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Reconfigurable vs. Conventional 
Hardware

• What is reconfigurable hardware?
– Hardware designs that can be configured for use as 

and when required
• Require a well-defined standard interface
• Require a common communication infrastructure
• No globally mapped memory address
• Special case: Swappable Hardware

– With hardware preemption (context save/restore) 

• What is conventional hardware?
– All other hardware
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Reconfigurable vs. Conventional 
Hardware
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Hardware Preemption

• Preemptible or Swappable Hardware
– Hardware with the ability to 

• suspend execution, 
• save and restore its state and context, and 
• resume execution

– Example
• A DCT design that can continue transforming the 

next 8x8 pixel block in an image after being 
suspended, context saved, and then restored.
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Hardware Preemption

• Two methods of hardware preemption
– Configuration based

• Uses the configuration readback capabilities of the 
underlying reconfigurable fabric

– Design based
• Hardware design enhanced with preemption 

capabilities
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Configuration based Preemption

• Readback
– All SRAM configuration bits can be read back

through the configuration port by a controller
– Can be used for 

• Real-time debugging
• Execution context extraction and saving
• Fault tolerance
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Configuration based Preemption
• Readback

– Readback data cannot be used directly for 
reconfiguration

– Requires time in the same order as 
configuration 

• 10x to 100x ms
– Supported currently only by Xilinx Virtex

series FPGA
– Disabled when data is encrypted
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Configuration based Preemption

• Two methods:
– Full readback [1]

• All data is read back
– XC4028EX: 668Kb, 800 ms
– XCV400: 1.75 Mb, 14.4 ms

– Partial readback [2]
• Only frames containing state information are read 

back (at most 8% of full readback data)
– XCV2000E: 12.5 ~ 451 Kb, 0.033 ~ 1.2 ms



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

12

Full Readback Preemption

• Requires 
– Configuration readback support by FPGA

• Fast readback is desired
– Complete control of all clocks in design

• Stop clocks to freeze design before readback
– Signaling of secure switching

• To avoid task switching between pipelined address 
and data phases
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Insecure vs. Secure Switching

Source: [1]
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Full Readback Preemption
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Full Readback Preemption

• Design State Extraction
– Need to know which bits in the readback

stream represent status information
– Filter all status information bits out of the 

readback stream and store them
– XC4028: 18 ms
– XCV400: 48.6 ms
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Full Readback Preemption
• Task Reconstruction

– Direct manipulation of configuration bitstream
• No change in logic functionality and connections
• All status information can be coded by single bits

– In the original bitstream, initialization bits are 
changed according to the previously extracted 
register states

– XC4028: 13 ms
– XCV400: 7.5 ms
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Full Readback Preemption

1.75 Mb668 KbBitstream size

82.9 ms849 msRelocation
12.4 ms18 msConfiguration

7.5 ms13 msTask reconstruction
48.6 ms18 msState extraction
14.4 ms800 msReadback

XCV400XC4028
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Memory Bottleneck in 
Full Readback Preemption

• If several preemptions are requested at 
the same time
– High bandwidth of external memory accesses 

is required
– External memory is usually single-port, hence 

becomes a memory bottleneck
• Use a new RAM switch scheme [1]

– A RAM is disconnected/reconnected when its 
owner task is swapped out/swapped in
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RAM Switch Connection Scheme
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Partial Readback Preemption
• In a Xilinx XCV2000E FPGA

– a CLB has 48 frames
– Only 4 out of the 48 frames are contain flip-flops 

(state information)
• In a Xilinx XCV600E FPGA

– Readback stream is 483 KB
– 15,552 FF and 294,912 BRAM bits
– Using all FF and BRAM, only 38 KB of state 

information, i.e. 38/483 < 8%
– In a typical design, only 30% FF is used!



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

21

Partial Readback Preemption

• Significantly reduce amount of readback
data by reading only those configuration 
frames containing state information

• Depends on smallest unit of configuration
– Xilinx: a frame

• Filtering approach
– State information extracted during readback

and not after readback (saves memory)
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1-D Reconfigurable System
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Context Relocation

• Partial readback preemptions
– Context relocation = swap-out + swap-in

• Four main functions in context relocation
– Configuration Manager (CM)
– State Extraction Filter (SEF)
– State Inclusion Filter (SIF)
– REPLICA Filter
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Context Relocation

Source: [2]
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Context Relocation: Swap-out
• Resource allocator initiates context 

relocation
• Stop clock (implemented by clock gating)
• CM initiates SelectMAP or ICAP to read all 

frames with state information
• During readback, all frames passed to 

SEF, which determines the state values
– Database updated, without storing all 

readback data
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Context Relocation: Swap-in

• SIF integrates task register values from 
database with original partial bitstream

• Use REPLICA filter [4] to relocate
hardware task from its original location to 
its new column location

• Relocated bitstream downloaded by CM
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Relocation Database
• All necessary information about task

– Current location in terms of CLB columns
– Memory address of partial bitstreams

• PARBIT [3] used to generate partial bitstreams from 
complete ones

– Memory address of empty bitstreams
– Location of all state registers

• XCV200E: 19 bits per state register
– 8 bit column + 8 bit row + 1 bit slice + 1 bit FF + 1 bit current 

state value
• How many bits per state register for Virtex-5?
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Configuration Manager
• Only frames with state information are read back 

by CM
• Generate frame address from

– CLB column #, Slice #, FF #
• Frame address = (MJA, MNA)

– Major/Minor Addresses for XCV200E
– MJA = Chip_Cols – Col x 2 + 2
– MNA = Slice x (12 x FF – 43) – 6 x FF + 45 

• Slice = 0, 1,   FF = 0, 1
– MNA = 45, 39, 2, or 8
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State Extraction Filter

• Reads frame data (readback stream) from 
CM

• Calculates bit index
– bit_idx = (18 x row) + 1

• Extracts state values
• Updates database



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

30

State Inclusion Filter

• MJA and bit index are same as for SEF
• MNA differs

– 41 if (Slice, FF) = (0, 0)
– 35 if (Slice, FF) = (0, 1)
– 6 if (Slice, FF) = (1, 0)
– 12 if (Slice, FF) = (1, 1)
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REPLICA Filter

• Relocating tasks from original location to 
new column location [4]

• Update of CRC values
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Relocation Time

State Capture 
Time

Allocation + 
Deallocation Time

4 frames/task 
column

First frame is 
a pad frame 
for each new 
access

48 frames per 
CLB column

SelectMAP
frequency
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Relocation Times

Source: [2]
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Design based Preemption

• Hardware design enhanced with 
preemption capability
– Interruptible state identification and selection
– Stopping execution at an interruptible state
– Read-write access to state and context 

registers
– Swap control interface
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Design based Preemption

• Three types of preemption architecture:
– Software Run-Time Controller [5]
– Hardware Task Interface and Wrapper [6]
– Operating System for Reconfigurable 

Systems (OS4RS) [7]
• Two types of task relocations:

– Hardware-hardware [5, 6]
– Hardware-software [7]
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System Architecture for 
Software Run-Time Controller

• Slot-based modules
• Bus-macros connect all slots
• Arbiter controls communications on bus 

macros
• Run-time controller runs on Xilinx 

MicroBlaze and allocates/deallocates
module slots

• Reconfiguration performed using ICAP
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System Architecture for 
Software Run-Time Controller

Source: [5]
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Software Run-Time Controller

• Four major modules in controller
– Management of incoming messages
– Reconfiguration process
– Message buffer management unit
– Management of outgoing messages



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

39

Software Run-Time Controller

Source: [5]
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Reconfiguration Process in 
Software Run-Time Controller
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Swapping Process
• Module prompted to send state information to 

run-time system
• Context save-restore mechanism is part of the 

function’s model description
– A parallel running state machine responsible for re-

initializing and saving state information
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Module Context Data Save
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Module Context Data Restore

For 
synchronization
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Example Implementation in Automobiles

• CAN-bus connected ECU functions
– CAN: Controller Area Network
– ECU: Engine Control Unit

• Central Locking
• Cabin Compartment Lighting
• Seat Adjustment
• Power Window
• Rear-view Mirror
• Sunroof
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Example Implementation
• Xilinx XC2V3000 FPGA

– 64x56 = 3584 CLBs
• Xilinx MicroBlaze softcore

– 32 bit RISC, 125 MHz
– 950 CLB (26.5%)

• LZSS decompression unit
– 134 CLB (3.7%)

• Arbiter
– 85 CLB (2.4%) 180 MHz 

(delay < 5.5 ns)
• Bi-directional bus macros

– 120 CLB (3.4%) 180 MHz 
(delay < 5.5 ns)
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Example Implementation in XC2V3000

• Average response time < 1ms
• Average reconfiguration time per slot = 15 ms
• Demanded response time of 100 ms
• Hence, feasible!!!
• 8 control functions implemented
• Each partial bitstream is 118 KB
• Bitstream compression rate is 60%
• No dynamic relocation employed!

– Four partial bitstreams generated, one for each slot
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System Architecture for 
Hardware Task Interface and Wrapper
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Hardware Task Interface and Wrapper

• How to make a HW IP reconfigurable?
– Must be enhanced with swap capabilities

• Stop execution at some interruptible state in FSM
• Access to state and context registers

– Must be interfaced with
• Task interface

– For interfacing with a standard bus such as OPB
• Wrapper

– For swap control, task shutdown, context data 
save/restore, data (un)packing, …
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Interruptible State

• Not every state of a HW FSM is 
interruptible because
– Communication undergoing
– Pipeline not flushed
– Register values do not represent complete 

state
– Not possible to resume from a state
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Interruptible State
• A state is said to be interruptible if the hardware 

task can resume execution from that state after 
restoring the task context, either partially or fully.

• GCD Example
– Interruptible states:

• INIT, RLD, CMP

– Non-interruptible states: 
• NEG, EQ, POS
• Comparator results not saved,

hence cannot resume
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Access to Registers
• Scan Chain

– Scan multiplexer in front of each FF
• Regular execution mode vs. Scan mode

• Shadow Chain
– Each FF is duplicated and connected to chain
– Store/restore/swap within a single cycle

• Memory Mapped
– CPU can access directly using address and data bus
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Access to 
Registers

(a) Scan Chain

(b) Shadow Chain

(c) Memory Mapped

Source: [8]
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Hardware Task Interface and Wrapper

Source: [6]
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Task Interface

• Read/Write Interface
– Normal bus read/write transactions

• Control Interface
– IP control interface: 

• reset, clock, done, go

• Swap Interface
– Swap out/in requests, interrupts
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Generic Wrapper
• Context Buffer

– For storing data context of HW IP
• Data Transformation Component (DTC)

– For packing/unpacking of data context into 
32 bits (bus width)

• Datapath
– For data transfer

• Swap Controller
– For controlling swap out/in and 

reconfiguration
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GCD Example Implementation
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Advantages

• Better real-time response
– 10x ~ 100x ms time save

• Standardization of hardware IP
– Use scan chain, shadow registers, memory 

mapping for register access
• Generic wrapper design

– Uniform design, little resource and time 
overheads
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Swap Time
• DC: context data (bits),
• DB: context buffer (bits), 
• RT: data transformation rate (bits/cycle),
• RB: buffer data load rate (bits/cycle), 
• RP: peripheral bus data transfer rate (bits/cycle),
• TA: peripheral bus access time (cycles),
• TI: transition time to go to an interruptible state 

(cycles) , and 
• TR: reconfiguration time (cycles),
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Swap Time

• TSO: Swap-out time
• TSI: Swap-in time
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Experiments

• Xilinx Virtex II Pro XC2VP20-FF896 FPGA
• 56 x 46 CLB matrix
• 18,560 LUTs, 18,560 FFs
• 32-bit CoreConnect OPB at 133 MHz
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Area Overheads
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Time Overheads
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Operating System for Reconfigurable 
Systems

• OS4RS
– Implements a hardware abstraction layer

(HAL) over the FPGA
– Schedules tasks on processor and FPGA
– Provides uniform communication for software 

and hardware tasks to send/receive 
messages
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OS4RS: Uniform Communication

• Message passing based
– Messages have common format for both 

hardware and software tasks
• Each task has a logical address and a 

physical address when configured
– OS4RS translates logical/physical addresses
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OS4RS: Uniform Communication

• Message passing API
– Both software tasks

• Routed using logical addresses
– A software and a hardware task

• Logical/physical address 
translation, uses HAL

– Both hardware tasks
• Packet-switched 

interconnection
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OS4RS: Placement

• Tile-based placement
– Partial bitstreams are configured directly into 

tiles by OS4RS
– High fragmentation
– Low latency (tile availability check only)

• Packet-switched interconnection
– Controlled by OS4RS
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OS4RS: Hardware Relocation

• Two approaches
– A partial bitstream for every tile [7]
– Use Jbits [9] to manipulate a single bitstream

at run-time
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OS4RS: Routing

• Fixed communication infrastructure inside 
the interconnection network

• Routing is performed by OS4RS through 
routing tables
– No complex algorithms, only update of tables

when a task is inserted/removed
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OS4RS: HW-SW Relocation
• Software task

– Context defined by processor registers and 
task memory

• Hardware task
– No universal representation of hardware 

states
– Two ways to extract states

• Readback data contains state information
• High-level interruptible states
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Switching Point and Interrupt State



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

71

Task Switching from SW to HW
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Switching Point

• Switching Point
– “Low overhead” interruptible states

• Contains “no state information”
• Architecture dependent
• Data transfer

– Shared Memory: pass a pointer
– Distributed Memory: copy data

– Example
• End of a frame computation
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Example Implementation

• Relocatable Video Decoder [7]
– T-ReCs Gecko demonstrator

• Compaq iPAQ 3760 (StrongARM SA-1110)
• Xilinx Virtex 2 XC2V6000 FPGA
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Relocatable Video Decoder

• Motion JPEG frame decoder can be 
scheduled to run in HW or in SW

• Send and receive threads run on iPAQ
• Switch point: end of frame (no state 

information)
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Relocatable Video Decoder
• Results with Synplify Pro

– HW decoders
• 23 frames per second (fps)
• Clock: 40 MHz
• Specific: 9570 LUTs
• General: 15901 LUTs

– SW decoder
• 6 frames per second (fps)
• CPU load = 95%

– Communication
• BlockRAM: 20 MHz
• CPU memory access: 103 MHz 

– synchronous RAM, need to insert wait states
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Relocatable Video Decoder
• Decoder relocated from SW to HW

– 6 fps 23 fps
– CPU 95% 95% (Why?)

• Send and receive threads heavily load processor
• Memory accesses (103 MHz 20 MHz) need 

wait-states (CPU is thus idle in these states)
– OS4RS overhead is 100 microseconds
– Total latency is 108 ms

• Mainly partial reconfiguration
– Theoretical latency 11 ms, why such a large difference?

» Slow CPU-FPGA interface!!!
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Hardware Relocation
• Hardware designs are fixed in location in an 

FPGA after it is implemented and bitstream
generated.

• How to locate the hardware in a different 
location from the one where it was implemented?

• Hardware relocation architectures and tools
provide solutions to do this!
– Swappable Logic Unit [10]
– Dynamic Hardware Plugins [11]
– REPLICA (Relocation per online Configuration 

Alteration) [4]
– PARBIT [3]
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Swappable Logic Unit

• Virtual hardware analogue of page or 
segment in virtual memory

• Hardware Features
– Fixed area in FPGA
– Fixed I/O interfaces
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Swappable Logic Unit

• Hardware Interface
– Signals on SLU perimeter
– Bus-accessible registers within SLU (Slave)
– Active bus access by SLU (Master)

• Software Interface
– Use like a library API
– Compiler directly supports SLU programming
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Swappable Logic Unit

• Sea of Accelerators [10]
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Swappable Logic Unit

• Parallel Harness [10]
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Dynamic Hardware Plugins
• Similar to Dynamic Linked Libraries (DLL) in 

software applications
• Useful in packet processing such as firewalls 

and routers that cannot be suspended
• Platform

– Virtex-E XCV2000E
• Tool

– PARBIT [3] to restructure bitfiles
• Features

– Gasket interface, antennas, DHP, …
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Gasket Interface
• Gasket (墊片、墊圈)

– Between a DHP 
module and 
infrastructure

– Provides antennas
(fixed signal interface)

– Included routes: for 
DHP only

– Excluded routes: not for 
DHP

– Interface is not 
changed during 
configuration
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DHP, Gasket, Infrastructure
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Field-Programmable Port Extender 
(FPX) System

• Two FPGAs
– Reprogrammable Application Device (RAD)

• XCV2000E FPGA
• All DHP modules and static modules
• Interface with SRAM, SDRAM

– Networking Interface Device (NID)
• XCV600E FPGA
• Reconfiguration control logic for RAD FPGA
• Network switch between network interfaces and DHP 

modules
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FPX System
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DHP Module in FPX System
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DHP Implementation on FPX

• Two DHP module slots
• Two bitfiles

– Infrastructure of RAD
– DHP module

• PARBIT used for partial bitfile generation
– 187 KB instead of 1,270 KB for XCV2000E full chip

• Can be located in either of the two slots using 
PARBIT
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REPLICA
• A bitstream manipulation filter for module 

relocation
• Module Design

– Modules occupy full column height
– Can be relocated along chip width

• Bus Design
– Bus is chip-wide and homogeneous
– Can be segmented using bridge
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Reconfigurable System Architecture
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Virtex Configuration Column Types



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

92

Virtex Address

• Configuration address space divided into:
– RAM blocks

• BlockRAM content
– CLB blocks

• All other column types

• Address
– MJA: Major Address
– MNA: Minor Address
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Virtex Address Calculation
• For Virtex 1 and 2: use only Eqs. (1), (2)

• What about Virtex 4 and 5? RAM columns in the 
middle of the chip
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REPLICA Filter

• Four blocks and a data multiplexer
– Bitstream Parser

– FPGA Type Decoder

– CRC Calculation

– MJA Calculation
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REPLICA Filter
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Bitstream Parser
• To replace some words so that a module is 

relocated to another CLB column
– One MJA entry per CLB column
– Two CRC checksums per bitstream

• Distinguish between data / command words
• Search for write commands for

– FAR (Frame Address Register)
– CRC

To disable REPLICA:
Set target column to 0
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FPGA Type Decoder
• FPGA type can be determined from frame length
• Issue:

– The first manipulated MJA occurs before frame length
• Possible Solutions

– Huge shift register delaying output data
• Resource wasted

– User given
• More efficient

– Hard coded
• For final implementation
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CRC Calculation

• Select data words to be included in 
calculation and calculate CRC checksum

• CRC polynomial
– CRC = X16 + X15 + X2 + 2

• Parallel implementation
– To provide new checksum within one clock 

cycle
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MJA Calculation
• Calculate MJA

– Using equations (1) ~ (5),
– Target column: CLB_Col, and
– FPGA Parameters: Chip_Cols, Chip_Rams, 

RAM_Space
• No need of knowing the original column
• 19 clock cycles needed for an MJA calculation

– Between two MJA entries: 100x~1000x frame data 
words

– First MJA entry: 7 data words
• 7 x 4 = 28 clock cycles > 19, hence no problem!

(1 word = 32-bit = 4 bytes, 4 cycles on 8-bit SelectMAP port)
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REPLICA Synthesis

• Xilinx ISE 6.1
• 336 slices in Virtex-E device
• 50 MHz clock

– Same as the maximum allowed by 
SelectMAP configuration interface

• Critical part
– Control of data multiplexer



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

101

Configuration Manager
• Organizes data transfer of bitstreams from 

memory to FPGA
• Controls configuration through SelectMAP port
• Part of RAPTOR2000 rapid prototyping platform
• Two FSMs

– IO State Machine
• For data transfer

– Configuration State Machine
• For configuration control
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Configuration Manager
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Configuration Manager Synthesis

• Two implementations of CM:
– XC95288XL CPLD on RAPTOR2000

• 209 out of 288 macro cells (75%)
• 58 MHz clock (> 50 MHz, more than required)

– XCV2000E FPGA
• 151 out of 19200 slices (0.8%)

• REPLICA + CM (on XCV2000E)
– 490 out of 19200 slices (2.5%)
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RAPTOR2000 Platform
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Comparisons of Relocation 
Architectures

HW CMNID FPGAOS4RSConfiguration
RAPTOR 
(Virtex-E)

FPX 
(Virtex-E)

Concept
(XC6200)

Platform

dynamicstaticstaticRelocation

AMBA busgasketsignal / busI/O interface

1D Column1D slot2D areaModule

REPLICA
2005

DHP
2001

SLU
1996

Feature
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Outline

• Reconfigurable vs. Conventional 
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures
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Area-Time Tradeoff Techniques
• In a fixed amount of reconfigurable resources, 

tradeoffs can be made between
– Area: amount of resources used

• Sequential
• Pipelined
• Spatially parallel

– Time: data throughput of design
• Several cycles per data (sequential)
• One cycle per data (pipelined)
• Several data per cycle (parallel)
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Area-Time Tradeoff Techniques

• Coarse-Grained Time Multiplexing
– Temporal Partitioning

• Spatial Parallelism

• Pipelining

• Template Specialization
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Coarse-Grained Time Multiplexing

• Also called “Temporal Partitioning”
• A large circuit might not fit into a 

reconfigurable device
– A large circuit is broken down into several 

smaller circuits such that 
• each can be executed by a fixed amount of 

reconfigurable resources and 
• together they function just like the large circuit
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Temporal Partitioning
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Benefits of Temporal Partitioning
• Makes the execution of an oversized 

circuit possible using limited resources
• Increases functional density

– D = 1/(AxT), A: area, T: time, D: density
– Useful in partial reconfiguration

• Makes multi-context FPGAs more efficient
– Switch in a single cycle

• Study of minimum granularity to achieve 
performance far exceeding processors
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Temporal Partitioning

• Two types
– Gate level

• Assumes small reconfiguration overhead

– High level or operational level
• Assumes large reconfiguration overhead
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Gate Level Temporal Partitioning
• Mainly scheduling or optimization based

– List scheduling [12]
– Enhanced force-directed scheduling [13]
– Network flow optimization [14]
– Weighted graph partitioning [15]

• Model
– Mealy state machine [12]
– Time-multiplexed communicating logic (TMCL) [13,14]
– Directed hypergraph [15]

• Takes care of combinational and sequential nets



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

114

High-Level Temporal Partitioning

• Methods
– Integer Linear Programming [16, 17]
– Data-Flow Graph Partitioning [18]

• Level based
• Clustering based

• Models
– ILP problem
– DFG
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DFG Partitioning and Scheduling

• Example

REF: 
[18]
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DFG Partitioning and Scheduling

• Inputs
– A data-flow graph (directed acyclic graph) 

• G = (V, E, W, D)
– V: a node represents a function implementation
– E: an edge <vi, vj> means vj needs data output of vi

– W: a weight represents the size of logic
– D: a delay represents the function execution time

– A configurable unit of size SRPU
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DFG Partitioning and Scheduling

• Objective
– Divide G into k segments such that

• Size of each segment is ≤ SRPU

• There exists an acyclic precedence relation for all 
k segments
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Acyclic Precedence Relation

(a) Original 
graph

(b) Cycle 
exists

(c) Acyclic
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RACE Environment
• Four Xilinx XC4013 FPGAs

– Interconnected in a complete graph
– Each FPGA has 128 KB data memory and 64 KB of 

configuration memory
• One controller XC4013 FPGA for programming

– FPGA
– DMA transfers to host system

• SUN SparcStation
– Connected to FPGAs using SBUS interface
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RACE Environment
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DFG Partitioning and Scheduling

• ASAP Level Assignment
• Partitioning Algorithms

– Level Based Partitioning
– Clustering Based Partitioning

• Data Controller Synthesis
• DFG Scheduling
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DFG Partitioning and Scheduling 
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ASAP Level Assignment

• To assign each node vi a Level(vi)
• Indegree(vi)

– # incoming edges with Level = ∞
• FanoutSet(vi)

– Set of fanout nodes of vi

• FaninSet(vi)
– Set of fanin nodes of vi
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ASAP Level Assignment Example
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Partitioning Algorithms

• Objectives
– To satisfy area constraint SRPU

– To exploit inherent parallelism in application
– To reduce communication overhead

– Tradeoff between parallelism and 
communication overhead

– Level based vs. Clustering based
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Level Based Partitioning

• Exploits parallelism in application
• All nodes at the same level can be 

considered for parallel execution
• Overheads

– Limited routing resources (RCost)
– Need a data controller (FSMCost)
– Available_Area = SRPU – FSMCost – RCost
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1
1
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Example 
of 

Level 
Based 

Partitioning
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Level Based Partitioning

• The algorithm complexity is O(|V| + |E|)
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Clustering Based Partitioning

• To decrease communication overhead
– Reduce number of terminal edges of a 

partition (incoming + outgoing edges)
• Clustering tends to reduce the number of 

terminal edges, hence communication 
overhead

• An alternative way is proposed in [19], 
based on local minima of memory usages
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Clustering Based Partitioning

• ReadyList: nodes ready to be executed
• ReadyList.update(): adds new nodes that 

are ready to execute in front of ReadyList
– Tends to decrease terminal edges

• Algorithm complexity is O(|V| + |E|)
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Data Controller Synthesis

• FSM of data controller
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FSMCost Calculation
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DFG Scheduling

• Scheduling of temporal partitions must 
satisfy
– Precedence relation between partitions
– Data dependencies among partitions
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Application Examples

• Size of circuits in XC4000 CLBs
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SW Execution Times
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Reconfigurable HW Execution Times

• Segment reconfiguration time: 242 ms
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Comparison of Partitioning Algorithms
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Comparison of Partitioning Algorithms
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Discrete Cosine Transform
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Discrete Cosine Transform

• For m as small as 128,
– Hardware outperforms software
– Reconfiguration overheads completely 

absorbed
• For large images

– Temporally partitioned hardware performance 
far exceeds software performance
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Spatial Parallelism
• Replicating hardware modules so as to 

accelerate execution (data processing)
• Example

– Two adders/multipliers instead of one
– Two encoders/decoders instead of one

• Needs 
– Data distribution before parallel execution
– Data integration after parallel execution
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Pipelining

• Replicating modules, however due to data 
dependence, the modules are pipelined

• Increases data throughput
– No pipelining: One data per iteration
– With pipelining: One data per pipeline cycle

• Needs careful functional and timing
designs
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Template Specialization

• Instead of two variable operands, often 
one input operand is a constant
– No need of full function implementation
– Can use table lookup, shifter register, etc.
– Example

• Multiply by 4 or by 7

• Can decrease both resource usage and 
computation time
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Outline

• Reconfigurable vs. Conventional 
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures
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Reconfigurable Communication 
Architectures

• Three types of communication architectures
– Fixed module communication

• A bus or NoC connecting all fixed modules

– Dynamic module communication
• A bus or NoC connecting all dynamic modules
• Needs bus or slice macros (from Xilinx)

– Fixed-Dynamic module communication
• A bridge connecting fixed part and dynamic part

– Example: OPB Dock
– Needs bus or slice macros (from Xilinx)
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Fixed Module Communication

• A standard bus
– ARM AMBA
– IBM CoreConnect

• A standard NoC
– Topology: Mesh, torus, ring, fat tree, …
– Link: circuit switched, packet switched
– Switch mode: store-and-forward, virtual cut-

through, wormhole
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Dynamic Module Communication
• Static NoC [20], [22]

– Fixed network
– Modules can be placed only in slots connected to the 

fixed network
– Examples: 2D Torus, Artemis (2D Mesh)

• Dynamic NoC [21], [26]
– Dynamically changing network

• Parts of the network can be included inside a module when it 
is placed [21]

• QoS parameters, error detection/correction, fault isolation [26]
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2D Mesh

• An array of routers interconnecting an 
array of processors [20]

Routing:

N, E, W, S
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2D Torus

• Static NoC
• Row and columns connected in rings

Routing:

E, S
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Wormhole Routing Algorithm

• Blocking, hop-based, deterministic routing 
algorithm

• Pipeline through the network

• Message is broken into flits (flow control units)
– Flits: routing information and data message

• First : X direction (X header flit)

• Second : Y direction (Y header flit)
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Wormhole Routing Algorithm

• Deadlock
– All queues are full
– No message can advance toward
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Wormhole Routing Algorithm

• Avoid Deadlock
– Two Virtual Channels (VC)
– Router0 only sends messages on VC0

– The others may initiate messages only on VC1
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2D Torus Implementations
• Platform

– Virtex XCV800, Virtex XC2V6000
– Compaq iPaq PDA: SA-1100 (206 MHz), RT-

Linux
• Routing

– Wormhole
• Transfer rate between routers

– 77.6 MB/s at 40 MHz (38.8 MB/s per VC)
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2D Torus Implementations

• Power Overhead
– +15% power consumption for 4x4 folded torus 

compared to mesh
• Area Overhead

– Virtex XCV800: 35%
– Virtex XC2V6000: 9.5%

• Fully pipelined, 2 cycles to transmit one 
16-bit flit on a given virtual channel 
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1D Router for 2D Torus

• 2 I/O channels
– 16-bit data path
– 3-bit control signals

• 2 bits: indicate message
• 1 bit: back-pressure (nack): to block message 

entry into a busy router or interface
– Time-multiplexed (interleaved one cycle each)

• 2 cycles for a flit to leave a router
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1D Router for 2D Torus
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Interface between Task and Router
• Dual-port RAMs are used as message buffers
• Net-cell

– High-level communication by routing tables
– Logical address + port number
– Routing tables transform a destination logical address into 

number of X and Y hops
• Updated by RT-OS to match position of IP on network

– Buffers 2 input and 2 output messages on Virtex I and 8 input 
and 8 output messages on Virtex II

• Circular linked-list

• Same fixed interface for all tasks
– Message-in, message-out, BRAMs, Multipliers, …
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Task-Router Interface
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Placement of Routers and IPs
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Hardware Overheads
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Artemis

• Static NoC [22]
• 2D Mesh

– Based on the HERMES [23]
• Special macros for core-router interface

– R2F: Reconfigurable to Fixed
– F2R: Fixed to Reconfigurable
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Artemis Core-Router Interface
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R2F Macro

• No need of Xilinx bus macros
• Designed with FPGA slices

– Reduces number of routing problems
– Wider interfaces between regions

• 8 bits: one Virtex-II Pro CLB (4 slices)
• Right side: feed through
• Left side: 2 AND gates
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R2F Macro
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Artemis NoC

• 4 cores
– R8 processor
– RS-232
– 2 reconfigurable 

cores
• Mult, div, sqrt
• 9.17% of full

bitstream
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Cores in Artemis Case Study
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NoC and Protocol Stack

• Tile [25]
– A dynamically reconfigurable homogeneous 

and distinct part of logic
– Connects to switch fabric via Reconfigurable 

Network Interface (RNI) with two parts:
• Fixed: Resource Independent Network Interface 

(RINI)
• Reconfigurable: Resource Dependent Network 

Interface (RDNI)
RNI = RINI + RDNI
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Reconfigurable Network Interface

[25]



Reconfigurable Computing: Chapter 3. Reconfigurable Hardware 
(2007 Copyright @Pao-Ann Hsiung)

173

Protocol Stack

Similar 
to 

ISO/OSI 
model 

and 
TCP/IP 

stack

[25]
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NoC and Protocol Stack

[25]
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Dynamic NoC

• Two kinds of dynamic NoC
– Dynamically Changing Structure [21]

• Parts of an NoC are changed dynamically, used 
for PE logic

– Dynamically Changing Behavior [26]
• QoS parameters such routing, switching, packet 

size  are dynamically changed
• Error detection and correction
• Faulty node isolation
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NoC with Dynamically Changing 
Structure

• Task
– Rectangular box encapsulating a circuit 

implemented with resources in a given area
• Network access

– Using one network element on boundary
• Assume network element attached to upper right 

PE of component
• Module address = upper right network element
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NoC with Dynamically Changing 
Structure
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NoC with Dynamically Changing 
Structure

• Placement
– When placed on device, components hide 

part of the network, which is restored when 
they complete execution

– Hence, it is called a dynamic NoC [21]!
– Must maintain a strongly connected network

• A path exists between each pair of network 
elements 
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Temporal Placement on Dynamic NoC
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NoC with Dynamically Changing 
Structure

• Routing
– Due to placement of tasks that cover the 

routers in its area, the routers are deactivated
• Deactivation: by setting control signals
• Reactivation: by resetting control signals

– Before sending packet in a direction, a router 
must check if the router in that direction is 
activated

• Deactivated: route in perpendicular direction
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NoC with Dynamically Changing 
Structure

• Implementation
– FPGA: Virtex II 6000
– NoC Topology: Mesh network
– Network Size: 4 x 4 = 16 routers
– Router connection: 

• 32-bit bus, 
• 4 control lines, 
• six 32-bit FIFO buffers with depth 4
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NoC with Dynamically Changing 
Structure
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NoC with Dynamically Changing 
Structure

• Synthesis result: 7% device area
– Each router

• 0.5% device area
• 2.553 ns latency with 391 MHz frequency

– Path Latency
• Max 6 routers on a path 

50 MHz components can communicate without 
delay

WHY???
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NoC with Dynamically Changing 
Behavior

• Network parameters such as routing paths, 
switching mode, packet size are usually 
fixed statically during network design
– Cannot cope with network data bursts
– Require large buffers for storing packets
– Under/over utilization of network bandwidth 

by different processing elements
– Wastage of resources
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NoC with Dynamically Changing 
Behavior

• Dynamic NoC [26]
– Reconfigures itself according to 

communication demand
• Routing path, switching mode, packet size

determined dynamically
• Faulty nodes can be isolated dynamically
• Data errors can be detected and corrected or 

retransmitted
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Smart Network Stack

• Makes decision about packet size, 
switching and routing for data

• Writes this information in packet header
• Uses

– For handling data bursts
– For handling faulty nodes
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Smart Network Stack

• PEs with high bandwidth
– SNS Actions

• Increase packet size
• Change packet switching to circuit switching

– Routing Results
• Increased data throughput
• Decreased switching power
• Decreased timing delays
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Smart Network Stack

• Faulty node
– Detection

• No response from the node
– Action

• Deactivate the router that leads to a local faulty 
node
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Smart Network Stack

• Five Layers
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Smart Network Stack
• Application Layer

– user interface to communication system, hides details
• Transport Layer

– Packetization of data
• Packet Header
• Data Payload

– Packet Size
• Normal, moderate, heavy data transfer
• Can be dynamically changed by transport layer of SNS
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Smart Network Stack
• Network Layer

– Deals with switching and routing of packetized data
– Types of Switching

• Packet Switching: for data sizes ≤ threshold
– Wormhole routing

• Circuit Switching: for data sizes > threshold
– Features

• Both types of switching exist concurrently in the same 
network

• Circuit switched path is excluded from packet switching 
routes
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Circuit Switching by SNS
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Smart Network Stack
• Data Link Layer

– Hides transmission errors in physical layer
• Increases reliability upto a minimum level

– 2 types of error detection and correction
• Error detection with retransmission
• Error detection with correction using information in packet

– Requires encoder/decoder at channel’s end

– SNS uses error detection with retransmission
• To keep silicon cost low
• Uses checksum calculation and checking
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Smart Network Stack

• Physical Layer
– FPGA has abundant wiring around each tile
– Can be used for the physical wiring of 

network-on-chip
– Use separate wires for

• Data wires
• Control wires
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Router Design

• Objectives and Solutions
– Low silicon cost
– Keep internal buffers as small as possible
– Prevent data queuing up in router buffers

• Use control signals to update routing tables for 
adaptive routing

• Packets know in advance of coming to routers 
what the congestion is like, and are thus routed to 
alternative paths to avoid having to queue up
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Router Design

• 3 components in router
– Input Controller
– Input Port
– Switching Logic
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Router Design: Input Controller
• Manages routing tables
• Inspects header and determines fate of arrived 

packets
• Neighboring input controllers are all connected

– To update routing tables
• Clock speed: 5 times that of router
• Output port checking: round robin
• Node failure: Will be excluded from routing 

tables after no response is detected from a node
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Router Design: Input Port

• Point of entry of incoming packets
• Buffer to store one packet for header 

inspection
• Information extraction from packet

– Destination address
– Type of switching
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Router Design: Switching Logic

• Connects input ports to output ports
depending on the instructions from input 
controller
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Router Design: Implementation

• Implemented in Verilog
• 32-bit link for each input port
• 27% lesser area overhead than [27]

– Only one input controller instead of one for 
each port as in a normal NoC.
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Summary (NoC Comparison)

NS-2 
Simulation

Virtex II 
6000

Virtex II ProVirtex XCV800, 
XC2V6000

Validation
4x44x42x24x4Size
YesNoNoNoError Handling

YesYesNoNoFault 
Tolerance

ChangeableFixedFixedFixedPacket Size
Circuit/PacketPacketPacketPacketSwitching
WormholePacketPacketWormholeRouting
2D-TorusMeshMesh2D-TorusTopology
DynamicDynamicStaticStaticBehavior
StaticDynamicStaticStaticStructure
AdNoC [26]DyNoC [21]Artemis [22]2D-Torus [20]Features
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Protocol Stack Comparison
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Protocol Stack Comparison

Wire (F)Wire (F)Physical
Error correction (F)Switch (F)Data Link
Switching and routing (F)RINI (F)Network
Data packetization (R)RDNI (R)Transport
Software (R)Hardware (R)Application
SNS [26]RNI [25]Layer

RNI: Reconfigurable Network Interface
SNS: Smart Network Stack
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Fixed-Dynamic Module Communication

• Needs special modules
– Bus macros: tri-state buffers
– Slice macros: specially designed logic blocks

• For example: from Xilinx
• Used for interface reconfigurable and 

static areas
• Can be constructed into a bridge such as 

OPB Dock, Gasket, Wrapper, Bus, …
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