A Formal UML Package for Specifying Real-Time
System Constraints

Gopal Raghavan and Maria M. Larrondo-Petrie
Department of Computer Science & Engineering
Florida Atlantic University
Boca Raton, F1.-33431-0991, USA
{raghavag,maria}@cse.fau.edu

September 25, 1999

Abstract

An object-oriented approach provides a natural
way to model a real-time system characterized
by timing, resource and precedence constraints.
Multiple simultaneous processes competing for
resources and constrained by strict timing dead-
lines add to the complexity of modeling such
systems. Unified Modeling Language (UML) is
a very general language that supports power-
ful extension mechanisms that includes: stereo-
types, tagged values and constraints. In this pa-
per, we use these extension mechanisms to model
real-time system constructs. The constructs are
then formalized using Object Constraint Lan-
guage(OCL) and made available in the form of
a UML package. The behavior models were sim-
ulated and formally validated for correctness.
Such constructs are then stereotyped for use as
design patterns when developing real-time appli-
cations.

Keywords: Real-Time Systems, Formal Meth-
ods, Object-Orientation, Unified Modeling
Language, Object Constraint Language.

1 Introduction

Real-time systems host multiple simultaneous
processes that are triggered by unpredictable
events and are competing for resources. In most
cases timing is a very critical factor and it is
absolutely necessary to complete such tasks in
a timely fashion. Based on the severity of im-
pact the system faces on missing timing dead-
lines, real-time systems are classified into two
categories: soft real-time system and hard real-
time system. In soft real-time systems tasks are
expected to meet the deadline, but skipping a
deadline would not result in severe damage to
the system. On the otherhand, missing dead-
lines could be catastrophic in the case of hard
real-time systems. In either case the complexity
of building and analyzing the model is mainly
due to a tight dependency that exists between
the functional and non-functional properties of
the real-time systems. Most traditional meth-
ods for developing real-time systems are very ef-
ficient in modeling these properties in isolation,
but fail to explicitly capture their interdepen-
dency. The novelty of our approach is in bridg-
ing this gap by providing appropriate constructs

using UML’s extension mechanisms. UML is a
standard, accepted by the Object Management
Group (OMG)!, for specifying object-oriented
systems. UML provides a set of artifacts to
model structural, behavioral and architectural
aspects of a system [2]. In addition, it supports
a powerful extension mechanism which can be
used to extend UML in a controlled fashion.

In this paper we propose a UML package com-
posed of real-time constraint elements. The
package elements are modeled using UML’s ex-
tension mechanisms. These constraints are
formalized using Object Constraint Language
(OCL), which is an artifact of UML, and vali-
dated using Telelogic Tau [11] [1]. In Section 2,
we define a UML package for real-time systems.
The proposed formal representation of time is
discussed in Section 3. Section 4 provides a for-
mal representation of periodic and aperiodic pro-
cesses. A formal representation for resource is
specified in Section 5. In Section 6 the formal
representation of precedence constraint is dis-
cussed. Section 7 discusses our fromal validation
process and presents results. Qur conclusions
and future work is provided in Section 8.

2 UML Package for Real-Time
System Constraints

In UML, package is a general purpose mechanism
for organizing elements [2]. Packages are identi-
fied by a simple name or a path name. A simple
name provides just a name for the package, while
a path name specifies the package name along
with the enclosing package name in which this
package lives using a scope resolution operator.
Packages are composed of other elements with a
life-time binding relationship, which means that
when a package is destroyed the elements of the
package are also destroyed. The visibility of
package elements can be specified using appro-
priate symbols for public (+), private (-) and
protected (#) access. Packages are scalable and
can be imported or exported. They also follow

'OMG web site http://www.omg.org

other structural relationships like generalization
and dependency. A package is represented in
UML as a tab-folder with package name and con-
taining elements.

RT-Constraints

+RTC +Timer +Process

+Precedence

+Resource

Figure 1: UML package for real-time constraints

For real-time systems we define a package
called RT-Constraints, which is composed of
UML constructs that formally specify real-time
constraints. The RT-Constraints package is
shown in Fig. 1. The elements of this pack-
age include: RTC, Timer, Process, Resource and
Precedence. We will discuss, in detail, these con-
straints in the following sections.

3 Formal Representation of

Time

In most real-time systems the real-time clock is
implemented in hardware and is driven by a crys-
tal clock. The current value of time can be read
directly from the free counter register. In ad-
dition to the free counter register most hard-
ware support compare registers from which one-
shot, fixed-interval and variable-interval timers
can be implemented. One shot timers are im-
plemented by loading the register with a value
and counting down to zero. An interrupt is pro-
duced by the timer to indicate that the count
value has reached zero. Fixed-interval timers
are implemented by loading the compare regis-
ter with a value corresponding to the interval.
When the free counter register value equals the
compare register value an interrupt is produced.

A variable-interval timer is similar to the fixed-
interval timer except that it supports reloading
of the compare register during each period.

Our Real Time Clock(RTC) object is an ab-
straction of the underlying hardware clock. We
assume that the RTC object represents an ideal
global real-time clock. The RTC class along with
OCL formalism is shown in Fig. 2 [11]. The RTC
class has three attributes: #¢ime, compare and
outSig. The time attribute represents the current
global value of real-time that is stored in the free
counter register. The compare attribute stores a
relative time value that is stored in the compare
register. The outSig attribute represents the sig-
nals that can be generated by an RTC object.
The RTC class has two global interfaces: now()
and load(). The method now() is used to access
the value of time from any object in the system.
The method load() is used to load the compare
register with a relative time value.

In our system, time is an absolute, discrete,
monotonically increasing quantity represented
by an integer. The value of time is incremented
by the hardware clock. RTC is a singleton class
and will have only one instance in the system. It
is used as a reference by all other time related
objects in the system. Since clock updates are
managed at the hardware level, a software pro-
cess need not be dedicated to update clock val-
ues. In fact, if the RTC object were to be mod-
eled as a process then the scheduler would inter-
leave it with other processes in the system and
would cause delays in updating the time value.

All objects in the system can access the RTC
via the global method now(). In the RTC,
now() will be implemented as a static method.
In UML, static methods are differenciated from
other methods by explicitly underlining them.
The interface will therefore be a class method
rather than an instance method. Hence object
identifiers are not required to access this method
[3][4][7]. The now() method can be accessed us-
ing the class name and the scope resolution oper-
ator as follows: RTC::now(). The load() method
is also implemented in a similar fashion and is
globally accessible.

RTC::now():Integer

RTC
] pre: -- none
time:Integer post: result = time
compare:integer RTC::load(c:Integer)
iq-fEV pre: -- none

?’lIJI;[/ISE%{{ EXP} post: compare=c

+now(): Real

+load(Integer) <<invariant>> L\
rTC.allinstances->size = 1

Figure 2: Real Time Clock

We now specify a Timer class, as shown in
Fig. 3, that uses the global functions supported
by the RT'C. The Timer object is very commonly
used, in one form or the other, in most real-time
systems. The timer keeps track of the start time,
end time and the number of timer ticks pro-
duced while it is active. The interval between
two timer ticks is specified by the attribute pe-
riod. The timer can receive EV_.TIMER_EXP as
an incoming signal from the hardware indicating
expiration of the timer value. Any periodic timer
can be easily derived based on this Timer object.
For each method supported by the Timer class
a formal pre/post condition semantics is speci-
fied using OCL notation in Fig. 3. The timing
characteristics of the Timer is shown in Fig. 4.

The behavior of the Timer object is shown
using the Statechart in Fig. 5. The Timer ob-
ject is initially in the UNINIT state where the
timer variables are initialized. When the start()
method is invoked, its state changes to INIT
where the startTime is initialized to the abso-
lute global value of time using the RTC::now()
method. The endTime and tickCount are also
initialized in this state. =~ The RTC is then
loaded with the relative time value specified
by the attribute period. Once the initializa-
tions are complete the Timer waits for the event
EV_TIMER_EXP to occur. When this event oc-

Timer

period: Integer

startTime: Integer
endTime: Integer

tickCount:Integer

state: enum{UNINIT,INIT]|,

WAIT}

Timer::start()
pre: state = #UNINIT
post: state = #INIT

Timer::stop()
pre: -- none
post: state = #UNINIT

inSig: enum{
EV_TIMER_EXP}

+start()

+stop()
setPeriod(Integer)
+getTickCount(): Integer
+isActive():Boolean

Timer::setPeriod(p: Integer)

pre: -- none

post: period = p and state = #INIT
Timer::getTickCount():Integer

pre: -- none

post: result = tickCount

Timer::isActive():Boolean

pre: -- none
post: if(state<>#UNINIT) result = tru

else result = false

<<invariant>> |\
timer.allinstance->forAll(
‘Timer

p.endTime >= p.startTim

e

UNINIT

stop()
start()

stop()
INIT
startTime=RTC::now()
endTime = startTime
tickCount=0
load(period)

EV_TIMER_EXP

WAIT

endTime=endTime+period
tickCount=tickCount+1
load(period)

Figure 3: Timer class and OCL formalism for its
methods

EV_TIMER_EXP

time

o\penod 1 \

startTime

endTime

Figure 4: Timing characteristics of the Timer
class

curs the object will transition from INIT state
to WAIT state. In the WAIT state the endTime
and tickCount are updated. The RTC is then
loaded with the relative time value and waits for
the event EV_TIMER_EXP to occur. For each
occurance of the event the Timer object updates
the endTime and tickCount. When the Timer is
in INIT or WAIT state, if the stop() method
is invoked the Timer object will transition to
UNINIT state.

EV_TIMER_EXP

Figure 5: Statechart for Timer class

Formal Representation of

Process

UNRUNNABLE

#EV_SCHED_STOP/

#EV_BEGIN_| sendEV(#EY_PROC_STOP)

#EV_END_MAX
- #EV_TIME_)

handleViol

IOLATION/
tion()

RUNNABLE

#EV_SCHED_PAUSE|
sendEV(#EV_PROG_PAUSE)
#EV_SCHED_START/

sendEV(#EV_PROC_START)

RUNNING

Figure 6: Statechart showing the behavior of pe-
riodic process

A process is a set of actions executed in a
particular fashion on a processor. Processes
are inherently concurrent and such concurrency
is simulated on a uniprocessor system by in-
terleaving multiple concurrent processes based
on time slicing. Due to stringent memory re-

quirements real-time systems can support only
a minimal operating system, known as a Ker-
nel, which is capable of scheduling process and
handling interrupts. As shown in Fig. 6, a
process is state based and is primarily in one
of the following three states: UNRUNNABLE,
RUNNABLE and RUNNING. When a process
is created it is initially in UNRUNNABLE state
where the process sleeps and is unschedulable.
When an event (EV_BEGIN_MIN) wakes the
process up, it goes into RUNNABLE state where
it becomes schedulable. The scheduler sched-
ules a process that is in RUNNABLE state by
issuing an event EV_SCHED_START, based on
time slicing. On receiving this event the pro-
cess moves to RUNNING state. The process can
be paused by the scheduler by issuing an event
EV_SCHED_PAUSE. The process will then stop
execution and transition to RUNNABLE state.
In either the RUNNABLE or RUNNING state,
if the process receives EV_SCHED_STOP or
EV_TIME_VIOLATION it will stop further exe-
cution and transition to UNRUNNABLE state.
In a real-time environment, a process needs to
meet strict timing and resource constraints. In
UML, a process is an active class stereotype
whose instances represent heavyweight flow [2].
In the next sections we show how timing con-
straints can be associated with periodic and ape-
riodic process.

4.1 Periodic Process

A periodic process usually deals with passive de-
vices. Input/Output (IO) devices such as sensors
are considered as passive devices because they re-
quire frequent polling in order to determine their
status [5]. In many situations, a periodic process
can also be used to perform internal functions.
Periodic processes are regular and are spaced at
equal intervals of time. They are associated with
a PeriodicTimer which specifies the timing con-
straint, as shown in Fig. 7 [9]. We will discuss, in
detail, the structure and behavior of a Periodic-
Timer in this section since it is closely associated
with a periodic process. The periodic process

PeriodicProcess

PeriodicTimer

Figure 7: Periodic process associated with a pe-
riodic timer

acts as a client to the PeriodicTimer and uses
the timing constraints to model the behavior.
The PeriodicTimer class is shown in Fig. 8.
The PeriodicTimer is based on the RTC class
and makes use of the global methods now() and
load(). It keeps track of various critical tim-
ing points that occurs during a periodic cycle
and generates corresponding events. The Pe-
riodicTimer receives events from RTC and the
client process. In turn, the PeriodicTimer sends
events out to the client process. The attribute
periodStart represents the absolute value of pe-
riod starting time, period End represents absolute
value of period ending time, beginMin represents
the absolute minimum time before the process
can start, endMax represents the absolute max-
imum time by which the process should com-
plete its task. The attribute period represents
relative time value of the cycle period, relBegin-
Min represents the relative minimum time after
which the process should start and relEndMazx
represents the relative maximum time by which
the process should finish. The attribute inSig
identifies all in-coming events and outSig identi-
fies all the out-going events. The PeriodicTimer
supports five operations, namely, init(), start(),
stop(), recvEv() and sendEv(). The OCL for-
malization for the class invariant and some of the
methods are shown in Fig. 9. The class invariant
captures the timing constraint that the Periodic-

PeriodicTimer

period: Integer

relBeginMin: Integer

relEndMax: Integer

periodStart: Integer

periodFinish: Integer

beginMin: Integer

endMax: Integer

actualBegin: Integer

actualEnd: Integer

inSig: enum{EV_TIMER_EXP,EV_PROC_PAUSE
EV_PROC_START, EV_PROC_STOP}

outSig: enum{EV_PERIOD_BEGIN,EV_BEGIN_MIN,

EV_END_MAX,EV_ACTUAL_BEGIN,
EV_ACTUAL_END, EV_PERIOD_END}

+init(Integer,Integer,Integer)
+start()

+stop()

+recvEv(inSig)
-sendEv(outSig)

Figure 8: PeriodicTimer class

Timer should follow throughout its lifecycle. The
client process communicates with the Periodic-
Timer and strictly follows the timing constraint.
The timing characteristics of a periodic process
is shown in figure Fig. 10. The period of the cy-
cle is given by 'p’ and the worst case execution
duration is given by ’d’. For a successful sched-
ule the periodic process should always start after
b1’ and finish execution before 'f2°. If the peri-
odic process fails to meet the constraint then it
will not be possible to meet the deadline.

The behavior of a PeriodicTimer is as shown in
Fig. 11. When initialized the timer goes to INIT
state. In this state all the relative time values
are initialized with the parameters supplied to
the init() function. When the start() method is
invoked the timer is started and its internal state
transitions from INIT to BEGIN_PERIOD. In
this state all absolute time values are updated
and the timer moves to the BEGIN_PERIOD
state. The RTC is now loaded with a compare
register value corresponding to the minimum be-

<<invariant>>
periodicTimer->forAll(p:PeriodicTimer|

N

p.periodStart<p.periodEnd and
p.periodStart<p.periodFinish and p.beginMin<p.endMax and
p.endMax<p.period and p.actualBegin>=p.beginMin and
p.actualBegin<p.endMax and p.actualBegin<=p.endMax)

N

PeriodicTimer::init(p:Integer, bl:Integer, f2:Integer)
pre: -- none
post: period=p andrelBeginMin=b1 andelMaxEnd = f2

PeriodicTimer::start()

pre: state=#INIT
post: state=#BEGIN_PERIOD

PeriodicTimer::stop()

pre: -- none
post: state=#INIT

Figure 9: Formalization of PeriodicTimer class
invariant and operations using OCL

gin time. The client process is not expected to
start before the EV_TIMER_EXP event is re-
ceived. In case the client process starts execution
the the PeriodicTime reports a violation by send-
ing an EV_TIME_VIOLATION event and transi-
tions directly to the END_MAX state, by-passing
the intermediate states. On the otherhand, if the
timer expires it would mean that the client pro-
cess has successfully reached the minimum be-
gin time without violating the constraint. The
timer will then transition to ACTUAL_BEGIN

d p - period
d - worst case execution time

— b1 - minimum begin time
b2 - actual begin time
f1 - actual finish time
2 f2 - maximum finish time

time|

Figure 10: Timing characteristics of periodic
process

init(p,b1,2) T

period = p
relBeginMin = b1

relEndMax = f2

start()/perigdStart=RTC::now()

#EV_TIMER_EXP/
sendEV(#EV_PERIOD_BEGIN)

BEGIN_PERIOD
periodEnd=periodStart+period
beginMin=periodStart+relBeginMin
endMax=periodStart+relFinishMax
sendEV(#EV_PERIOD_BEGIN)

BEGIN_MIN
RTC::load(beginMin-RTC::now())

#EV_AROC_$TART/
sendEY(#EV_[TIME_VIOLATION)

#EV_PROC_START)
sendEV(#EV_TIME_VIOLATION)

END_PERIOD
RTC::load(periodEnd-RTC::now())
periodStart=periodEnd

#EV_TIMER_EXP/
sendEV(#EV_BEGIN_MIN)

ACTUAL_BEGIN
RTC::load(endMax-RTC::now()) #EV TIMER EXP/
‘ sendEV(#EV_TIME_VIOLATION)

#EV_TIMER_EXP/
sendEV(HEV_END_MAX|

END_MAX
RTC::load(endMax-RTC::now())

#EV_PROC_STOP/
ACTUAL_END sendEv(#EV_ACTUAL_END)
RTC::load(endMax-RTC::now())

J

#EV_PROC_PAUSE T#EV—PROC—START

PAUSE
RTC::load(endMax-RTC::now()

#EV_PROC_START/sendEV(#EV_ACTUAL_BEGIN) }

Figure 11: Statechart showing the behavior of
the PeriodicTimer

state, which is a valid state for the client pro-
cess to start execution. If the client process fails
to start and the timer expires, the timing con-
straint is violated. Instead if the client process is
started during this period the timer will move to
ACTUAL_END state and wait for the client pro-
cess to issue EV_.PROC_STOP event and stop
execution. On receiving the EV_PROC_STOP
event the timer will move to END_MAX state.
But if the timer expires before receiving the
EV_PROC_STOP event, then the timing con-
straint is violated and the timer transitions to
END_PERIOD state. The PeriodicTimer also
supports pausing during the execution period
by transitioning between the PAUSE and AC-
TUAL_END state. During the pause period, a
different process can actually be scheduled by

interleaving. In the END_MAX state the RTC
is loaded with a time value so as to expire by
the maximum finish time. On receiving the
EV_TIMER_EXP event, the timer will transition
to END_PERIOD state. The RT'C is now loaded
with a value corresponding to the end of the pe-
riodic cycle. This time a timer expiration event
will take the timer back to the BEGIN_PERIOD
state. This cycle keeps repeating as long as the
PeriodicTimer is active. The client process re-
ceives all the events that are sent from the Peri-
odicTimer and behaves accordingly.

4.2 Aperiodic Process

AperiodicProcess

AperiodicTimer

Figure 12: AperiodicProcess associated with an
AperiodicTimer

Aperiodic processes are associated with input
devices that generate interrupts or with asyn-
chronous internal activities. They do not occur
at periodic intervals, but in most cases, aperi-
odic processes have a minimum time interval be-
tween consecutive requests [12]. From a schedul-
ing perspective it is possible to approximate an
aperiodic process to behave as a periodic pro-
cess. Once we make such approximations the
analysis procedure that was used for periodic
process will hold good for aperiodic processes.
Aperiodic process are associated with an aperi-
odic timer as shown in Fig. 12. In addition, it is
possible to buffer the external or internal events
that trigger aperiodic process and handle them

periodically [5]. The timing characteristics of an
aperiodic process is similar to the one shown if
Fig. 10, except that 'p’ now represents the min-
imum time between executions. The state ma-
chine behavior of an aperiodic process will be
very similar to the one shown in Fig. 6. The
behavior of the timer associated with an ape-
riodic process will however differ from the be-
havior of the timer associated with a periodic
process. The noticible differenc between the two
timers is that the AperiodicTimer will not cycle,
unlike a PeriodicTimer. The behavior of an Ape-
riodicTimer will look similar to the one shown
in Fig. 11. In the case of an AperiodicTimer
the occurance of EV_ TIMER_EXP event in the
END_PERIOD will not result in a state transi-
tion to BEGIN_PERIOD. Instead, the timer will
come to a halt.

5 Formal Representation of Re-
source Constraint

In a real-time system multiple concurrent tasks
compete for resources. Tasks are created in the
system to achieve a specific job and usually the
number of tasks that simultaneously exist will be
much larger than the available resources. During
its life-time, a task will consume some resources
and will release the resources back to the system
as soon as its processing is complete. Resources
within a system can be classified as sharable and
non-sharable. Sharable resources are those that
can be used simultaneously by several concurrent
processes. Examples of shared resource includes
CPU, read-only memory, read-only files, etc. A
non-sharable resource on the other hand allows
only one process to access it at a time. Example
of non-sharable resources include printers, mem-
ory, system bus etc.

Since sharable resources allow simultaneous
access to concurrent processes there is no need
to lock the resource. On the other-hand, non-
sharable resources will contain sections of code
or operations that need mutually exclusive ac-

cess. These sections are called critical sections

‘ Resource }Q—{SharableRes

Semaphore::wait() AN
Non-SharableRes
S

pre: -- none

post: if (value=0) p.state()=#UNRUNNABLE
and sqg.enqueue(p)

else value=value@pre-1

Semaphore

Semaphore::signal() AN
pre: -- none
post: if(sq.isEmpty()) value=value@pre+1
else p=sq.dequeue() and
p.state()=#RUNNABLE

value:Integer
numWait:Integer
numsSignal:Intege
initValue:Integer
wait()

signal()

=

«invariant» D
numWait<=numsSignal+initValue
and value>=0

SemaphoreQueue

+enqueue(p:Process)
+dequeue():Proce$s

Figure 13: Formal representation of resource
constraints using OCL

and can be implemented using semaphores. The
object model of a semaphore and a formal speci-
fication of its operations, wait() and signal(), us-
ing OCL are shown in Fig. 13. A semaphore is a
non-negative integer, which holds an initial value
(init Value)that signifies the number of available
resources. The value of a semaphore can be
changed only via the atomic operations wait()
and signal(). The critical section usually begins
with a wait and ends with a signal operation on a
semaphore. When the wait operation is invoked,
it checks to see if the value of the semaphore is
zero. If it is zero then the associated process
is made UNRUNNABLE and appended to the
semaphore queue. The queuing mechanism can
be simple FIFO or based on some priority. How-
ever, if the semaphore value is not zero then the
process is allowed to enter the critical section.
During this period the resource will be owned by
the process, hence the semaphore value is decre-
mented. Once the processing is complete the
signal() operation is invoked on the semaphore
to release the resource. The signal() checks the
semaphore queue to see if there are any pending
processes. If it is found empty then the value of
the semaphore is incremented. However, if the

semaphore queue is not empty then the process
at the front of the queue is removed and made
RUNNABLE. The number of wait() and signal()
operations executed on a semaphore is stored in
the attributes num Wait and numSignal respec-
tively. This type of semaphore with primitive
operations wait() and signal() was introduced in
1965 by Dijkstra and is supported by most op-
erating system [8][10].

6 Formal Representation of

Precedence Constraint

ProcA

ProcB ProcC

ProcD

"N ProcE

N

<<invariant>>

procA->forAll(a:ProcA | procB->forAll(b:ProcB | procC->forAll(
c:ProcC | precede(b,a) and precede(c,a) implies (
a.PT.actualBegin >= b.PT.actualEnd and
a.PT.actualBegin >= c.PT.actualEnd))))

procB->forAll(b:ProcB | procD->forAll(d:ProcD | precede(d,b)
implies (b.PT.actualBegin >= d.PT.actualEnd)))

procC->forAll(c:ProcC | ProcE->forAll(e:ProcE | precede(e,c)
implies (c.PT.actualBegin >= e.PT.actualEnd)))

procD->forAll(d:ProcD | ProcE->forAll(e:ProcE | precede(e,d)
implies (d.PT.actualBegin >= e.PT.actualEnd)))

Figure 14: Formal representation of precedence
constraints using OCL

Precedence constraints specifies the relation-
ships between a set of processes. This type of
relationship can be represented using an acyclic

directed graph. A process 'p’ is said to precede
process ’q’, if ’q’ can start its execution only af-
ter ’p’ has completed its computation. We define
a function precede(p,q) which returns boolean
true if p precedes q and boolean false otherwise.
In UML, a precedence graph can be represented
using dependency relation as shown in Fig. 14,
where the rectangular boxes represent a pro-
cess and the directed, dotted line connecting the
boxes represent dependency. In this case, ProcA
depends on ProcB and ProcC. ProcB depends on
ProcD, which in turn depends on ProcE. Also,
ProcC depends on ProcE. Fig. 14 also shows the
OCL formalization associated with each prece-
dence relation. In the formalization 'PT’ repre-
sents the timer associated with the process. We
stereotype this flavor of dependency as « prece-
dence . In a similar fashion other relationships
between processes such as, p excludes q, p in-
cludes q, p overlaps q etc., can be modeled us-
ing a dependency relation and formalized using
OCL.

7 Formal Validation of the
Package Elements

Validation is a process of making sure that the
specifications and models capture the require-
ments consistently [6]. Formal validation can be
conducted in several way based on the design-
ers experience. We have chosen Telelogic Tau
[1] as our tool for Formal verification and val-
idation. Tau is a Software Development Tool
(SDT) developed by Telelogic AB. Tau supports
object oriented requirements capture and analy-
sis. It provides a rich environment for modeling
real-time systems using SDL (Specification and
Description Language) and MSC (Message Se-
quence Charts). SDL is an ITU-T standard (rec-
ommendation Z.100) for specifying communicat-
ing systems. SDL is an extended finite state ma-
chine used for developing real-time, interactive
systems. Tau provides tools for editing, anayls-
ing, simulting and validating a system. The tim-
ing and process models that we developed as

Symbol Coverage Tree
Information from:
CA\TEMP\stbh00128

(total)
43461 (0 - 2721)

RealTimeSystem
12818 (0 - 1111)
L

RealTimeSim

12818 (0 - 1111)
J

1
J

.

PeriodicProcess
12818 (0 - 1111)

PeriodicTimer
7916 (0 - 612)

f
1
\

00

AL LR LR R

Figure 15: Coverage showing symbols executed
least number of times

part of the UML package were translated to SDL
models and captured using SDT editor. The
SDT editor provides a user friendly environment
to graph the SDL model. It also identifies syn-
tax errors during the process of editing. The
SDT analyzer was then used to uncover syntac-
tic and semantic errors in the model. Once the
model was error free, the simulator was used to
further analyze the model. The simulator will
allow to step through the model and send sig-
nals via channels. The simulator will display the
current state of the system and also provide the
simulation trace in the form of MSC. For simula-
tion and validation purpose SDL’s timer features
were used to model the RT'C. The SDT validator
was then used to conduct a state-space analysis.
The validator can perform exhaustive, bit-state
and random state exploration. In each case the
validator will examine each system state that is
encountered and will provide statistics. The val-
idator views the state machine as a behavior tree

Symbol Coverage Tree
Information from:
C:\TEMP\stc00128

(total)
43461 (0 - 2721)

RTconstraints
30643 (0 - 2721)

RealTimeSystem
12818 (0 - 1111)

RealTimeSim
12818 (0 - 1111)

RTC
22727 (7 - 2721)

PeriodicTimer
7916 (0 - 612)

T
p>
272127212721 2721

()

PeriodicProcess rtcNow rtcLoad

12818 (0 - 11111328 (2164 — 2164}218 (1406 ~ 1406)

Figure 16: Coverage showing symbols executed
most number of times

and traverses every possible path. The tool pro-
vides an option to vary the depth of the tree. The
results that were obtained after a bit-state ex-
ploration and exhaustive exploration are shown
below.

** Starting bit state exploration **
Search depth : 400
Hash table size : 1000000 bytes

** Bit state exploration statistics *x*
No of reports: O.

Generated states: 2941.

Truncated paths: 13.

Unique system states: 2536.

Size of hash table: 8000000 (1000000 bytes)

No of bits set in hash table: 4990
Collision risk: 0 %
Max depth: 400

Current depth: -1

Min state size: 152
Max state size: 228
Symbol coverage : 89.79

** Starting exhaustive exploration **
Search depth : 300

** Exhaustive exploration statistics *x*
No of reports: O

10

used the least number of times was captured us-
ing the coverage viewer and is shown in Fig. 15.

Symbol coverage chart for

System (total) Similarly the symbols that were used the most
Total number of executed symbols: 43461 : .
87 of 101 symbols (87 %) have been covered number of times was captured using the cover-
14 of 101 symbols (13 %) have not been covered . d . h in Fi 1 C
(no of symbols) age viewer and is shown in Fig. 16. Coverage

details, including the number of transitions that
were executed a certain number of times is shown
using a coverage chart in Fig. 17.

14

L bl |

0 (no of times) 2721

8 Conclusion and Future Work

Real-time systems are complex and are subjected
Figure 17: Coverage details to a number of constraints. Object-oriented
methods provide a natural way of modeling such
systems. Although most real-time system re-
lated constructs are not directly handled by
UML, it is possible to use the extension mech-
anism to derive new constructs. In this paper,
we have formalized a few real-time system con-
*% Starting exhaustive exploration % strain’ts using OCL and packaged them .using
Search depth : 300 UML’s package. All cqnstructs, tl?at we 1nt1.ro-
duced, are supported with appropriate behavior
models and formal specifications. We have used
OCL, where necessary, to formalize the opera-
tional semantics and constraints. The behavior
models were formally validated using Telelogic
Tau. The models were simulated both manually
and automatically. They were found to be sta-
ble and consistent with the specifications. These
real-time constraints can be stereotyped and in-
cluded in the real-time package.

Generated states: 2129
Truncated paths: 15.
UnSymbol coverage : 89.79

** Exhaustive exploration statistics *x*
No of reports: O

Generated states: 2129

Truncated paths: 15.

Unique system states: 1837.

Size of hash table: 100000 (400000 bytes)
Current depth: -1

Max depth: 300

Min state size: 152

Max state size: 228 In the future, we plan to formalize and stereo-
ique system states: 1837. type other aspects of real-time systems such as,
Size of hash table: 100000 (400000 bytes)scheduling and fault-tolerance. We also plan to
Current depth: -1 feed the OCL specifications through an OCL
Max depth: 300 parser to identify semantic errors 2. All these
Min state size: 152 stereotypes and associated formalisms will be in-
Max state size: 228 cluded in the real-time package. Such packages
Symbol coverage : 89.79 can be directly imported into the application sys-

tem and used for development. We believe, this
will result in controlled and accelerated develop-

The Coverage viewer, a part of Tau suite, was !
ment of real-time systems.

then used to identify the parts of system cov-
ered during simulation in terms of the executed
transition or symbols. The symobls that were >0CL web site http://www.software.ibm.com/ad/ocl

11

References

[1]
[2]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

Telelogic Tau 3.5: ORCA and SDT Manual
Telelogic AB, 1999.

G. Booch, J. Rumbaugh, and I. Jacobson.
The Unified Modeling Language User Guide.
Addison-Wesley Longman, Inc., Reading, Mas-
sachusetts, 1999.

D. Flanagan. Java in a Nutshell. O’Reilly &
Associates, 1997.

A. Goldberg and D. Robson. Smalltalk-80 The
Language. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1989.

H. Gomma. Software Design Methods for
Concurrent and Real-Time Systems. Addison-
Wesley Publishing Company, Reading, Mas-
sachusetts, 1993.

C. Heitmeyer and D. Mandrioli. Formal Methods
for Real-Time Computing: An Querview. John
Wiley & Sons, 1995.

S. B. Lippman and J. Lajoie. C++ Primer.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1998.

A. M. Lister and R. D. Eager. Fundamentals of
Operating Systems. The Macmillan Press Ltd,
Hampshire, London, 1992.

A. C. Shaw. Communicating real-time state ma-
chines. [EEFE Transactions on Software Engi-
neering, 18(9), 1992.

A. Silberschatz, J. Peterson, and P. Galvin. Op-
erating System Concepts. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1991.

J. Warmer and A. Kleppe. The Object Con-
straint Language Precise Modeling with UML.
Addison-Wesley Longman, Inc., Reading, Mas-
sachusetts, 1999.

J. Xu and D. L. Parnas. On satisfying tim-
ing constraints in hard-real-time systems. IEEE
Transactions on Software Engineering, 19(1),
1993.

12

