
Reconfigurable Hardware

Pao-Ann Hsiung
Embedded Systems Laboratory

National Chung Cheng University
Chiayi, Taiwan, ROC.

http://www.cs.ccu.edu.tw/~pahsiung/courses/rc/
pahsiung@cs.ccu.edu.tw

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

2

Outline

• Reconfigurable vs. Conventional
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

3

Outline

• Reconfigurable vs. Conventional
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

4

Reconfigurable vs. Conventional
Hardware

• What is reconfigurable hardware?
– Hardware designs that can be configured for use as

and when required
• Require a well-defined standard interface
• Require a common communication infrastructure
• No globally mapped memory address
• Special case: Swappable Hardware

– With hardware preemption (context save/restore)

• What is conventional hardware?
– All other hardware

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

5

Reconfigurable vs. Conventional
Hardware

SignalBus/Slice MacroModule
Interface

ImpossiblePossiblePreemption

SquareColumnAspect Ratio

Bus-basedData flow-basedI/O Interface

FixedConfigurableExistence

Conventional
HW

Reconfigurable
HW

Feature

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

6

Outline

• Reconfigurable vs. Conventional
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

7

Hardware Preemption

• Preemptible or Swappable Hardware
– Hardware with the ability to

• suspend execution,
• save and restore its state and context, and
• resume execution

– Example
• A DCT design that can continue transforming the

next 8x8 pixel block in an image after being
suspended, context saved, and then restored.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

8

Hardware Preemption

• Two methods of hardware preemption
– Configuration based

• Uses the configuration readback capabilities of the
underlying reconfigurable fabric

– Design based
• Hardware design enhanced with preemption

capabilities

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

9

Configuration based Preemption

• Readback
– All SRAM configuration bits can be read back

through the configuration port by a controller
– Can be used for

• Real-time debugging
• Execution context extraction and saving
• Fault tolerance

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

10

Configuration based Preemption
• Readback

– Readback data cannot be used directly for
reconfiguration

– Requires time in the same order as
configuration

• 10x to 100x ms
– Supported currently only by Xilinx Virtex

series FPGA
– Disabled when data is encrypted

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

11

Configuration based Preemption

• Two methods:
– Full readback [1]

• All data is read back
– XC4028EX: 668Kb, 800 ms
– XCV400: 1.75 Mb, 14.4 ms

– Partial readback [2]
• Only frames containing state information are read

back (at most 8% of full readback data)
– XCV2000E: 12.5 ~ 451 Kb, 0.033 ~ 1.2 ms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

12

Full Readback Preemption

• Requires
– Configuration readback support by FPGA

• Fast readback is desired
– Complete control of all clocks in design

• Stop clocks to freeze design before readback
– Signaling of secure switching

• To avoid task switching between pipelined address
and data phases

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

13

Insecure vs. Secure Switching

Source: [1]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

14

Full Readback Preemption

Configuration
Readback

Design State
Extraction

Save State
Configuration Bits

Swapout
Request

Read Bitstream &
Configuration Bits

Swapin
Request

Task
Reconstruction

Configure New
Bitstream

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

15

Full Readback Preemption

• Design State Extraction
– Need to know which bits in the readback

stream represent status information
– Filter all status information bits out of the

readback stream and store them
– XC4028: 18 ms
– XCV400: 48.6 ms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

16

Full Readback Preemption
• Task Reconstruction

– Direct manipulation of configuration bitstream
• No change in logic functionality and connections
• All status information can be coded by single bits

– In the original bitstream, initialization bits are
changed according to the previously extracted
register states

– XC4028: 13 ms
– XCV400: 7.5 ms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

17

Full Readback Preemption

1.75 Mb668 KbBitstream size

82.9 ms849 msRelocation
12.4 ms18 msConfiguration

7.5 ms13 msTask reconstruction
48.6 ms18 msState extraction
14.4 ms800 msReadback

XCV400XC4028

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

18

Memory Bottleneck in
Full Readback Preemption

• If several preemptions are requested at
the same time
– High bandwidth of external memory accesses

is required
– External memory is usually single-port, hence

becomes a memory bottleneck
• Use a new RAM switch scheme [1]

– A RAM is disconnected/reconnected when its
owner task is swapped out/swapped in

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

19

RAM Switch Connection Scheme

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

20

Partial Readback Preemption
• In a Xilinx XCV2000E FPGA

– a CLB has 48 frames
– Only 4 out of the 48 frames are contain flip-flops

(state information)
• In a Xilinx XCV600E FPGA

– Readback stream is 483 KB
– 15,552 FF and 294,912 BRAM bits
– Using all FF and BRAM, only 38 KB of state

information, i.e. 38/483 < 8%
– In a typical design, only 30% FF is used!

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

21

Partial Readback Preemption

• Significantly reduce amount of readback
data by reading only those configuration
frames containing state information

• Depends on smallest unit of configuration
– Xilinx: a frame

• Filtering approach
– State information extracted during readback

and not after readback (saves memory)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

22

1-D Reconfigurable System

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

23

Context Relocation

• Partial readback preemptions
– Context relocation = swap-out + swap-in

• Four main functions in context relocation
– Configuration Manager (CM)
– State Extraction Filter (SEF)
– State Inclusion Filter (SIF)
– REPLICA Filter

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

24

Context Relocation

Source: [2]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

25

Context Relocation: Swap-out
• Resource allocator initiates context

relocation
• Stop clock (implemented by clock gating)
• CM initiates SelectMAP or ICAP to read all

frames with state information
• During readback, all frames passed to

SEF, which determines the state values
– Database updated, without storing all

readback data

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

26

Context Relocation: Swap-in

• SIF integrates task register values from
database with original partial bitstream

• Use REPLICA filter [4] to relocate
hardware task from its original location to
its new column location

• Relocated bitstream downloaded by CM

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

27

Relocation Database
• All necessary information about task

– Current location in terms of CLB columns
– Memory address of partial bitstreams

• PARBIT [3] used to generate partial bitstreams from
complete ones

– Memory address of empty bitstreams
– Location of all state registers

• XCV200E: 19 bits per state register
– 8 bit column + 8 bit row + 1 bit slice + 1 bit FF + 1 bit current

state value
• How many bits per state register for Virtex-5?

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

28

Configuration Manager
• Only frames with state information are read back

by CM
• Generate frame address from

– CLB column #, Slice #, FF #
• Frame address = (MJA, MNA)

– Major/Minor Addresses for XCV200E
– MJA = Chip_Cols – Col x 2 + 2
– MNA = Slice x (12 x FF – 43) – 6 x FF + 45

• Slice = 0, 1, FF = 0, 1
– MNA = 45, 39, 2, or 8

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

29

State Extraction Filter

• Reads frame data (readback stream) from
CM

• Calculates bit index
– bit_idx = (18 x row) + 1

• Extracts state values
• Updates database

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

30

State Inclusion Filter

• MJA and bit index are same as for SEF
• MNA differs

– 41 if (Slice, FF) = (0, 0)
– 35 if (Slice, FF) = (0, 1)
– 6 if (Slice, FF) = (1, 0)
– 12 if (Slice, FF) = (1, 1)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

31

REPLICA Filter

• Relocating tasks from original location to
new column location [4]

• Update of CRC values

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

32

Relocation Time

State Capture
Time

Allocation +
Deallocation Time

4 frames/task
column

First frame is
a pad frame
for each new
access

48 frames per
CLB column

SelectMAP
frequency

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

33

Relocation Times

Source: [2]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

34

Design based Preemption

• Hardware design enhanced with
preemption capability
– Interruptible state identification and selection
– Stopping execution at an interruptible state
– Read-write access to state and context

registers
– Swap control interface

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

35

Design based Preemption

• Three types of preemption architecture:
– Software Run-Time Controller [5]
– Hardware Task Interface and Wrapper [6]
– Operating System for Reconfigurable

Systems (OS4RS) [7]
• Two types of task relocations:

– Hardware-hardware [5, 6]
– Hardware-software [7]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

36

System Architecture for
Software Run-Time Controller

• Slot-based modules
• Bus-macros connect all slots
• Arbiter controls communications on bus

macros
• Run-time controller runs on Xilinx

MicroBlaze and allocates/deallocates
module slots

• Reconfiguration performed using ICAP

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

37

System Architecture for
Software Run-Time Controller

Source: [5]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

38

Software Run-Time Controller

• Four major modules in controller
– Management of incoming messages
– Reconfiguration process
– Message buffer management unit
– Management of outgoing messages

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

39

Software Run-Time Controller

Source: [5]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

40

Reconfiguration Process in
Software Run-Time Controller

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

41

Swapping Process
• Module prompted to send state information to

run-time system
• Context save-restore mechanism is part of the

function’s model description
– A parallel running state machine responsible for re-

initializing and saving state information

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

42

Module Context Data Save

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

43

Module Context Data Restore

For
synchronization

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

44

Example Implementation in Automobiles

• CAN-bus connected ECU functions
– CAN: Controller Area Network
– ECU: Engine Control Unit

• Central Locking
• Cabin Compartment Lighting
• Seat Adjustment
• Power Window
• Rear-view Mirror
• Sunroof

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

45

Example Implementation
• Xilinx XC2V3000 FPGA

– 64x56 = 3584 CLBs
• Xilinx MicroBlaze softcore

– 32 bit RISC, 125 MHz
– 950 CLB (26.5%)

• LZSS decompression unit
– 134 CLB (3.7%)

• Arbiter
– 85 CLB (2.4%) 180 MHz

(delay < 5.5 ns)
• Bi-directional bus macros

– 120 CLB (3.4%) 180 MHz
(delay < 5.5 ns)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

46

Example Implementation in XC2V3000

• Average response time < 1ms
• Average reconfiguration time per slot = 15 ms
• Demanded response time of 100 ms
• Hence, feasible!!!
• 8 control functions implemented
• Each partial bitstream is 118 KB
• Bitstream compression rate is 60%
• No dynamic relocation employed!

– Four partial bitstreams generated, one for each slot

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

47

System Architecture for
Hardware Task Interface and Wrapper

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

48

Hardware Task Interface and Wrapper

• How to make a HW IP reconfigurable?
– Must be enhanced with swap capabilities

• Stop execution at some interruptible state in FSM
• Access to state and context registers

– Must be interfaced with
• Task interface

– For interfacing with a standard bus such as OPB
• Wrapper

– For swap control, task shutdown, context data
save/restore, data (un)packing, …

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

49

Interruptible State

• Not every state of a HW FSM is
interruptible because
– Communication undergoing
– Pipeline not flushed
– Register values do not represent complete

state
– Not possible to resume from a state

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

50

Interruptible State
• A state is said to be interruptible if the hardware

task can resume execution from that state after
restoring the task context, either partially or fully.

• GCD Example
– Interruptible states:

• INIT, RLD, CMP

– Non-interruptible states:
• NEG, EQ, POS
• Comparator results not saved,

hence cannot resume

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

51

Access to Registers
• Scan Chain

– Scan multiplexer in front of each FF
• Regular execution mode vs. Scan mode

• Shadow Chain
– Each FF is duplicated and connected to chain
– Store/restore/swap within a single cycle

• Memory Mapped
– CPU can access directly using address and data bus

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

52

Access to
Registers

(a) Scan Chain

(b) Shadow Chain

(c) Memory Mapped

Source: [8]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

53

Hardware Task Interface and Wrapper

Source: [6]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

54

Task Interface

• Read/Write Interface
– Normal bus read/write transactions

• Control Interface
– IP control interface:

• reset, clock, done, go

• Swap Interface
– Swap out/in requests, interrupts

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

55

Generic Wrapper
• Context Buffer

– For storing data context of HW IP
• Data Transformation Component (DTC)

– For packing/unpacking of data context into
32 bits (bus width)

• Datapath
– For data transfer

• Swap Controller
– For controlling swap out/in and

reconfiguration

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

56

GCD Example Implementation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

57

Advantages

• Better real-time response
– 10x ~ 100x ms time save

• Standardization of hardware IP
– Use scan chain, shadow registers, memory

mapping for register access
• Generic wrapper design

– Uniform design, little resource and time
overheads

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

58

Swap Time
• DC: context data (bits),
• DB: context buffer (bits),
• RT: data transformation rate (bits/cycle),
• RB: buffer data load rate (bits/cycle),
• RP: peripheral bus data transfer rate (bits/cycle),
• TA: peripheral bus access time (cycles),
• TI: transition time to go to an interruptible state

(cycles) , and
• TR: reconfiguration time (cycles),

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

59

Swap Time

• TSO: Swap-out time
• TSI: Swap-in time

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

60

Experiments

• Xilinx Virtex II Pro XC2VP20-FF896 FPGA
• 56 x 46 CLB matrix
• 18,560 LUTs, 18,560 FFs
• 32-bit CoreConnect OPB at 133 MHz

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

61

Area Overheads

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

62

Time Overheads

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

63

Operating System for Reconfigurable
Systems

• OS4RS
– Implements a hardware abstraction layer

(HAL) over the FPGA
– Schedules tasks on processor and FPGA
– Provides uniform communication for software

and hardware tasks to send/receive
messages

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

64

OS4RS: Uniform Communication

• Message passing based
– Messages have common format for both

hardware and software tasks
• Each task has a logical address and a

physical address when configured
– OS4RS translates logical/physical addresses

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

65

OS4RS: Uniform Communication

• Message passing API
– Both software tasks

• Routed using logical addresses
– A software and a hardware task

• Logical/physical address
translation, uses HAL

– Both hardware tasks
• Packet-switched

interconnection

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

66

OS4RS: Placement

• Tile-based placement
– Partial bitstreams are configured directly into

tiles by OS4RS
– High fragmentation
– Low latency (tile availability check only)

• Packet-switched interconnection
– Controlled by OS4RS

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

67

OS4RS: Hardware Relocation

• Two approaches
– A partial bitstream for every tile [7]
– Use Jbits [9] to manipulate a single bitstream

at run-time

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

68

OS4RS: Routing

• Fixed communication infrastructure inside
the interconnection network

• Routing is performed by OS4RS through
routing tables
– No complex algorithms, only update of tables

when a task is inserted/removed

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

69

OS4RS: HW-SW Relocation
• Software task

– Context defined by processor registers and
task memory

• Hardware task
– No universal representation of hardware

states
– Two ways to extract states

• Readback data contains state information
• High-level interruptible states

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

70

Switching Point and Interrupt State

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

71

Task Switching from SW to HW

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

72

Switching Point

• Switching Point
– “Low overhead” interruptible states

• Contains “no state information”
• Architecture dependent
• Data transfer

– Shared Memory: pass a pointer
– Distributed Memory: copy data

– Example
• End of a frame computation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

73

Example Implementation

• Relocatable Video Decoder [7]
– T-ReCs Gecko demonstrator

• Compaq iPAQ 3760 (StrongARM SA-1110)
• Xilinx Virtex 2 XC2V6000 FPGA

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

74

Relocatable Video Decoder

• Motion JPEG frame decoder can be
scheduled to run in HW or in SW

• Send and receive threads run on iPAQ
• Switch point: end of frame (no state

information)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

75

Relocatable Video Decoder
• Results with Synplify Pro

– HW decoders
• 23 frames per second (fps)
• Clock: 40 MHz
• Specific: 9570 LUTs
• General: 15901 LUTs

– SW decoder
• 6 frames per second (fps)
• CPU load = 95%

– Communication
• BlockRAM: 20 MHz
• CPU memory access: 103 MHz

– synchronous RAM, need to insert wait states

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

76

Relocatable Video Decoder
• Decoder relocated from SW to HW

– 6 fps 23 fps
– CPU 95% 95% (Why?)

• Send and receive threads heavily load processor
• Memory accesses (103 MHz 20 MHz) need

wait-states (CPU is thus idle in these states)
– OS4RS overhead is 100 microseconds
– Total latency is 108 ms

• Mainly partial reconfiguration
– Theoretical latency 11 ms, why such a large difference?

» Slow CPU-FPGA interface!!!

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

77

Hardware Relocation
• Hardware designs are fixed in location in an

FPGA after it is implemented and bitstream
generated.

• How to locate the hardware in a different
location from the one where it was implemented?

• Hardware relocation architectures and tools
provide solutions to do this!
– Swappable Logic Unit [10]
– Dynamic Hardware Plugins [11]
– REPLICA (Relocation per online Configuration

Alteration) [4]
– PARBIT [3]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

78

Swappable Logic Unit

• Virtual hardware analogue of page or
segment in virtual memory

• Hardware Features
– Fixed area in FPGA
– Fixed I/O interfaces

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

79

Swappable Logic Unit

• Hardware Interface
– Signals on SLU perimeter
– Bus-accessible registers within SLU (Slave)
– Active bus access by SLU (Master)

• Software Interface
– Use like a library API
– Compiler directly supports SLU programming

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

80

Swappable Logic Unit

• Sea of Accelerators [10]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

81

Swappable Logic Unit

• Parallel Harness [10]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

82

Dynamic Hardware Plugins
• Similar to Dynamic Linked Libraries (DLL) in

software applications
• Useful in packet processing such as firewalls

and routers that cannot be suspended
• Platform

– Virtex-E XCV2000E
• Tool

– PARBIT [3] to restructure bitfiles
• Features

– Gasket interface, antennas, DHP, …

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

83

Gasket Interface
• Gasket (墊片、墊圈)

– Between a DHP
module and
infrastructure

– Provides antennas
(fixed signal interface)

– Included routes: for
DHP only

– Excluded routes: not for
DHP

– Interface is not
changed during
configuration

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

84

DHP, Gasket, Infrastructure

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

85

Field-Programmable Port Extender
(FPX) System

• Two FPGAs
– Reprogrammable Application Device (RAD)

• XCV2000E FPGA
• All DHP modules and static modules
• Interface with SRAM, SDRAM

– Networking Interface Device (NID)
• XCV600E FPGA
• Reconfiguration control logic for RAD FPGA
• Network switch between network interfaces and DHP

modules

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

86

FPX System

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

87

DHP Module in FPX System

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

88

DHP Implementation on FPX

• Two DHP module slots
• Two bitfiles

– Infrastructure of RAD
– DHP module

• PARBIT used for partial bitfile generation
– 187 KB instead of 1,270 KB for XCV2000E full chip

• Can be located in either of the two slots using
PARBIT

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

89

REPLICA
• A bitstream manipulation filter for module

relocation
• Module Design

– Modules occupy full column height
– Can be relocated along chip width

• Bus Design
– Bus is chip-wide and homogeneous
– Can be segmented using bridge

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

90

Reconfigurable System Architecture

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

91

Virtex Configuration Column Types

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

92

Virtex Address

• Configuration address space divided into:
– RAM blocks

• BlockRAM content
– CLB blocks

• All other column types

• Address
– MJA: Major Address
– MNA: Minor Address

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

93

Virtex Address Calculation
• For Virtex 1 and 2: use only Eqs. (1), (2)

• What about Virtex 4 and 5? RAM columns in the
middle of the chip

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

94

REPLICA Filter

• Four blocks and a data multiplexer
– Bitstream Parser

– FPGA Type Decoder

– CRC Calculation

– MJA Calculation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

95

REPLICA Filter

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

96

Bitstream Parser
• To replace some words so that a module is

relocated to another CLB column
– One MJA entry per CLB column
– Two CRC checksums per bitstream

• Distinguish between data / command words
• Search for write commands for

– FAR (Frame Address Register)
– CRC

To disable REPLICA:
Set target column to 0

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

97

FPGA Type Decoder
• FPGA type can be determined from frame length
• Issue:

– The first manipulated MJA occurs before frame length
• Possible Solutions

– Huge shift register delaying output data
• Resource wasted

– User given
• More efficient

– Hard coded
• For final implementation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

98

CRC Calculation

• Select data words to be included in
calculation and calculate CRC checksum

• CRC polynomial
– CRC = X16 + X15 + X2 + 2

• Parallel implementation
– To provide new checksum within one clock

cycle

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

99

MJA Calculation
• Calculate MJA

– Using equations (1) ~ (5),
– Target column: CLB_Col, and
– FPGA Parameters: Chip_Cols, Chip_Rams,

RAM_Space
• No need of knowing the original column
• 19 clock cycles needed for an MJA calculation

– Between two MJA entries: 100x~1000x frame data
words

– First MJA entry: 7 data words
• 7 x 4 = 28 clock cycles > 19, hence no problem!

(1 word = 32-bit = 4 bytes, 4 cycles on 8-bit SelectMAP port)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

100

REPLICA Synthesis

• Xilinx ISE 6.1
• 336 slices in Virtex-E device
• 50 MHz clock

– Same as the maximum allowed by
SelectMAP configuration interface

• Critical part
– Control of data multiplexer

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

101

Configuration Manager
• Organizes data transfer of bitstreams from

memory to FPGA
• Controls configuration through SelectMAP port
• Part of RAPTOR2000 rapid prototyping platform
• Two FSMs

– IO State Machine
• For data transfer

– Configuration State Machine
• For configuration control

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

102

Configuration Manager

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

103

Configuration Manager Synthesis

• Two implementations of CM:
– XC95288XL CPLD on RAPTOR2000

• 209 out of 288 macro cells (75%)
• 58 MHz clock (> 50 MHz, more than required)

– XCV2000E FPGA
• 151 out of 19200 slices (0.8%)

• REPLICA + CM (on XCV2000E)
– 490 out of 19200 slices (2.5%)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

104

RAPTOR2000 Platform

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

105

Comparisons of Relocation
Architectures

HW CMNID FPGAOS4RSConfiguration
RAPTOR
(Virtex-E)

FPX
(Virtex-E)

Concept
(XC6200)

Platform

dynamicstaticstaticRelocation

AMBA busgasketsignal / busI/O interface

1D Column1D slot2D areaModule

REPLICA
2005

DHP
2001

SLU
1996

Feature

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

106

Outline

• Reconfigurable vs. Conventional
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

107

Area-Time Tradeoff Techniques
• In a fixed amount of reconfigurable resources,

tradeoffs can be made between
– Area: amount of resources used

• Sequential
• Pipelined
• Spatially parallel

– Time: data throughput of design
• Several cycles per data (sequential)
• One cycle per data (pipelined)
• Several data per cycle (parallel)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

108

Area-Time Tradeoff Techniques

• Coarse-Grained Time Multiplexing
– Temporal Partitioning

• Spatial Parallelism

• Pipelining

• Template Specialization

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

109

Coarse-Grained Time Multiplexing

• Also called “Temporal Partitioning”
• A large circuit might not fit into a

reconfigurable device
– A large circuit is broken down into several

smaller circuits such that
• each can be executed by a fixed amount of

reconfigurable resources and
• together they function just like the large circuit

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

110

Temporal Partitioning

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

111

Benefits of Temporal Partitioning
• Makes the execution of an oversized

circuit possible using limited resources
• Increases functional density

– D = 1/(AxT), A: area, T: time, D: density
– Useful in partial reconfiguration

• Makes multi-context FPGAs more efficient
– Switch in a single cycle

• Study of minimum granularity to achieve
performance far exceeding processors

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

112

Temporal Partitioning

• Two types
– Gate level

• Assumes small reconfiguration overhead

– High level or operational level
• Assumes large reconfiguration overhead

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

113

Gate Level Temporal Partitioning
• Mainly scheduling or optimization based

– List scheduling [12]
– Enhanced force-directed scheduling [13]
– Network flow optimization [14]
– Weighted graph partitioning [15]

• Model
– Mealy state machine [12]
– Time-multiplexed communicating logic (TMCL) [13,14]
– Directed hypergraph [15]

• Takes care of combinational and sequential nets

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

114

High-Level Temporal Partitioning

• Methods
– Integer Linear Programming [16, 17]
– Data-Flow Graph Partitioning [18]

• Level based
• Clustering based

• Models
– ILP problem
– DFG

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

115

DFG Partitioning and Scheduling

• Example

REF:
[18]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

116

DFG Partitioning and Scheduling

• Inputs
– A data-flow graph (directed acyclic graph)

• G = (V, E, W, D)
– V: a node represents a function implementation
– E: an edge <vi, vj> means vj needs data output of vi

– W: a weight represents the size of logic
– D: a delay represents the function execution time

– A configurable unit of size SRPU

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

117

DFG Partitioning and Scheduling

• Objective
– Divide G into k segments such that

• Size of each segment is ≤ SRPU

• There exists an acyclic precedence relation for all
k segments

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

118

Acyclic Precedence Relation

(a) Original
graph

(b) Cycle
exists

(c) Acyclic

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

119

RACE Environment
• Four Xilinx XC4013 FPGAs

– Interconnected in a complete graph
– Each FPGA has 128 KB data memory and 64 KB of

configuration memory
• One controller XC4013 FPGA for programming

– FPGA
– DMA transfers to host system

• SUN SparcStation
– Connected to FPGAs using SBUS interface

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

120

RACE Environment

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

121

DFG Partitioning and Scheduling

• ASAP Level Assignment
• Partitioning Algorithms

– Level Based Partitioning
– Clustering Based Partitioning

• Data Controller Synthesis
• DFG Scheduling

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

122

DFG Partitioning and Scheduling

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

123

ASAP Level Assignment

• To assign each node vi a Level(vi)
• Indegree(vi)

– # incoming edges with Level = ∞
• FanoutSet(vi)

– Set of fanout nodes of vi

• FaninSet(vi)
– Set of fanin nodes of vi

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

124

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

125

ASAP Level Assignment Example

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

126

Partitioning Algorithms

• Objectives
– To satisfy area constraint SRPU

– To exploit inherent parallelism in application
– To reduce communication overhead

– Tradeoff between parallelism and
communication overhead

– Level based vs. Clustering based

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

127

Level Based Partitioning

• Exploits parallelism in application
• All nodes at the same level can be

considered for parallel execution
• Overheads

– Limited routing resources (RCost)
– Need a data controller (FSMCost)
– Available_Area = SRPU – FSMCost – RCost

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

128

1
1

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

129

Example
of

Level
Based

Partitioning

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

130

Level Based Partitioning

• The algorithm complexity is O(|V| + |E|)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

131

Clustering Based Partitioning

• To decrease communication overhead
– Reduce number of terminal edges of a

partition (incoming + outgoing edges)
• Clustering tends to reduce the number of

terminal edges, hence communication
overhead

• An alternative way is proposed in [19],
based on local minima of memory usages

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

132

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

133

Clustering Based Partitioning

• ReadyList: nodes ready to be executed
• ReadyList.update(): adds new nodes that

are ready to execute in front of ReadyList
– Tends to decrease terminal edges

• Algorithm complexity is O(|V| + |E|)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

134

Data Controller Synthesis

• FSM of data controller

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

135

FSMCost Calculation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

136

DFG Scheduling

• Scheduling of temporal partitions must
satisfy
– Precedence relation between partitions
– Data dependencies among partitions

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

137

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

138

Application Examples

• Size of circuits in XC4000 CLBs

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

139

SW Execution Times

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

140

Reconfigurable HW Execution Times

• Segment reconfiguration time: 242 ms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

141

Comparison of Partitioning Algorithms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

142

Comparison of Partitioning Algorithms

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

143

Discrete Cosine Transform

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

144

Discrete Cosine Transform

• For m as small as 128,
– Hardware outperforms software
– Reconfiguration overheads completely

absorbed
• For large images

– Temporally partitioned hardware performance
far exceeds software performance

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

145

Spatial Parallelism
• Replicating hardware modules so as to

accelerate execution (data processing)
• Example

– Two adders/multipliers instead of one
– Two encoders/decoders instead of one

• Needs
– Data distribution before parallel execution
– Data integration after parallel execution

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

146

Pipelining

• Replicating modules, however due to data
dependence, the modules are pipelined

• Increases data throughput
– No pipelining: One data per iteration
– With pipelining: One data per pipeline cycle

• Needs careful functional and timing
designs

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

147

Template Specialization

• Instead of two variable operands, often
one input operand is a constant
– No need of full function implementation
– Can use table lookup, shifter register, etc.
– Example

• Multiply by 4 or by 7

• Can decrease both resource usage and
computation time

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

148

Outline

• Reconfigurable vs. Conventional
Hardware

• Hardware Preemption and Relocation
• Area-Time Tradeoff Techniques
• Communication Architectures

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

149

Reconfigurable Communication
Architectures

• Three types of communication architectures
– Fixed module communication

• A bus or NoC connecting all fixed modules

– Dynamic module communication
• A bus or NoC connecting all dynamic modules
• Needs bus or slice macros (from Xilinx)

– Fixed-Dynamic module communication
• A bridge connecting fixed part and dynamic part

– Example: OPB Dock
– Needs bus or slice macros (from Xilinx)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

150

Fixed Module Communication

• A standard bus
– ARM AMBA
– IBM CoreConnect

• A standard NoC
– Topology: Mesh, torus, ring, fat tree, …
– Link: circuit switched, packet switched
– Switch mode: store-and-forward, virtual cut-

through, wormhole

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

151

Dynamic Module Communication
• Static NoC [20], [22]

– Fixed network
– Modules can be placed only in slots connected to the

fixed network
– Examples: 2D Torus, Artemis (2D Mesh)

• Dynamic NoC [21], [26]
– Dynamically changing network

• Parts of the network can be included inside a module when it
is placed [21]

• QoS parameters, error detection/correction, fault isolation [26]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

152

2D Mesh

• An array of routers interconnecting an
array of processors [20]

Routing:

N, E, W, S

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

153

2D Torus

• Static NoC
• Row and columns connected in rings

Routing:

E, S

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

154

Wormhole Routing Algorithm

• Blocking, hop-based, deterministic routing
algorithm

• Pipeline through the network

• Message is broken into flits (flow control units)
– Flits: routing information and data message

• First : X direction (X header flit)

• Second : Y direction (Y header flit)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

155

Wormhole Routing Algorithm

• Deadlock
– All queues are full
– No message can advance toward

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

156

Wormhole Routing Algorithm

• Avoid Deadlock
– Two Virtual Channels (VC)
– Router0 only sends messages on VC0

– The others may initiate messages only on VC1

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

157

2D Torus Implementations
• Platform

– Virtex XCV800, Virtex XC2V6000
– Compaq iPaq PDA: SA-1100 (206 MHz), RT-

Linux
• Routing

– Wormhole
• Transfer rate between routers

– 77.6 MB/s at 40 MHz (38.8 MB/s per VC)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

158

2D Torus Implementations

• Power Overhead
– +15% power consumption for 4x4 folded torus

compared to mesh
• Area Overhead

– Virtex XCV800: 35%
– Virtex XC2V6000: 9.5%

• Fully pipelined, 2 cycles to transmit one
16-bit flit on a given virtual channel

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

159

1D Router for 2D Torus

• 2 I/O channels
– 16-bit data path
– 3-bit control signals

• 2 bits: indicate message
• 1 bit: back-pressure (nack): to block message

entry into a busy router or interface
– Time-multiplexed (interleaved one cycle each)

• 2 cycles for a flit to leave a router

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

160

1D Router for 2D Torus

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

161

Interface between Task and Router
• Dual-port RAMs are used as message buffers
• Net-cell

– High-level communication by routing tables
– Logical address + port number
– Routing tables transform a destination logical address into

number of X and Y hops
• Updated by RT-OS to match position of IP on network

– Buffers 2 input and 2 output messages on Virtex I and 8 input
and 8 output messages on Virtex II

• Circular linked-list

• Same fixed interface for all tasks
– Message-in, message-out, BRAMs, Multipliers, …

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

162

Task-Router Interface

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

163

Placement of Routers and IPs

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

164

Hardware Overheads

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

165

Artemis

• Static NoC [22]
• 2D Mesh

– Based on the HERMES [23]
• Special macros for core-router interface

– R2F: Reconfigurable to Fixed
– F2R: Fixed to Reconfigurable

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

166

Artemis Core-Router Interface

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

167

R2F Macro

• No need of Xilinx bus macros
• Designed with FPGA slices

– Reduces number of routing problems
– Wider interfaces between regions

• 8 bits: one Virtex-II Pro CLB (4 slices)
• Right side: feed through
• Left side: 2 AND gates

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

168

R2F Macro

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

169

Artemis NoC

• 4 cores
– R8 processor
– RS-232
– 2 reconfigurable

cores
• Mult, div, sqrt
• 9.17% of full

bitstream

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

170

Cores in Artemis Case Study

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

171

NoC and Protocol Stack

• Tile [25]
– A dynamically reconfigurable homogeneous

and distinct part of logic
– Connects to switch fabric via Reconfigurable

Network Interface (RNI) with two parts:
• Fixed: Resource Independent Network Interface

(RINI)
• Reconfigurable: Resource Dependent Network

Interface (RDNI)
RNI = RINI + RDNI

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

172

Reconfigurable Network Interface

[25]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

173

Protocol Stack

Similar
to

ISO/OSI
model

and
TCP/IP

stack

[25]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

174

NoC and Protocol Stack

[25]

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

175

Dynamic NoC

• Two kinds of dynamic NoC
– Dynamically Changing Structure [21]

• Parts of an NoC are changed dynamically, used
for PE logic

– Dynamically Changing Behavior [26]
• QoS parameters such routing, switching, packet

size are dynamically changed
• Error detection and correction
• Faulty node isolation

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

176

NoC with Dynamically Changing
Structure

• Task
– Rectangular box encapsulating a circuit

implemented with resources in a given area
• Network access

– Using one network element on boundary
• Assume network element attached to upper right

PE of component
• Module address = upper right network element

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

177

NoC with Dynamically Changing
Structure

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

178

NoC with Dynamically Changing
Structure

• Placement
– When placed on device, components hide

part of the network, which is restored when
they complete execution

– Hence, it is called a dynamic NoC [21]!
– Must maintain a strongly connected network

• A path exists between each pair of network
elements

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

179

Temporal Placement on Dynamic NoC

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

180

NoC with Dynamically Changing
Structure

• Routing
– Due to placement of tasks that cover the

routers in its area, the routers are deactivated
• Deactivation: by setting control signals
• Reactivation: by resetting control signals

– Before sending packet in a direction, a router
must check if the router in that direction is
activated

• Deactivated: route in perpendicular direction

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

181

NoC with Dynamically Changing
Structure

• Implementation
– FPGA: Virtex II 6000
– NoC Topology: Mesh network
– Network Size: 4 x 4 = 16 routers
– Router connection:

• 32-bit bus,
• 4 control lines,
• six 32-bit FIFO buffers with depth 4

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

182

NoC with Dynamically Changing
Structure

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

183

NoC with Dynamically Changing
Structure

• Synthesis result: 7% device area
– Each router

• 0.5% device area
• 2.553 ns latency with 391 MHz frequency

– Path Latency
• Max 6 routers on a path

50 MHz components can communicate without
delay

WHY???

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

184

NoC with Dynamically Changing
Behavior

• Network parameters such as routing paths,
switching mode, packet size are usually
fixed statically during network design
– Cannot cope with network data bursts
– Require large buffers for storing packets
– Under/over utilization of network bandwidth

by different processing elements
– Wastage of resources

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

185

NoC with Dynamically Changing
Behavior

• Dynamic NoC [26]
– Reconfigures itself according to

communication demand
• Routing path, switching mode, packet size

determined dynamically
• Faulty nodes can be isolated dynamically
• Data errors can be detected and corrected or

retransmitted

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

186

Smart Network Stack

• Makes decision about packet size,
switching and routing for data

• Writes this information in packet header
• Uses

– For handling data bursts
– For handling faulty nodes

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

187

Smart Network Stack

• PEs with high bandwidth
– SNS Actions

• Increase packet size
• Change packet switching to circuit switching

– Routing Results
• Increased data throughput
• Decreased switching power
• Decreased timing delays

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

188

Smart Network Stack

• Faulty node
– Detection

• No response from the node
– Action

• Deactivate the router that leads to a local faulty
node

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

189

Smart Network Stack

• Five Layers

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

190

Smart Network Stack
• Application Layer

– user interface to communication system, hides details
• Transport Layer

– Packetization of data
• Packet Header
• Data Payload

– Packet Size
• Normal, moderate, heavy data transfer
• Can be dynamically changed by transport layer of SNS

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

191

Smart Network Stack
• Network Layer

– Deals with switching and routing of packetized data
– Types of Switching

• Packet Switching: for data sizes ≤ threshold
– Wormhole routing

• Circuit Switching: for data sizes > threshold
– Features

• Both types of switching exist concurrently in the same
network

• Circuit switched path is excluded from packet switching
routes

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

192

Circuit Switching by SNS

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

193

Smart Network Stack
• Data Link Layer

– Hides transmission errors in physical layer
• Increases reliability upto a minimum level

– 2 types of error detection and correction
• Error detection with retransmission
• Error detection with correction using information in packet

– Requires encoder/decoder at channel’s end

– SNS uses error detection with retransmission
• To keep silicon cost low
• Uses checksum calculation and checking

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

194

Smart Network Stack

• Physical Layer
– FPGA has abundant wiring around each tile
– Can be used for the physical wiring of

network-on-chip
– Use separate wires for

• Data wires
• Control wires

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

195

Router Design

• Objectives and Solutions
– Low silicon cost
– Keep internal buffers as small as possible
– Prevent data queuing up in router buffers

• Use control signals to update routing tables for
adaptive routing

• Packets know in advance of coming to routers
what the congestion is like, and are thus routed to
alternative paths to avoid having to queue up

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

196

Router Design

• 3 components in router
– Input Controller
– Input Port
– Switching Logic

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

197

Router Design: Input Controller
• Manages routing tables
• Inspects header and determines fate of arrived

packets
• Neighboring input controllers are all connected

– To update routing tables
• Clock speed: 5 times that of router
• Output port checking: round robin
• Node failure: Will be excluded from routing

tables after no response is detected from a node

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

198

Router Design: Input Port

• Point of entry of incoming packets
• Buffer to store one packet for header

inspection
• Information extraction from packet

– Destination address
– Type of switching

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

199

Router Design: Switching Logic

• Connects input ports to output ports
depending on the instructions from input
controller

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

200

Router Design: Implementation

• Implemented in Verilog
• 32-bit link for each input port
• 27% lesser area overhead than [27]

– Only one input controller instead of one for
each port as in a normal NoC.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

201

Summary (NoC Comparison)

NS-2
Simulation

Virtex II
6000

Virtex II ProVirtex XCV800,
XC2V6000

Validation
4x44x42x24x4Size
YesNoNoNoError Handling

YesYesNoNoFault
Tolerance

ChangeableFixedFixedFixedPacket Size
Circuit/PacketPacketPacketPacketSwitching
WormholePacketPacketWormholeRouting
2D-TorusMeshMesh2D-TorusTopology
DynamicDynamicStaticStaticBehavior
StaticDynamicStaticStaticStructure
AdNoC [26]DyNoC [21]Artemis [22]2D-Torus [20]Features

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

202

Protocol Stack Comparison

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

203

Protocol Stack Comparison

Wire (F)Wire (F)Physical
Error correction (F)Switch (F)Data Link
Switching and routing (F)RINI (F)Network
Data packetization (R)RDNI (R)Transport
Software (R)Hardware (R)Application
SNS [26]RNI [25]Layer

RNI: Reconfigurable Network Interface
SNS: Smart Network Stack

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

204

Fixed-Dynamic Module Communication

• Needs special modules
– Bus macros: tri-state buffers
– Slice macros: specially designed logic blocks

• For example: from Xilinx
• Used for interface reconfigurable and

static areas
• Can be constructed into a bridge such as

OPB Dock, Gasket, Wrapper, Bus, …

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

205

References
1. H. Simmler, L. Levinson, and R. Manner, “Multitasking on FPGA

Coprocessors,” 10th FPL, 2000.
2. H. Kalte and M. Porrmann, “Context Saving and Restoring for

Multitasking in Reconfigurable Systems,” 15th FPL, 2005.
3. E. Horta and J. W. Lockwood, “PARBIT: A tool to transform

Bitfiles to Implement Partial Reconfiguration of FPGAs,” Tech
Report WUCS-10-13, Washington Univ., July 2001.

4. H. Kalte, G. Lee, M. Porrrmann, U. Ruckert, “REPLICA: A
Bitstream Manipulation Filter for Module Relocation in Partial
Reconfigurable Systems,” 12th RAW, April 2005.

5. M. Ullmann, M. Hubner, B. Grimm, J. Becker, “An FPGA Run-
Time System for Dynamical On-Demand Reconfiguration,” 18th
IPDPS, 2004 (also in IJES Vol. 1, No. 3/4, pp. 193-204, 2005)

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

206

References
6. C.-H. Huang, K.-J. Shih, C.-S. Lin, S.-S. Chang, and P.-A. Hsiung,

“Dynamically Swappable Hardware Design in Partially Reconfigurable
Systems,” ISCAS, May 2007.

7. J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, R.
Lauwereins, “Infrastructure for Design and Management of Relocatable
Tasks in a Heterogeneous Reconfigurable System-on-Chip,” DATE’2003.

8. T. Streichert, D. Koch, C. Haubelt, and J. Teich, “Modeling and Design of
Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded
Systems,” EURASIP Journal of Embedded Systems, Vol. 2006 Article ID
42168, pp. 1-15. 2006.

9. S. Guccione, D. Levi, P. Sundararajan, “JBits: A Java-based Interface for
Reconfigurable Computing,” 2nd Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference
(MAPLD).

10. G. Brebner, “The Swappable Logic Unit: a Paradigm for Virtual
Hardware,” IEEE Symposium on FPGAs for Custom Computing
Machines, FCCM, 1997.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

207

References
11. E. L. Horta, J. W. Lockwood, D. Parlour, “Dynamic Hardware Plugins in

an FPGA with Partial Run-time Reconfiguration,” DAC, pp. 343-348,
2002.

12. S. Trimberger, “Scheduling Designs into a Time-Multiplexed FPGA,”
Procs. of the International Symposium on FPGAs, 1998.

13. D. Chang and M. Marek-Sadowska, “Partitioning Sequential Circuits on
Dynamically Reconfigurable FPGAs,” Procs. of the International
Symposium on FPGAs, 1998.

14. H. Liu and D. F. Wong, Circuit Partitioning for Dynamically
Reconfigurable FPGAs, Procs. of the ACM/SIGDA 7th International
Symposium on Field Programmable Gate Arrays, pp. 187-194, ACM
Press, 1999.

15. E. Canto, J.M. Moreno, J. Cabestany, I. Lacadena, J.M. Insenser, “A
Temporal Bipartitioning Algorithm for Dynamically Reconfigurable
FPGAs,” IEEE Trans. On VLSI Systems, Vol. 9, No. 1, pp. 210-218, Feb.
2001.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

208

References
16. M. Kaul, R. Vemuri, S. Govindarajan, I. Ouaiss, “An Automated

Temporal Partitioning and Loop Fission Approach for FPGA based
Reconfigurable Synthesis of DSP Applications,” DAC, pp. 616-622, 1999.

17. M. Kaul, R. Vemuri, “Temporal Partitioning Combined with Design Space
Exploration for Latency Minimization of Run-Time Reconfigured
Designs,” DATE, pp. 202-209, March 1999.

18. K.M. Gajjala Purna, D. Bhatia, “Temporal Partitioning and Scheduling
Data Flow Graphs for Reconfigurable Computers,” IEEE Trans. On
Computers, Vol. 48, No. 6, pp. 579-590, June 1999.

19. P. Brunet, C. Tanougast, Y. Berviller, S. Weber, “Hardware Partitioning
Software for Dynamically Reconfigurable SoC Design,” 3rd IEEE Intl
Workshop on SoC for Real-Time Applications, 2003.

20. T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking on
FPGAs,” FPL, September 2002.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

209

References
21. C. Bobda, M. Majer, D. Koch, A. Ahmadinia, J. Teich, “A Dynamic

NoC Approach for Communication in Reconfigurable Devices,”
FPL, LNCS 3202, pp. 1032-1036, 2004.

22. L. Moller, I. Grehs, N. Calazans, F. Moraes, “Reconfigurable
Systems Enabled by a Network-on-Chip,” FPL’2006.

23. F. Moraes, N. Calazans, A. Mello, L. Moller, L. Ost, “HERMES: an
Infrastructure for Low Area Overhead Packet-Switched Networks
on Chip,” Integration the VLSI Journal, Vol. 38, No. 1, pp. 69-93,
October 2004.

24. D. Ching and P. Schaumont, “Integrated Modelling and
Generation of a Reconfigurable Network-on-Chip,” Int. J. of
Embedded Systems, Vol. 1, Nos. 3/4, 2005.

25. S. Kubisch, R. Hecht, D. Timmermann, “Adaptive Hardware in
Autonomous and Evolvable Embedded Systems,” Embedded
World, 2005.

Reconfigurable Computing: Chapter 3. Reconfigurable Hardware
(2007 Copyright @Pao-Ann Hsiung)

210

References
26. B. Ahmad, A. T. Erdogan, S. Khawam,

“Architecture of a Dynamically Reconfigurable
NoC for Adaptive Reconfigurable MPSoC,” 1st
NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), pp. 405-411, IEEE CS
Press, June 2006.

27. J. Hu and R. Marculescu, “DyAD – Smart
Routing for Networks-on-Chip,” IEEE/ACM
International Design Automation Conference
(DAC), June 2004.

