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Abstract 
Due to rapidly increasing system complexity, ever-shortening time-to-market, and growing 
demands for soft real-time, formal methods are becoming indispensable in the synthesis of 
embedded real-time systems. In this work, a formal method based on Time Free-Choice Petri Nets 
(TFCPN) is proposed for synthesizing and controlling Soft Embedded Real-Time Systems (SERTS). 
Technically, the proposed method employs quasi-static data scheduling for satisfying limited 
embedded memory requirements and controls firing interval bounds for satisfying soft real-time 
constraints. An application example is given to illustrate the feasibility of the formal method, which 
can also be used for code generation. 
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1. INTRODUCTION 

With the proliferation of Soft Embedded Real-Time Systems (SERTS) into our daily lives in the form 
of home appliances, internet appliances, personal assistants, wearable computers, 
telecommunication gadgets, and transportation facilities, we are now faced with a growing 
escalation of system complexity, ever-shortening time-to-market, and growing demands for soft 
real-time applications. All these factors have propelled the need for practical formal methods that 
can be used to synthesize and control SERTS. A large portion of formal methods is mainly devoted 
to hard real-time system analysis. In contrast, we show how formal methods can also be applied to 
soft real-time systems that have flexible ranges of acceptable behaviors. 

Our target systems are soft real-time systems such as multimedia servers, communication 
networks, telecommunication devices, home electric appliances, and information appliances. These 
systems can tolerate deadline misses up to a certain threshold value. Not every deadline needs to be 
met; only most of the deadlines need be met. Further, deadlines themselves can be specified as a 
time interval (α, β) such that if a system task completes execution no earlier than α and no later 
than β, then the task does not miss its deadline, where α and β are integers representing some points 
in the time-line. 

Informally, our target problem is to synthesize an embedded real-time system starting from an 
initial set of loose specifications into a final set of strict specifications such that the final 
specification satisfies all user-given real-time constraints such as response times, deadline, and 
periods. A specification ψ1 is said to be looser than another specification ψ2 if all the behaviors 
given by ψ2 are implied by ψ1. In plain terms, our solution is to restrict loose specifications into 
stricter ones such that given constraints are met. 
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The two main issues involved in the design of SERTS are as follows: 

 Bounded Memory Execution: A processor cannot have infinite amount of memory space for the 
execution of any software process. This fact is even more emphasized in an embedded system, 
which generally has only a few hundreds of kilobytes memory installed. Thus, a SERTS must 
utilize as less memory as possible. 

 Soft Real-Time Constraints: A processor may have to execute several concurrent tasks with 
precedence and temporal constraints. Thus, a SERTS is generally composed of several soft 
concurrent real-time tasks. 

Our formal model is based on the recently proposed Time Free-Choice Petri Nets (TFCPN) 
[15], which is a sub-class of Time Petri Nets. In solution to the above two issues, our proposed 
method consists of the following two phases: 

 Quasi-Static Data Scheduling (QSDS): This scheduling phase ensures that embedded real-time 
applications do not require an unbounded amount of memory for execution, since embedded 
real-time systems have limited amount of embedded memory, 

 Firing-Interval Bound Synthesis (FIBS): This synthesis phase ensures that an embedded 
real-time system meets all soft real-time constraints, which are generally modeled as action or 
firing time intervals. This phase is also called Controller Synthesis since controllers can be 
synthesized for soft real-time systems using this method. 

Software code can also be generated for soft real-time systems by applying our synthesis 
method to a recently proposed code generation scheme, which was for hard real-time systems [15]. 
Due to page-limits, we will not delve into this part of the work in this article. 

This article is organized as follows. Section 2 gives some previous work related to SERTS 
synthesis. Section 3 will formulate, model, and solve the SERTS synthesis problem. Section 4 will 
illustrate the proposed method through an application example. Section 5 will conclude the article 
with some research directions for future work. 

2. PREVIOUS WORK 

Currently, synthesis of soft real-time systems is a hot topic of research in the field of 
hardware-software codesign of embedded systems [11]. Previously, a large effort was directed 
towards synthesis of hard real-time systems, especially in the application of formal methods. 
Synthesis was mainly carried out for communication protocols [19], plant controllers [4, 5, 18], and 
real-time schedulers [1, 25] because they generally exhibited regular behaviors. Only recently has 
there been some work on automatically generating code for embedded systems [6, 16, 17, 23, 26]. 
In the following, we will briefly survey the existing works on the synthesis of non real-time 
software and controller synthesis, on which our work is based. 

Lin [16, 17] proposed an algorithm that generates a software program from a concurrent 
process specification through intermediate Petri-Net representation. This approach is based on the 
assumption that the Petri-Nets are safe, i.e., buffers can store at most one data unit, which implies 
that it is always schedulable. The proposed method applies quasi-static scheduling to a set of safe 
Petri-Nets to produce a set of corresponding state machines, which are then mapped syntactically to 
the final software code. Later, Zhu and Lin [26] proposed a compositional version of the synthesis 
method that reduced the generated code size and was thus more efficient. 

A software synthesis method was proposed for a more general Petri-Net framework by Sgroi et 
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al. [23]. A quasi-static scheduling algorithm was proposed for Free-Choice Petri Nets (FCPN) [23]. 
A necessary and sufficient condition was given for a FCPN to be schedulable. Schedulability was 
first tested for a FCPN and then a valid schedule generated by decomposing a FCPN into a set of 
Conflict-Free (CF) components which were then individually and statically scheduled. Code was 
finally generated from the valid schedule. 

Balarin et al. [6] proposed a software synthesis procedure for reactive embedded systems in the 
Codesign Finite State Machine (CFSM) [7] framework with the POLIS hardware-software codesign 
tool [7]. This work cannot be easily extended to other more general frameworks. 

Besides synthesis, there are also some recent work on the verification of software in an 
embedded system such as the Schedule-Verify-Map method [12], linear hybrid automata techniques 
[10, 13], and mapping strategy [8]. 

Controller synthesis for plants (also called supervisor synthesis) was mainly performed in the 
discrete time domain, with a large portion of classical work done by Ramadge and Wonham [21, 22]. 
Around 1994, when timed automata was proposed as a dense-time model for real-time systems [3], 
controller synthesis was extended to dense real-time systems [4, 18, 25] as well as to hybrid 
systems [24]. Recently, the same technique was further extended to multimedia scheduler synthesis 
[1]. Given a dense real-time system modeled by timed automata and a (temporal) property given as 
a formula in Timed Computation Tree Logic (TCTL) [2, 9], a controller is synthesized such that it 
restricts the behavior of the system for satisfying the property. This is the controller synthesis 
problem. Recently, system parameters have also been taken into consideration for real-time 
controller synthesis [14]. 

3. FORMAL SYNTHESIS AND CONTROL 

A formal synthesis method for soft embedded real-time systems is presented in this section. Its 
basic features are that the synthesized system executes in bounded memory and satisfies all 
user-given soft real-time constraints. Before going into details, the system model and related 
terminologies are presented. 

A soft embedded real-time system is specified as a set of Time Free-Choice Petri Nets 
(TFCPN), which are time extensions of Free-Choice Petri Nets (FCPN) [23]. As mentioned in 
Section 2, FCPN was used for the quasi-static scheduling of embedded real-time software. But, 
there was no concept of time in the FCPN model, which makes it an unconvincing model for 
real-time systems. FCPN was recently extended to include time just as Merlin and Farber's Time 
Petri Nets (TPN) [20] are time extension of standard Petri Nets. The extended version called 
TFCPN was introduced in [15] and is presented here. 

In the rest of this section, we first define TFCPN, give its properties, and explain why TFCPN 
are used for modeling SERTS. Then, the problem to be solved is formulated. Finally, our proposed 
synthesis algorithm is described. 
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Fig. 1 A Timed Free-Choice Petri Net 

t1(2, 3)

t2(0, 5)
t4(4, 7)

t3(2, 8)

3

p1

p2

p3

p4

 
Fig. 2 Not a Timed Free-Choice Petri Net 

3.1. System Model 

Definition 1. Time Free-Choice Petri Nets (TFCPN) 
A Time Free-Choice Petri Net is a 5-tuple (P, T, F, M0, τ), where P is a finite set of places, T is a 
finite set of transitions, P ∪ T≠φ, and P ∩ T=φ, F: (P × T) ∪ (T × P)  N is a weighted flow 
relation between places and transitions, represented by arcs, such that every arc from a place is 
either a unique outgoing arc or a unique incoming arc to a transition (this is called Free-Choice), 
where N is a set of nonnegative integers, M0: P  N is the initial marking (assignment of tokens to 
places), and τ: T  Q* × (Q*∪∞), i.e., τ(t)=(α, β), where t ∈ T, α is the earliest firing time (EFT), 
and β is latest firing time (LFT); together they are called firing interval bounds (FIB). 

 Graphically, a TFCPN can be depicted as in Fig. 1, where circles represent places, vertical bars 
represent transitions, arrows represent arcs, black dots represent tokens, and integers labeled over 
arcs represent the weights as defined by F. Here, F(x,y)>0 implies there is an arc from x to y with a 
weight of F(x,y), where x and y can be a place or a transition. Conflicts are allowed in a TFCPN, 
where a conflict occurs when there is a token in a place with more than one outgoing arc such that 
only one enabled transition can fire, thus consuming the token and disabling all other transitions. 
For example, t2 and t3 are conflicting transitions in Fig. 1. But, confusions are not allowed in 
TFCPN, where confusion is a result of coexistence of concurrency and conflict. An example of 
confusion is given in Fig. 2. Transitions t1 and t2 are concurrent and t3 and t4 are in conflict. 

 By disallowing confusions, a system modeled by TFCPN can be easily analyzed and 
synthesized because conflicts can be resolved through net decomposition of a TFCPN into 
conflict-free components. Though the free-choice restriction disables a designer from describing 
systems that have coexisting concurrency and conflicts (i.e. synchronization with conflict as in Fig. 
2, yet the net decomposition approach can be extended to general Petri nets, which will be part of 
our future research. 

Semantically, the behavior of a TFCPN is given by a sequence of markings, where a marking 
is an assignment of tokens to places. Formally, a marking is a vector M = <m1, m2, …, m|P|>, where 
mi is the non-negative number of tokens in place pi ∈ P. Starting from an initial marking M0, a 



 5

TFCPN may transit to another marking through the firing of an enabled transition and 
re-assignment of tokens. A transition is said to be enabled when all its input places have the 
required number of tokens for the required amount of time, where the required number of tokens is 
the weight as defined by the flow relation F and the required amount of time is the earliest starting 
time α as defined by τ. An enabled transition upon firing, the required number of tokens are 
removed from all the input places and the specified number of tokens are placed in the output places, 
where the specified number of tokens is that specified by the flow relation F on the connecting arcs. 
An enabled transition may not fire later than the latest firing time β defined by τ. 

SERTS have both data-dependent executions as well as time-dependent specifications. Both of 
these characteristics are well-captured by TFCPN. TFCPN can distinguish clearly between choice 
and concurrency; hence they are good models of data-dependent and concurrent computations. 
Further, TFCPN can also distinguish clearly between data-dependent and time-dependent choices, 
thus TFCPN are well-defined models for our target SERTS. 

 Some properties of Petri Nets (PN) can be defined as follows. Reachability: a marking M ' is 
reachable from a marking M if there exists a firing sequence σ starting at marking M and finishing 
at M '. Boundedness: a PN is said to be k-bounded if the number of tokens in every place of a 
reachable marking does not exceed a finite number k. A safe PN is one that is 1-bounded. 
Deadlock-free: a PN is deadlock-free if there is at least one enabled transition in every reachable 
marking. Liveness: a PN is live if for every reachable marking and every transition t it is possible to 
reach a marking that enables t. 

3.2. Problem Formulation 

In multimedia presentations, network computing, distance learning, and other soft real-time systems, 
the real-time behavior can be controlled, that is, restricted such that the system satisfies some 
pre-defined specification. For example, if the tolerable network lag in some kind of network 
computing is pre-specified as 10 seconds, then the behavior of the network computing environment 
could be controlled such that under all circumstances a maximum of 10 seconds network lag is 
encountered during computation. 

To model the above soft real-time behavior, we define a new simplified linear temporal logic, 
which a controller is supposed to enforce in a SERTS. 

Definition 2. Timed Reachability Specification 
A Timed Reachability Specification (TRS) for a TFCPN A = (P, T, F, M0, τ) has the following 
syntax: 

φ ::= EF~cp | AG~cp | φ1 ∧φ2 (1) 

where ~ ∈ {<, ≤, =, ≥, >}, p is a non-negative integer vector of |P| elements, and φ1 and φ2 are TRS 
formulae. 

Semantically, EF~cp means eventually and obeying the timing restriction ~c there exists a 
TFCPN marking M such that M = p, where p is a token assignment represented by a non-negative 
integer vector of |P| elements such that each element represents the amount of tokens that must 
reside in the corresponding place. This definition is the same as a marking, but we do not call it a 
marking because p might not be reachable from the initial marking. Further, AG~cp means for all 
reachable markings M, while obeying the timing restriction ~c, M = p. Thus, a TRS gives a linear 
temporal condition that a TFCPN must satisfy. Since we consider a single microprocessor 
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(executing software) in our soft embedded real-time systems, linear temporal logic in the above 
TRS form (Equation 1) is sufficient for expressing all reachability properties such as safeness, 
deadlines, boundedness, deadlock-free, and starvation. Other properties which are not as important 
for SERTS such as liveness cannot be specified using TRS. 

  Given a system model TFCPN (Definition 1}) and a specification logic (Definition 2), we are 
now ready to formulate our problem as follows. 

Definition 3. Soft Embedded Real-Time System Synthesis 
Given a system modeled by a set of TFCPN S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n} and a 
specification φ in TRS, the system description S is to be synthesized by scheduling and by 
modifying firing interval bounds such that S is made to satisfy φ. 

3.3. Synthesis Algorithm 

As introduced in Section 1 and formulated in Definition 3, there are two objectives for our SERTS 
synthesis algorithm, namely bounded memory execution and soft real-time constraints satisfaction. 
Thus, the algorithm SERTS_Synthesize() proposed in Table 1 is intuitively divided into two phases 
corresponding to the two objectives. 

Table 1 Soft Embedded Real-Time System Synthesis Algorithm 

 

As shown in Table 1, given a set of TFCPNs S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, …, n}, a 
maximum bound on memory µ, and a TRS φ, a system is synthesized upon completion of the 
following two phases. 

3.3.1. Quasi-Static Data Scheduling (QSDS) 

The basic concept here is to employ net decomposition such that firing choices that exists in a 
TFCPN are segregated into individual Conflict-Free (CF) components. This is done by a procedure 

SERTS_Synthesize(S, µ, φ) 
set of TFCPN S = { Ai | Ai = (Pi, Ti, Fi, Mi0, τi), i = 1, 2, ..., n}; 
integer µ;    // Maximum memory 
TRS φ;    // Specification 
{ // Quasi-Static Data Scheduling (QSDS) 

for each Ai in S { (1) 
Bi = CF_Generate(Ai); // Bi: set of CF components  (2) 
for each CF component Aij in Bi { (3) 

QSSij = Quasi_Static_Schedule(Aij, µ);  // QSS: schedules (4) 
if QSSij == NULL { (5) 

print “QSDS failed for Aij”; (6) 
return QSDS_Error;  } (7) 

else QSSi = QSSi ∪ {QSSij};  }  } (8) 
// Firing Interval Bound Synthesis (FIBS) 
if Controller_Synthesize(S, QSS1, …, QSSn, φ) == NULL 

return FIBS_Error;  (9) 
else return Synthesized; } (10) 
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CF_Generate() as in Step (2) for each Ai, which results in a set Bi of CF components corresponding 
to Ai. The CF components are not distinct decompositions as a transition may occur in more than 
one component. As in Step (4), each CF component of each TFCPN is quasi-static scheduled, that is, 
starting from an initial marking for each component, a finite complete cycle is constructed, where a 
finite complete cycle is a sequence of transition firings that returns the net to its initial marking. A 
CF component is said to be schedulable if a finite complete cycle can be found for it and if it is 
deadlock-free. Once all CF components of a TFCPN are scheduled, a valid quasi-static data 
schedule QSSi for the TFCPN Ai can be generated as a set of the finite complete cycles. The reason 
why this set is a valid schedule is that since each component always returns to its initial marking, no 
tokens can get collected at any place. Details of this procedure can be found in [23]. 

We have extended the quasi-static scheduling approach given in [23] to consider timing 
constraints on transition firings during the scheduling process. A quasi-static schedule is said to be 
feasible only if all transition firing intervals are satisfied. Satisfaction of memory bound can be 
checked by observing if the memory space represented by the maximum number of tokens in any 
marking does not exceed the bound. Here, each token represents some amount of buffer space (i.e., 
memory) required after a computation (transition firing). Hence, the total amount of actual memory 
required is the memory space represented by the maximum number of tokens that can get collected 
in any marking, which results from the transition firings in a quasi-static data schedule. 

3.3.2. Firing Interval Bound Synthesis (FIBS) 

This phase consists of a procedure Controller_Synthesize() as in Step (9) of Table 1, which 
synthesizes a controller for system S with quasi-static schedules QSS1, …, QSSn to satisfy a TRS φ. 

Some embedded soft real-time systems, such as multimedia and networks, can tolerate 
latencies that occur due to network lags, inferior display technologies, weak processing power, and 
limited memory bandwidth. In order to control such systems, normally a controller is needed to 
ensure quality of service (QOS), predictability, and reliability. The two main issues involved in the 
design of a controller for embedded soft real-time systems are as follows: 

 Synchronization Wait: A software task, upon completion of its scheduled jobs, may have to 
wait for a period of time to synchronize with another software task or with the hardware. 

 Real-Time Specification: In order to satisfy some given real-time specification, such as 
deadlines, a software task must finish execution of its scheduled jobs earlier than 
system-permitted deadlines. 

Solving the above two issues, a synthesis method must generate a controller that ensures all 
synchronizations and real-time specifications are met. In our proposed method, the above two issues 
are solved as follows. Here, each software task T is associated with a time interval (α, β), where α 
is the earliest start time of T and β is the latest finish time of T. 

 Postpone Release Time: For synchronization to be feasible and for predictable behavior, a 
software task that needs to wait for some other tasks, should have its earliest start time α 
changed into α + δw, where δw > 0 is the amount of wait time required. 

 Advance Finish Time: For satisfaction of real-time specifications, the deadline of a 
software task is advanced from β to β − δh, where δh > 0 is the difference in the 
user-specified and system-permitted deadlines. 

As shown in Table 2, a solution to FIBS is proposed as an algorithm Controller_Synthesize(), 
which consists of three nested for-loops spanning over each TFCPN (Step (1)), over each schedule 
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of a TFCPN (Step (2)), and over each transition in a schedule (Step (3)). Firing Interval Bound 
Synthesis or Controller Synthesis mainly restricts some transition firing interval τ(t) = (α, β) into a 
smaller interval (α ', β '), where α ' ≥ α and β ' ≤ β, such that a given TRS formula is satisfied. In 
the above case, (α, β) is said to be less restricted than (α ', β '). 

Table 2 Controller Synthesis Algorithm for TFCPN/TRS 

The conditions given in Step (3) of Table 2 specifies that we consider only each prefix t = <t0, 
t1, …, tk> of a schedule vij that leads to a possible token assignment specified in some component of 
φ. A transition in in_trans(p) is an incoming transition of place p and the function token_φi(p) gives 
the number of tokens at place p specified in the ith component φi of φ. First, as in Step (4) the 
aggregate delay interval τ is calculated for a schedule prefix t by summing up all the EFT αi and all 
the LFT βi of transitions ti in t. Then, a full set of new interval bounds (New_IBSi) is constructed by 
procedure IBS_Synthesize() in Step (5), with details in Table 3. 

 Corresponding to the two kinds of path-formulae in a TRS φ, there are two ways for 
incorporating the new set of interval bounds in S. 

1. φ = EG~cpi: 

A variable Min_IBSi keeps track of the set of minimally restricted transition firing intervals of 
Ai for satisfying φ (Steps (6) and (7)). A solution consisting of a set of minimally restricted 
intervals is sought because such a solution contains the maximal behavior of the original 
system S that satisfies specification φ. 

2. φ = AG~cpi: 

A variable Old_IBSi records the intersection of all sets of restricted transition firing intervals of 
Ai for satisfying φ (Step (8)). A set intersection is performed by individual intersections of each 
pair of intervals τ1 = (α1, β1) andτ2 = (α2, β2), that is, τ1 ∩ τ2 = (α ', β '), where α ' = Max{α1, 

Controller_Synthesize(S, QSS1, …, QSSn, φ) 
set of TFCPN S = { Ai | Ai = (Pi,Ti,Fi,Mi0,τi), i = 1, 2, ..., n}; 
TRS φ = M1p1 ∧ M2p2 ∧ ..., Mnpn, where φi = Mipi, 
Mi ∈ {EF~c, AG~c}, pi = <x1, x2, ..., x|Pi|>, xi ∈ N≥0; 
{ 

for i = 1, …, n { (1) 
for each schedule vij ∈ QSSi { (2) 

for each tk ∈ vij, tk ∈ in_trans(p) and tokenφi (p)>0, p ∈ Pi { (3) 
τ = (∑i=0...kαi, ∑i=0...kβi); // <t0,t1,…,tk> is a prefix of vij (4) 
New_IBSi = IBS_Synthesize(vij, tk, τ, φi); (5) 

if Mi==EF~c and New_IBSi > Min_IBSi (6) 
Min_IBSi=New_IBSi; (7) 

if Mi=AG~c Old_IBSi=Old_IBSi∩New_IBSi;  }  } (8) 
if Mi=EF~c and Min_IBSi ≠ NULL 

IBS_assign(Min_IBSi); // modify τ (9) 
else if Mi=AG~c and Old_IBSi ≠ NULL 

IBS_assign(Old_IBSi); // modify τ (10) 
else return NULL;     } (11) 

return τ; (12)
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α2} and β '= Min{β1, β2}. 

IBS_assign() in Steps (9) and (10) assigns the final set of interval bounds to the system S. 

IBS_Synthesize() in Table 3 synthesizes (modifies) the firing interval bounds for a sequence 
of transition firings, which is a prefix of a schedule vij = < t0, t1, …, tk, …>, such that the modified 
system satisfies both φ and the aggregate delay intervalτ. The switch-case statement in Step (1) to 
Step (7) first decides what is the least restriction on τ = (α, β) by calculating τ ' = (α ', β ') such that 
φ is satisfied. Then, depending on whether the calculated restriction is on EFT (Step (8)) or LFT 
(Step (14)), there is a loop for modifying the firing interval bounds (αij, βij) of transitions starting 
from the kth one. If even after all transitions have firing intervals modified and φ is still not satisfied 
then an error is returned (Steps (13) and (19)). Otherwise, the set of modified firing intervals is 
returned (Step (20)). 

Table 3 Synthesis of Interval Bounds Set 

After applying the controller synthesis algorithm (Table 2) to a system S, some transition firing 
intervals of the TFCPNs in S are restricted into smaller intervals such that the restricted (controlled) 
system S' satisfies a given specification TRS φ and there is no other lesser restricted system S'' that 
can satisfy φ. An example will be given in Section 4. 

IBS_Synthesize(vij, t, τ, φ) 
schedule vij = <ti0, …, tik, …>; // τ(tij)=(αij,βij) 
transition t = tk ∈ vij; 
FIBτ = (α, β); 
TRS φ = Mp, M∈ {EF~c, AG~c}, p=<x1, …,x|Pi|}>; { 

switch “~” { (1) 
case <: if (c ≤ β)  τ'=(α, c−1); break; (2) 
case ≤: if (c ≤ β)  τ'=(α, c); break; (3) 
case =: τ'=(c, c); break; (4) 
case ≥: if (c ≥ α)  τ'=(c, β); break; (5) 
case >: if (c ≥ α)  τ'=(c+1, β); break; (6) 

}  // let τ'=(α', β') (7) 
if α ' > α { (8) 

for j=k,…,0 do { (9) 
αij += min{α ' − α, βij − αij}; (10) 
if (α ' − α ≤ βij − αij) break; (11) 
else α ' −=  βij − αij; (12) 
if j = 0 return Unsynthesizable;  }  } (13) 

if β'<β do { (14) 
for j = k, …,0 do { (15) 
βij −= min{β − β', βij − αij}; (16) 
if (β − β' ≤ βij − αij) break; (17) 
else β ' += βij − αij; (18) 
if j = 0 return Unsynthesizable;  }  } (19) 

return {(αij, βij: j = 0, …, k}; }  (20)
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Fig. 3 Application Example S = (F1, F2) 

 

4. APPLICATION EXAMPLE 

A 2-process system example is given in this section to illustrate the proposed SERTS synthesis 
algorithm. It consists of two TFCPN (F1 and F2) as shown in Fig. 3 and a Timed Reachability 
Specification (TRS) formula as below: 

φ: EF≤7 <002> ∧ EF≥30 <0000001>     (2) 

According to our proposed algorithm (Table 1), we apply quasi-static data scheduling and controller 
synthesis to the given system. 

QSDS for F1: Since t12 and t13 are conflicting transitions, two CF components (R11 and R12 in Fig. 4) 
are derived, which are then individually scheduled, resulting in the following two schedules, with 
their associated execution time intervals. 

v11 = (t11 t12 t11 t12 t14),  11 ≤ τ(v11) ≤ 22   (3) 
v12 = (t11 t13 t15 t15),  13 ≤ τ(v12) ≤ 26   (4) 
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Fig. 5 Conflict Free Components of F2 

There can be two sets of valid schedules for this TFCPN as given below. 
Σ1 = {(t11 t12 t11 t12 t14), (t11 t13 t15 t15)}       (5) 
Σ2 = {(t11 t13 t15 t15), (t11 t12 (t11 t13 t15 t15) k t11 t12 t14),  k ∈ N)}  (6) 

QSDS for F2: Since t22 and t23 are conflicting transitions, two CF components (R21 and R22 in Fig. 5) 
are derived, which are then individually scheduled, resulting in the following two schedules, with 
their associated execution time intervals. 

v21 = (t21 t22 t24 t24 t26 t26 t26 t26 t28 t29 t26),  31 ≤ τ (v21) ≤ 68  (7) 
v22 = (t21 t23 t25 t27 t27 t28 t29 t26),  15 ≤ τ (v22) ≤ 36    (8) 

 
The set of valid schedules for this TFCPN is as given below. 

∑3={(t21 t22 t24 t24 t26 t26 t26 t26 t28 t29 t26), (t21 t23 t25 t27 t27} t28 t29 t26)} (9) 

Controller Synthesis: In Equation (2), the first conjunct in φ corresponds to F1 and specifies that 
the TFCPN F1 reaches a marking within less than or equal to 7 time units such that there are no 
tokens in places p1 and p2 and there are two tokens in p3. The second conjunct corresponds to F2 and 
specifies that the TFCPN F2 reaches a marking after 30 time units, inclusive, such that there are no 
tokens in any of the first six places (p1, …, p6) and there is one token in place p7. Applying the 
controller synthesis algorithm from Table 2, we have the following results. 

FIBS for F1: First, consider the conjunct in φ that corresponds to F1, that is, EF≤ 7 <002>. Since 
there is only one schedule (v12 = (t11 t13 t15 t15)) in Σ1 (Equation (4)) that results in p3 having tokens. 
We calculate the time required by the prefix of the schedule that leads to 2 tokens in p3 as follows: 
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2 + 3  ≤  τ (t11) + τ (t13})  ≤  3 + 5 
5   ≤  τ (t11) + τ (t13})  ≤  8 

Thus applying the IBS synthesis algorithm from Table 3, for the time spent on the schedule 
prefix (t11 t13) to satisfy (≤ 7) constraint, the firing interval of t13 is modified as follows. 

τ(t13) = (3, 4)      (10) 

FIBS for F2: For TFCPN F2, we must consider both the schedules v21 and v22 from Equations (7) 
and (8) because both the schedules have prefixes that lead to a token in place p7. First, the aggregate 
delay interval is calculated for a prefix of v21 as follows. 

25  ≤  τ(t21 t22 t24 t24 t26 t26 t26 t26 t28)  ≤  56 
Thus, to satisfy the constraint of ≥ 30, the firing interval of t8 is modified as follows. 

τ(t28) = (5, 5)       (11) 

When we consider a prefix of schedule v22, as shown below it is impossible to modify any 
firing interval of transitions in T2 to satisfy the ≥ 30 constraint because the maximum firing delay is 
only 28. 

11  ≤  τ(t21 t23 t25 t27 t27 t28) ≤ 28 

After modifying the firing intervals of transitions t3 and t8, we get the two controlled TFCPN 
as illustrated in Fig. 6 and Fig. 7. 

t11(2, 3) 
t12(1, 3)

t13(3, 4)

p1

p2

p3

2

t14(5, 10)

t15(4, 9)

2

 
Fig. 6 Controlled TFCPN F1 
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t22(1, 2)
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p7

p2

p3

2

t24(2, 4)

t25(2, 4)

2

2
p4

p5

p6

t27(4, 8) 

t26(5, 10) 

2

t28(5, 5) t29(1, 2)

p1 

 

Fig. 7 Controlled TFCPN F2 

As a last note on controller synthesis for this example, let us suppose the TRS specification is 
changed to the following. 
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φ ': EF≤7<002> ∧ EF≥60 <0000001> 

Then, there is no modification of any firing interval of any transition that can make the system 
S to satisfy φ'. In this case, the controller is unsynthesizable. 

5. CONCLUSION 

Instead of ad-hoc, trial-and-error methods that engineers use in developing Soft Embedded 
Real-Time Systems (SERTS), it has been proposed in this work how SERTS can be developed by a 
formal automatic synthesis method. To satisfy the limited memory space and processor power 
requirements of a soft real-time embedded system, two phases, namely Quasi-Static Data 
Scheduling (QSDS) and Firing Interval Bound Synthesis (FIBS) are performed before code 
generation. Engineers will benefit from our work when he/she applies the proposed method to 
automatically and formally synthesize a system specification modeled as a set of TFCPNs. Future 
research directions include the extension of system models (TFCPN) to more general ones such that 
a larger domain of system can be synthesized. 
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