of reconfigura-
tions. The combined effects of hardware configuration reuse
and software dynamic voltage scaling result in schedules
with a lower power consumption and higher performance
than that obtained through individual techniques applied to
hardware and software separately. The proposed method
was implemented in the SystemC-based Perfecto simula-
tion environment for dynamically reconfigurable hardware
software systems and TGFF was used for generating ran-
dom task sets as input for Perfecto. We performed extensive
experiments whose results show that irrespective of differ-
ent slack ratios or hardware partitions, the schedules gener-
ated by our proposed method are more energy efficient than
methods that either do not apply any runtime techniques or
only apply hardware configuration prefetch and reuse.

1. INTRODUCTION

Low power design has permeated each and every level of
a system design, including the hardware circuits, software
applications, operating systems, compilers, and architecture
designs. However, often we observe that the low power in-
frastructure is not used optimally in a system design because
there is little integration between the different low power
schemes embedded in each system component or level. For
example in reconfigurable systems, a single reconfiguration
requires as much as 450mW , thus configuration reuse has
been proposed as a low power design technique [1]; at the

same time, dynamic voltage scaling (DVS) in a processor al-
lows the software to execute with a lower power. Under cer-
tain circumstances, when these hardware specific and soft-
ware specific low power design techniques are both made
available in a system, the result could counter intuitively re-
quire more power, instead of lesser power. The reason is
because the low power techniques might affect each other
resulting in either an increase in the number of reconfigu-
rations or a decrease in the possibility of dynamically low-
ering the processor voltage. We propose to integrate these
two techniques such that they work together collaboratively,
instead of contradictorily.

As a motivating example, consider two tasks with task
graphs as shown in Fig. 1, where task A consists of four se-
quential functions f0, f1, f2, f3 and task B consists of func-
tions f1, f4, f2, f5. Each function represents a basic unit
of execution in a task and is also an indivisible unit for parti-
tioning into hardware or software implementations. A func-
tion has several attributes as shown in Fig. 1. Without the
proposed scheduling method, the resulting schedule takes 51
ms as shown in Fig. 2, while using our method, the schedule
takes only 45 ms as shown in Fig. 3. Not only is the total
time reduced, but the total energy consumption is also re-
duced from 50.2 mJ to 46.3 mJ, where the reconfiguration
power is 450 mW, the execution power of reconfigurable
logic is 1000 mW, and the processor power is 5.3 W. Further,
the number of reconfiguration also dropped from 7 to 5. In
this example, we can see that, using our method, the con-
figurations of the two hardware functions f1 and f2, which
are common to both tasks, can be reused or shared between
the tasks. Thus, we eliminate two reconfigurations, which
also reduced the total time and energy. Further in this ex-
ample, we use the slack time generated between the func-
tions f0 and f1, due to configuration reuse of f1, for dynam-
ically scaling down the processor voltage, so that the soft-
ware function f0 executes under a lower power consumption
and takes up the slack time.

The rest of this article is organized as follows. Section
2 gives some related previous work. Section 3 describes the
system model and related terminologies. Section 4 describes

1-4244-1060-6/07/$25.00 ©2007 IEEE. 165

f4

f5f2

f1

task A

f1f0

task B

f2

f3

Function attributes for motivation example

Function f0 f1 f2 f3 f4 f5

Partition SW HW HW HW HW HW
Worst case exec time 10 11 11 5 10 15
CLB columns 0 1 1 1 1 1

Fig. 1. Task graphs for motivation example

f1

f1

f2

f0

f2

f5

f3

 Column 1 f4

 Column 2

f4

f1

f2

f5

f3

Reconfiguration

 Processor

time (ms) 0 51

f1 f2

Fig. 2. Scheduling without any acceleration

f1

f1 f2

f0

f2

f5

f3

 Column 1

f4 Column 2

f4

f1 f2

f5

f3

Reconfiguration

 Processor

time (ms) 0 45

Fig. 3. Scheduling with configuration prefetch,
reuse, DVS

the proposed energy efficient co-scheduling method in de-
tails. Section 5 describes the experiments conducted to show
the benefits of the proposed method. Section 6 concludes the
article with future work.

2. PREVIOUS WORK

In any system, low power design strategies can be applied
to either software or hardware, or both. As far as we know,
scheduling policies have considered low power designs for
either only software or only hardware, but not simultane-
ously both hardware and software, in dynamically reconfig-
urable systems, which is the major focus of our work. Here,
we first briefly describe the work related to low power de-
sign techniques applied to software and then those applied
to reconfigurable hardware.

We can statically or dynamically change the voltage and
frequency of processors, such as ARM 11 or Intel PXA250,
to adapt to system load variations. This technique has been
proved to be an effective technology to reduce energy con-
sumption because the lower the voltage a processor runs at,
the lower is the power consumption. Several scheduling al-
gorithms [2] have been proposed for such processors. While
satisfying time constraints, a set of tasks is scheduled such
that the the processor voltage is tuned as low as possible.
We take advantage of this technique to minimize the energy
consumption by software in our method.

For dynamically reconfigurable systems, one of the ma-
jor energy consumers is the frequent reconfiguration. Re-
configuration can account for half of the FPGA power con-
sumption [1]. This overhead also causes poor performance.
Various methods were proposed to reduce the reconfigura-
tion overhead such as configuration compression [3], con-
figuration caching [4], configuration prefetching [5], con-
figuration reuse [6], difference-based configuration [7], and
early partial reconfiguration [8]. The above techniques were

integrated into static scheduling methods. For dynamic sche-
duling, two-phase scheduling methods such as hybrid design-
time/run-time scheduling [9] and replacement / prefetch sche-
duling [10] were proposed so that most of the computa-
tion load is performed at design time and less computation
overhead is introduced at run time by the scheduler. In the
above work, performance is the only concern. Few work [1],
[6], [8] have investigated static hardware-software co-sche-
duling in reconfigurable systems. Much fewer work [11]
have discussed the dynamic hardware-software co-scheduling
in such systems. In [11], the system-level power perfor-
mance tradeoff in dynamic hardware software co-scheduling
is addressed, where clock gating and hardware frequency
scaling are adopted to reduce power consumption.

Different from the above static and dynamic scheduling
methods, the proposed method in this work adopts a two-
phase scheduling approach to integrate static and dynamic
scheduling, where configuration prefetch and reuse are in-
tegrated with DVS. Instead of predicting the next config-
uration to be loaded, we use configuration prefetching for
scheduling the configurations of the next ready application
functions. We use configuration reuse for grouping common
hardware functions in different tasks. Compared to [11],
our proposed method makes use of configuration prefetch-
ing and reuse as well, but with DVS instead of hardware
frequency scaling. Furthermore, the configuration reuse in
their work is passively adopted, i.e., at each scheduling point,
if there is an active reconfiguration context within the recon-
figurable blocks ready for execution, select a ready task with
the highest priority that meet this condition. However, in our
work, we actively seek to bring together the same function
instances to reduce the number of reconfigurations.

While DVS has been applied in various kinds of system
to reduce power consumption, to the best of our knowledge,
we are the first to introduce it for energy efficient dynamic
scheduling in reconfigurable systems.

166

3. SYSTEM MODEL AND NOTATIONS

A hardware-software dynamically reconfigurable system is
modeled by a set of concurrent communicating tasks. A task
is specified by a 4-tuple Ti = (Ai, Di, Pi, Gi), where Ai is
the arrival time, Di is the deadline, Pi is the period, and Gi

is a function graph. A function graph is a directed acyclic
graph (V, E), where each node in V represents a partitioned
function and an edge in E represents a precedence relation
between two functions. A function is characterized by 4 at-
tributes (SEi, HEi, HCi, HSi), where SEi and HEi are
the worst case execution times of a function implemented in
software and hardware, respectively, HCi and HSi are the
configuration time and space required by its hardware imple-
mentation, respectively. A partitioned function is one with
its implementation in hardware or software given a priori.

The computing resources for running the above system
is a DVS capable microprocessor and a reconfigurable logic
called FPGA. The microprocessor has several fixed volt-
age levels and the worst case execution time of a function is
given in terms of its highest voltage level. For the FPGA,
a 1-dimensional model is assumed, hence the configuration
space for a function is measured in terms of the number of
columns, where a column is a basic unit of reconfiguration.
A typical example is Xilinx Virtex Pro II. The FPGA has a
fixed number of columns.

Our target problem is formulated as follows. Given a set
of tasks and the computing resources as described above,
the problem is to decide an execution order for the func-
tions assigned to the processor and the FPGA such that the
schedule satisfies all task requirements, computing resource
constraints, and consumes the least amount of total energy.
Deadline violations are allowed within some threshold.

4. ENERGY EFFICIENT CO-SCHEDULING

A two-phase scheduling method is proposed for solving the
target problem. At the design time phase, some calculations
are made so as to alleviate the need for complex computa-
tions at runtime.

4.1. Design Time Phase

For each hardware function H that is common to two or
more tasks, we first search for all the instances so that they
can be grouped together to reduce the number of reconfigu-
rations at runtime. For each H , a preceding software func-
tion S, if any, is selected as the leading software function
such that there is no other software function along the path
from S to H and S has the longest execution time among all
candidates. The leading software function is the target for
applying DVS. Each path from a leading software function
to a common hardware function is called a key path. Key
paths are used to construct a delay-time table that records the

time intervals in which two instances of a common hardware
function in two different tasks might overlap in execution if
their leading software functions terminate execution at the
same time. It is formally defined as follows. Given two key
paths Pi and Pj , the delay-time table is constructed as an
n × n matrix Δ as follows, where n is the total number of
key paths, H is the common hardware function, and Si(H)
and Ci(H) are the start and completion times of H in Pi,
respectively, assuming both leading software functions ter-
minate at time 0.

Δ(i, j) =

⎧⎨
⎩

[a, b], a = min{0,Si(H)−Cj(H)}
b = Ci(H) − Sj(H) ≥ 0

undefined, if Ci(H) − Sj(H) < 0
(1)

The time slack in a task Ti is computed as ζ(Ti) =
Di −

∑
k Ek, where Ek is in the worst case execution time

of a partitioned function Fk in a critical path of Ti. A crit-
ical path is one with the longest total execution time. The
time slack ζ(Ti) is evenly shared by the leading software
functions in the task, where each function S is allocated
ζS(Ti) = ζ(Ti)/|{S}| slack time, which is also the static
priority of a task.

To illustrate the proposed scheduling phases, we use an
example system consisting of 3 tasks, whose task graphs are
shown in Fig. 4. The function associated with a node TXi

is given inside the node as Fj . Functions F1, F7 and F10

are software, while the rest are all hardware. The software
functions are usually the control programs or drivers, while
the hardware functions could be any IP such as (I)DCT, ma-
trix multiplier, FFT, motion estimator, that is, circuit designs
that could be used across different applications. The arrival
times for tasks A, B, C are, respectively, 0, 2600, 5000, their
priorities are 2, 3, 1, where a higher value represents higher
priority, and their deadlines are 6500, 6600, 5500. The func-
tion attributes are as shown in Table 1.

In this example, F6 and F9 are two common hardware
functions, and F1, F7, and F10 are leading software func-
tions. As shown in Table 2, there are 5 key paths from the 3

Task B

TB1

F6F6

F8

F9F9

F7

TB2

TB3

TB4

Task C

TC1F10

F9F9
F6F6

TC3TC2

Task A

F3

F1

F4F2

F5

F6F6

TA3

TA2

TA1

TA4

TA5

TA6

Fig. 4. An Example System with 3 Tasks

167

Table 1. Function Attributes for Example System
Fi SEi HEi HCi HSi

(μs) (μs) (μs)
F1 2600 – – –
F2 – 700 600 1
F3 – 1000 600 1
F4 – 1200 600 1
F5 – 1200 600 1
F6 – 1200 1200 2
F7 3500 – – –
F8 – 1200 600 1
F9 – 600 600 1
F10 2400 – – –

Table 2. Delay-time Table for Example
kp P1 P2 P3 P4 P5

P1 X [1200,3600] X [0,1200] X
P2 X X X [0,1200] X
P3 X X X X [1800,3000]
P4 X [0,1200] X X X
P5 X X X X X

kp: key path, P1: 〈F1, F4, F5, F6〉, P2: 〈F7, F6〉,
P3: 〈F7, F6, F8, F9〉,P4: 〈F10, F6〉, P5: 〈F10, F9〉, X: undefined

software functions to the common hardware functions. On
applying the design time phase of our scheduling algorithm,
the delay-time table constructed for this example is as given
in Table 2. Since there is only one leading software function
in each task, the shared slack time is equal to the task slack
time, i.e., 300, 100, 1900 for A, B, C, respectively.

4.2. Run Time Phase

At runtime, whenever a leading software function S is to
be scheduled, the delay-time table Δ is referenced to check
if there is enough time slack ζS(Ti) in the task Ti for pro-
longing the execution of S by lowering the processor volt-
age such that not only the software is executed using lesser
power, but the common hardware functions are also sched-
uled end-to-end and reuse the same configuration, thereby
reducing the number of reconfigurations and saving power
and time.

Given key paths Pi and Pj having a common hardware
function H , we now discuss how the leading software func-
tion S′ in key path Pj is to be scheduled. Let S be the lead-
ing software function in key path Pi. If Cj(S′) − Ci(S) ∈
Δ(i, j) = [a, b] and ζS′(Tj) ≥ b−(Cj(S′)−Ci(S)) then the
execution of S′ is prolonged by b − (Cj(S′) − Ci(S)) time
units by lowering the processor voltage to a suitable level.
The rationale is as follows. The first condition checks if the
future executions of H in key paths Pj and Pi will overlap in
time. The second condition checks if there is enough shared

slack time for prolonging S′ such that the two executions of
H are scheduled consecutively in time. If there is more than
one key path similar to Pi having a common hardware func-
tion H , then the candidate path is chosen which results in
the longest prolongment of S′ within the slack time budget
of ζS′(Tj), where Tj is the task containing the key path Pj .
Note that only active key paths are considered, where a key
path is active once its leading software function has com-
pleted execution and until the common hardware function is
reset from FPGA. A data structure called delay-time list ta-
ble is used to record for each leading software function, all
the active key paths that share the same common hardware
function. A table record consists of a pair (Pi, t) where Pi

is an active key path and t is the time by which S′ can be
prolonged, that is, b − (Cj(S′) − Ci(S)). If there are more
than one active key path for S′, then the path Pk is chosen
which has the largest t = b − (Cj(S′) − Ck(S)) such that
t ≤ ζS′(Tj).

For our running example, using the delay time table in
Table 2, the run time phase is applied as follows. For the
leading software function F1, there is no active key path at
time 0, so its execution is not prolonged, and is executed at
full speed of the processor.

At time 2600, task B arrives, and leading software func-
tion F7 is selected for scheduling. There is one active key
path, that is P1 = 〈F1, F4, F5, F6〉, which has hardware
function F6 common with path P2 = 〈F7, F6〉. Since the
difference between completion times of the leading software
functions, 6100 − 2600 = 3500 is within the time interval
Δ(1, 2) = [1200, 3600], so the execution time of F7 can be
prolonged by 3600 − 3500 = 100 time units, that is, ex-
tended from 3500 to 3600. There were 10 different voltage
levels with corresponding frequencies and power consump-
tion for the microprocessor used in this example. The re-
configuration power for a CLB column is 450 mW and the
execution power in FPGA is 1000 mW. The prolongment
of F7 results not only in lesser energy consumption by the
software function F7, but also saves one reconfiguration of
two columns of FPGA due to the configuration reuse now
possible for hardware function F6 common to tasks A and
B, along key paths P1 and P2, respectively. Fewer reconfig-
urations save both time and energy.

At time 5000, task C arrives, but has to wait till time
6200 for the processor to be available to execute leading
software function F10. Figure 5 shows the details of why
and how the execution of F10 can be prolonged by 600 time
units by applying our co-scheduling method. Further, one
more reconfiguration of 1 column FPGA is saved for F9

common to tasks B and C, along paths P3 and P5, respec-
tively. The final scheduling results are shown in Fig. 5.

Since there is currently no work that integrates DVS with
hardware reuse techniques, we compared the proposed method
with only two conventional methods. Method M1 does not

168

TA1(F1) TB1(F7)

TA3(F3)

TA5(F5)

TA6(F6)TB2(F6)

TA6(F6)TB2(F6)

TC1(F10)

TC2(F6)

TC2(F6)

TB3(F8)

For key paths P3 and P5:
Original finish time of TC1 is at time
8600.

8600 – 6200 = 2400 � [1800,3000],
where 6200=C3(TB1)

Therefore, the execution of TB1 is
extended from 2400 to
2400+(3000-2400) = 3000.

TA2(F2)

TB4(F9)

TC3(F9)

For key paths P2 and P4:
Original finish time of TC1 of is
at time 8600.

8600 – 6200 = 2400 >1200,
where 6200=C2(TB1)

Therefore, this does not affect
the execution time of TC1.

Processor

Column1

Column2

Column3

Column4

0 2000 4000 6000 8000 10000 (time)

One column of
reconfiguration is saved.

For key paths P1 and P4:
Original finish time of TC1 of is at
time 8600.

8600 – 2600 = 3000 >1200, where
2600=C1(TA1)

Therefore, this does not affect
execution time of TC1.

TA4(F4)

TA2(F2)

Fig. 5. Scheduling Results for Example

Table 3. Scheduling Results Comparison
M1 M2 Ours I1 (%) I2 (%)

TT 12100 9700 10400 16.0 −7.2
TE 96.76 96.49 73.27 24.3 24.1
CE 3.51 3.24 2.16 38.5 33.3
RN 2/3 1 1 33.3 0.0

Ii: Improvement over Mi, TT : total execution time (μs),
TE: energy consumption (mJ), CE: configuration energy (mJ),

RN : % of tasks with deadlines satisfied

apply any acceleration technique, while method M2 applies
configuration prefetch and reuse, but without DVS. The
comparisons are shown in Table 3, where we can see that
the proposed method outperforms the other two methods.
Compared to the bare method M1, the proposed method not
only consumes lesser amounts of total energy and total con-
figuration energy by 24.23% and 38.5%, respectively, and
allows 33.3% more task deadlines to be satisfied, but also
the total execution time is reduced by 16%. Compared to
method M2, the proposed method similarly satisfies all task
deadlines, but it requires more execution time of about 7.2%
to save 24.1% total energy and 33.3% configuration energy.

5. EXPERIMENTS

The proposed scheduling method was implemented in Per-
fecto [12], a SystemC-based performance evaluation frame-
work for dynamically reconfigurable systems. We had to
make several changes to Perfecto, including the hardware
and software power modeling for reconfigurable systems,
the random partitioning of functions into hardware and soft-
ware, the newly proposed scheduler algorithm, and the new
task model. Several experiments were conducted on a Linux
machine with a 2.4 GHz Pentium 4 CPU and 1 GB RAM.

Table 4. Varying Slack Ratio
SR M1 M2 Ours I1 I2

(%) (%)
0.67 TT 557496 500123 518974 5.4 -3.7

TE 6207 6100 5278 15.0 13.5
CE 317 209 142 58.0 32.2
RN 86 93 90 4.3 -4.4

0.75 TT 564571 455308 498562 19.4 -4.9
TE 6286 6186 5127 18.4 17.1
CE 351 250 162 54.7 35.1
RN 88 95 93 5.3 -1.9

0.80 TT 554283 439614 486213 12.3 -10.6
TE 6148 6026 5075 17.8 15.8
CE 324 203 122 62.5 40.0
RN 89 96 94 4.9 -1.8
SR: slack ratio, Ii: Improvement over Mi

The target platform is Xilinx ML310 with a Virtex II Pro
XC2VP30 chip, two PowerPC 405 cores, and 256 MB DDR
RAM. We compared our work with two conventional meth-
ods, one without any acceleration technique and the other
with only configuration prefetch and reuse, but without DVS.
Four metrics were used including total execution time, to-
tal energy consumption, configuration energy consumption,
and the percentage of tasks with deadlines satisfied. TGFF
[13] was used to generate random task sets from user-given
templates. Each task set contained 25 to 30 function graphs
with an average of 20 functions per graph. Partitioning re-
sults and task arrival times were randomly generated. The
varied parameters included the ratio of task slack time to
task deadline (0.67, 0.75, 0.8) and the number of common
hardware functions (8, 16, 20). We experimented with 50
task sets for each parameter and took the overall averages.

The experimental results are given in Tables 4 and 5, re-
spectively, for each of the varied parameters including slack
ratio and common hardware functions. We can make the fol-
lowing observations from the experiments. When compared
to the bare scheduling approach (method M1), our method
shows improvements in all the 4 metrics, namely total exe-
cution time (TT) in μs, total execution energy (TE) in mJ, to-
tal configuration energy (CE) in mJ, and percentage of tasks
with deadlines satisfied (RN). When compared to method
M2, which integrates configuration prefetch and reuse, but
not DVS, our method also shows as much as 17% decrease
in TE and 40% decrease in CE, at the expense of at most
10.6% increase in TT and 4.4% increase in RN. With an
increase either in slack ratio or in the number of common
hardware functions, our method generates schedules with
significant decrease in both total execution and configura-
tion energies, which shows the scalability of our method. At
the same time, the reduction in the percentage of tasks with
deadlines satisfied is maintained within a limit of 1.8%.

169

Table 5. Varying Common Hardware Functions
H M1 M2 Ours I1 I2

(%) (%)
8 TT 660120 549675 556755 15.7 -1.3

TE 5813 5513 5398 7.2 2.1
CE 584 284 243 58.4 14.3
RN 89 96.7 96.1 4.3 -0.6

16 TT 564571 455308 498562 11.7 -9.5
TE 6207 6100 5278 15.0 13.5
CE 338 209 142 58.0 32.3
RN 88 95 93 5.3 -1.9

20 TT 554283 439614 486213 12.3 -10.6
TE 6286 6186 5127 18.5 17.1
CE 358 250 162 54.7 35.1
RN 89 96 94 4.9 -1.8
H: Number of common hardware functions

We have experimented with real tasks, such as online
encryption/decryption and multimedia systems, all of which
show results consistent with the randomly generated task
sets. Apparently one might assume that the proposed method’s
limitation lies in the number of common hardware functions.
Nevertheless, with the growing convergence of applications
into a single device, hardware functions will be more and
more common among different applications, and the limita-
tion of the proposed method will disappear.

6. CONCLUSION

An energy efficient hardware/software co-scheduling method
is proposed for dynamically reconfigurable systems such that
configurations for common hardware functions are grouped
together for configuration reuse and the slack time is used
for lowering processor voltage. The integration of hardware
and software low power scheduling techniques, namely con-
figuration prefetch and reuse and DVS, results in schedules
that show a marked decrease in total execution energy and
total configuration energy, with little overhead. Future work
will consist of integrating other hardware/software schedul-
ing techniques and consider more placement constraints.

7. REFERENCES

[1] L. Shang and N. K. Jha, “Hardware-software co-synthesis
of low power real-time distributed embedded systems with
dynamically reconfigurable FPGAs,” in Proc. of the Interna-
tional Conference on VLSI Design. IEEE Computer Society
Press, January 2002, pp. 345–352.

[2] F. Zhang and S. T. Chanson, “Blocking-aware processor volt-
age scheduling for real-time tasks,” ACM Transactions on
Embedded Computing Systems, vol. 3, no. 2, pp. 307–335,
May 2004.

[3] J. H. Pan, T. M. Weng, and F. Wong, “Configuration bitstream
compression for dynamically reconfigurable FPGAs,” in In-
ternational Conference on Computer Aided Design (ICCAD).
IEEE Computer Society Press, November 2004, pp. 766–773.

[4] Z. Li, K. Compton, and S. Hauck, “Configuration caching
management techniques for reconfigurable computing,” in
Proc. of the IEEE Symposium on FPGAs for Custom Comput-
ing Machines. IEEE Computer Society Press, April 2000,
pp. 87–96.

[5] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetch
scheduling heuristic to minimize at run-time the reconfigu-
ration overhead of dynamically reconfigurable hardware,” in
Proc. of the Conference on Design, Automation and Test in
Europe, vol. 1. IEEE Computer Society Press, March 2005,
pp. 106–111.

[6] B. Mei, P. Schaumont, and S. Vernalde, “A hardware-
software partitioning and scheduling algorithm for dynami-
cally reconfigurable embedded systems,” in Proc. of the 11th
ProRISC Workshop on Circuits, Systems and Signal Process-
ing Veldhoven, November 2000.

[7] M. Sanchez-Elez, M. Fernandez, M. Anido, H. Du,
N. Bagherzadeh, and R. Hermida, “Low-energy data man-
agement for different on-chip memory levels in multi-context
reconfigurable architectures,” in Proc. of the Conference on
Design, Automation and Test in Europe (DATE). IEEE Com-
puter Society Press, March 2003, pp. 36–41.

[8] B. Jeong, S. Yoo, S. Lee, and K.Choi, “Hardware-software
cosynthesis for run-time incrementally reconfigurable FP-
GAs,” in Proc. of the Asia South Pacific Design Automation
Conference. ACM Press, Jan 2000, pp. 169–174.

[9] J. Resano, D. Mozos, D. Verkest, S. Vernalde, and
F. Catthoor, “Run-time minimization of reconfiguration over-
head in dynamically reconfigurable systems,” in Proc. of the
13th International Conference Field-Programmable Logic
and Applications (FPL), ser. LNCS, vol. 2778. Springer
Verlag, September 2003, pp. 585–594.

[10] J. Resano, D. Mozos, D. Verkest, F. Catthoor, and S. Ver-
nalde, “Specific scheduling support to minimize the reconfig-
uration overhead of dynamically reconfigurable hardware,”
in Proc. of the 41st Annual Design Automation Conference.
ACM Press, June 2004, pp. 119–124.

[11] J. Noguera and R. M. Badia, “System-level power-
performance trade-offs in task scheduling for dynamically re-
configurable architectures,” in Proc. of the International Con-
ference on Compilers, Architectures and Synthesis for Em-
bedded Systems. ACM Press, October 2003, pp. 73–83.

[12] P.-A. Hsiung, C.-H. Huang, and C.-F. Liao, “Perfecto: A
SystemC-based performance evaluation framework for dy-
namically partially reconfigurable systems,” in Proc. of the
16th International Conference on Field Programmable Logic
and Applications (FPL’2006). IEEE Computer Society
Press, August 2006, pp. 190–198.

[13] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs
for free,” in Proc. of the 6th International Workshop on Hard-
ware/Software Codesign. IEEE Computer Society Press,
March 1998, pp. 97–101.

170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

