

• Problems: There are 8 problems (25 pages in all) in this packet.

• Program Input: Input to each program are done through the input
file. Input filenames are given in the Problem Information Table.

• Program Output: All output should be directed to standard output
(screen output).

• Time Limit: The judges will run each submitted program with
certain time limit as given in the Problem Information Table.

• Judging: Please submit executable program for judging. Do not
submit source file or test data file.

• Special note to java programmers: The first class in your Java
program must be named, ”hello”, which should be compiled into
”hello.class” for judging.

Table 1: Problem Information Table

Problem Name Input File Time Limit
Problem A Good Approximation Problem pa.dat 30 secs.
Problem B Power Cable Problem pb.dat 30 secs.
Problem C A Rate-Monotonic Scheduler pc.dat 30 secs.
Problem D The Constraint Densest Submatrix pd.dat 30 secs.
Problem E Hinge Node Problem pe.dat 30 secs.
Problem F Area of Simple Polygons pf.dat 30 secs.
Problem G Model Checking pg.dat 30 secs.
Problem H Composition of Functions ph.dat 30 secs.

2

Problem A
Good Approximation Problem

Input File: pa.dat

It is well known that π ≈ 22

7
. You can verify that for all integers p and q satisfying

1 ≤ q ≤ 7 and
p

q
6= 22

7
, we have |22 − 7π| < |p − qπ|. Furthermore,

355

113
is another

good approximation of π. You can also verify that for all integers p and q satisfying

1 ≤ q ≤ 113 and
p

q
6= 355

113
, we have |355− 113π| < |p− qπ|.

Let p, q, x, y, x1 and y1 be integers, α be a real number and q > 0. We say that
y

x
is

d-closer to α than
y1

x1

if |y−xα| < |y1−x1α|. Notice that if α is also a rational number

p

q
, then the inequality |yq − xp| < |y1q − x1p| is equivalent to |y − xα| < |y1 − x1α|.

This can be used to avoid floating point operations. If
y

x
is d-closer to α than any

other rational number
y1

x1

with denominator x1 in the range from 1 to x, then
y

x
is

called a good approximation of α. Let G(α) be the set of all good approximations

of α and |G(α)| be the cardinality of G(α). The cardinality of a set G(α) is the

number of elements in G(α). We use an example to illustrate these symbols. Let

α =
37

13
. The good approximations of α are

3

1
,
17

6
and

37

13
. The rational number

3

1
is a good approximation of α since no other rational number with denominator 1

and an integer numerator is d-closer to α than
3

1
. The rational number

17

6
is a good

approximation of α since no other rational number with denominator in the range from

1 to 6 and an integer numerator is d-closer to α than
17

6
. A similar reason holds for

37

13
. It is clear that no rational number with denominator greater than 6 and an integer

numerator is d-closer to α than
37

13
since |37−13α| = 0. Therefore, G(α) = {3

1
,
17

6
,
37

13
}

and |G(α)| = 3. Similarly, you can find that G(
237

113
) = {2

1
,
21

10
,
65

31
,
86

41
,
237

113
} and

|G(
237

113
)| = 5.

Given a rational number α, you are asked to design a program for finding |G(α)|.

Input: The first line of the input file contains an integer n, n ≤ 5, which represents

the number of test cases. Then, the cases are listed line by line. In each line, there are

two integers pk and qk separated by a space which are the numerator and denominator,

respectively, of test case k, k = 1, 2, · · · , n. Note that 1 ≤ pk, qk ≤ 10000.

Output: List the value of |G(
pk
qk

)| in line k for k = 1, 2, · · · , n.

3

Sample input

4

37 13

237 113

175 29

1432 6578

Output for the Sample Input

3

5

2

10

4

Problem B
Power Cable Problem

Input File: pb.dat

The downtown of city T consists of N , 1 ≤ N ≤ 10000, tall commercial buildings

that have basements. The buildings are numbered from 0 through N − 1. The elec-

tricity of each building is provided by the City Electrical Power Company that puts

all of its M , 1 ≤M ≤ 1000, power cables underground. In order for a building to have

electricity, a power line must be connected from one of the underground cables to a

power converter inside the building. Because of technical reasons, each power cable is

a loop, meaning that it is a long cable line that originates from a mini power station,

runs through some regions in the city and then comes back to the same power station.

It is known that each power cable connects to at least 2 and at most 500 buildings. A

building may be connected to zero, one or more than one power cable. The electricity

of a building connected to more than one power cable can be provided by any one

power cable by properly setting its power converter. To have a better city view, it is

required by the law that power converters can only be built inside the basements.

During a Typhoon, the local rain storm, the downtown of city T is flooded. The

basements of K, 1 ≤ K ≤ N , buildings are filled with water. Fortunately, none of

the mini power stations are damaged. Once a basement is flooded with rain water,

its power converter is damaged and the building is out of electricity. Before fixing the

power converter, we need to drain the water in the basement, which takes at least

a long time. To make the situation worse, the power cables of city T are designed

with the constraint that for each power cable, if it is connected with a damaged power

converter, then none of the power converters connected to this power cable can be

turned on. It is also impossible to disconnect the damaged power converts from the

power cables. However, it is possible to properly set a power convert to get electricity

from a power cable that carries electricity. After Typhoon, the City Electrical Power

Company needs to know the total number of buildings that are out of electricity. Since

the flood has made the traffics inside the city bad, the company cannot send people

to survey. Fortunately, it is known by the company the buildings that are flooded in

Typhoon since people from those buildings telephoned the company for help. Giving

the original power line connection floor plans and the buildings that are flooded, your

task is to calculate the total number of buildings that are currently out of electricity,

including the ones that are originally not connecting to any power cable.

5

For example, each circle in Figure 1 represents a building. Two concentric circles

represents a flooded building. There are 9 buildings. Buildings 7 and 8 are flooded.

Solid straight lines are power cables. There are 3 power cable lines. One connects

buildings 0, 1 and 6. One connects buildings 1, 2, 3 and 7. The last one connects

buildings 0, 1, 4, 5 and 8. Buildings 2, 3, 4, 5, 7 and 8 do not have electricity currently

in this example.

1

6

5

4

3

2

0

7 8

Figure 1: A power cable network.

Input: The input file consists of several test cases. In each test case, the first

line consists of three integers N , M and K separated by a single space. Each of

the following M lines represents in a power cable by beginning with the number of

buildings in this power cable and then a list of buildings in this cable in clockwise

order. It then followed by a line of K integers, each separated by a space, representing

the buildings that are flooded. A line with three 0’s separates two test cases. The end

of the file is a line with three −1’s.

Output: For each test case, output the total number of buildings that are out of

electricity in a line.

6

Sample Input

9 3 2

3 0 1 6

4 1 7 3 2

5 0 4 5 8 1

7 8

0 0 0

5 2 1

3 0 2 1

3 1 4 3

4

-1 -1 -1

Output for the Sample Input

6

2

7

Problem C
A Rate-Monotonic Scheduler

Input File: pc.dat

Priority-driven scheduling approach is commonly used in modern computer opera-

tion systems where the systems always execute the task with the highest priority. In

priority-driven scheduling, a task with lower priority may be preempted by a ready

task with a higher priority and resume later. A ready task is a task ready to run as

long as it gets the right to use CPU. A periodic task is executed exactly once in every

constant interval which is called a period. For simplicity, we assume a periodic task

is ready at the beginning of a period and the deadline is at the end of each period.

It will be ready again at the beginning of the next period. Static-priority assignment

states that the priorities of tasks are assigned in advance and do not change during

task execution. A set of periodic tasks is said to be feasible if every task finishes ex-

ecution before its deadline. Rate-Monotonic algorithm assigns a higher priority for a

task with shorter period and is an optimal scheduling algorithm using static-priority

assignment. It can also find a feasible schedule if there exists any scheduler using

static-priority assignment that can find one. Given a set of periodic tasks with known

constant execution times and periods, we are interested to know whether the set of

task is feasible by a Rate-Monotonic scheduler and how many times the tasks are pre-

empted before the schedule first repeats at the hyperperiod which is defined to be the

least common multiple of all task periods. Note that it may be too large to calculate

the hyperperiod, < 264, in advance and too slow to check feasibility on every time unit.

It would be easier and faster to simulate the problem using two priority queues, one

for the ready and preempted tasks and the other for the tasks not ready. All tasks

will become ready again at the beginning of next hyperperiod.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1

T2

T3

Time

Figure 2: Task schedule example.

8

Figure 2 shows that tasks T1, T2, T3 with execution times 1, 2, 3 and periods 3, 5, 15

respectively are feasible using the Rate-Monotonic scheduling algorithm since T1, T2, T3

finish execution at time 1, 3, 14 respectively. T2 is preempted by T1 at time 6 and

resume at time 7, T3 is preempted by T2 at time 5 and resume at time 8, preempted

again by task T1 at time 9 and resume at time 13. Therefore, the total number of

preemption times for this task set is 3.

Input: All the input numbers are positive integers, < 500000, separated by a space

or new line. The first line is the number of task sets. Then, the task sets are listed set

by set. All the task sets are feasible. Each task set is listed by a line of the number

of tasks, ≤ 10, and lines of task execution time and period pairs, execution time <

period. The periods are not sorted and are different in a task set.

Output: For each task set, each line shows the hyperperiod of the task set followed

by the number of total preemption times.

Sample Input

3

3

1 3

2 5

3 15

2

1 2

1 3

2

123 123456

456 456123

Sample Output

15 3

6 0

18770373696 151

9

Problem D
The Constraint Densest Submatrix

Input File: pd.dat

Given an m×n matrix A = [aij], the objective of the problem is to find a (consec-

utive) submatrix of A with size at least R rows and at least C cloumns such that the

average value of the numbers in the submatrix is maximized.

Let A = [aij] be an m× n matrix. Then a p× q matrix B = [bij] is a (consecutive)

submatrix of A if there exists a fixed ordered pair (k, `) such that bij = ai+k,j+` for

each (i, j) pair; note that 1 ≤ i ≤ p and 1 ≤ j ≤ q. For example,

[7] ,

[
3
9

]
,

[
1 9
7 3

]
are submatrices of

 2 3 5
1 9 6
7 3 4

but

[8] , [2 5] ,

[
9 6
7 3

]
are not submatrices of

 2 3 5
1 9 6
7 3 4

The density of an m × n matrix A = [aij] is the average value of all elements of

A. That is, (
m∑
i=1

n∑
j=1

aij)/(mn). Note that finding the densest submatrix of a given

matrix is easy. It is just the largest element within the matrix. On the other hand, the

problem becomes interesting when we are asked to find the submatrix with at least R

rows and at least C columns such that the density of the submatrix is maximized.

Write a program to find the densest submatrix of A with size at least R × C. A

naive method of calculating the densest submatrix of A considersO(mn) possible upper

left corner elements, together with another O(mn) possible lower right corners, while

calculating the density of the proposed submatrix takes O(mn) time. What resulted is

a very time-consuming O(m3n3) time algorithm. For a modest sized 100×100 matrix,

the term becomes 1012, not easily finished in reasonable time. A somehow cleverer

way of computing the densest submatrix is expected.

Given an m × n matrix A = [aij], we denote (x, y)-prefix sum of A by the sum

P (x, y) =
x∑
i=1

y∑
j=1

aij. It follows that the sum of submatrix with upper left corner

(i1, j1) and lower right corner (i2, j2), can be quickly computed by 4 prefix sums; that

is,
i2∑
i=i1

j2∑
j=j1

aij = P (i2, j2)− P (i1 − 1, j2)− P (i2, j1 − 1) + P (i1 − 1, j1 − 1)

10

Input

Several sets of integral matrices. The inputs are just a list of integers. Within each

set, the first 4 integers (in a single line) represent the size of the matrix, m and n,

indicating an m× n matrix, and the constrained submatrix size, R and C. Note that

each of them (m,n,R, C), can be as large as 200. After the four integers, there will

be m lines representing the m rows of the matrix; each line (row) contains exactly n

integers which are the elements in the row. The value of each element in a matrix is

in the range from 0 to 800 and most of them are less than 100. Thus, there are totally

mn integers for the particular matrix.

These matrices will occur repeatedly in the input as the pattern described above.

An integer m = 0 (zero) signifies the end of input.

Output

For each matrix of the input, find the densest submatrix with size at least R rows and

C columns. Output the submatrix by specifying the upper left corner and the lower

right corner by printing four indices. For example, a line

r1 c1 r2 c2

represents a submatrix with the upper left corner (r1, c1) and the lower right corner

(r2, c2). Output a single star ‘*’ to signify the end of outputs.

For the uniqueness of the answer, if two submatrices have the same density, only

print the matrix whose four indices of corners (r1, c1, r2, c2) with smaller lexicographical

order. For example, if the two sets of indices are (4, 3, 18, 9) and (7, 1, 14, 8), then just

output the first submatrix since its indices of the corners has smaller lexicographical

order.

11

Sample Input

3 4 2 1

150 500 150 800

1 200 100 300

400 800 80 400

4 2 3 2

400 800

200 500

100 200

600 600

0

Sample Output

1 4 2 4

1 1 4 2

*

12

Problem E
Hinge Node Problem

Input File: pe.dat

In decades, people have realized the significance of data communication. Most of

the designs and analysis of communication networks usually model their topologies as

graphical representations because many relevant problems of networks can be solved

by using graph theoretic results. As usual, a communication network is modeled by

a graph that nodes and edges in a graph correspond to the communication sites and

links, respectively. A network G = (N,E) consists of a set N of nodes together

with a set E of edges, representing pairs of nodes. If the pairs are considered to be

unordered, then we have an undirected network and the edge joining two nodes u and

v is represented by (u, v). For example, Figure 3 depicts a network G which contains

10 nodes and 16 edges.

v10

v9

v8

v7

v6
v5

v1

v4

v3

v2

Figure 3: A network G.

In a network G, the distance between two nodes u and v, denoted by dG(u, v),

is the number of edges of a shortest path from u to v in G. A sequence of vertices

v1, v2, · · · , vk is a path from v1 to vk of length k− 1 in G provided that there is an edge

between vi and vi+1 for i = 1, 2, · · · , k − 1. If no path exists between nodes u and v,

then dG(u, v) = ∞. A path is a shortest path between nodes u and v if its length is

minimum among all of the paths between u and v. A network is connected if there

exists a path between any two nodes. The failure of a node w means that w and all

its incident edges are removed from G, and the remaining subnetwork is denoted by

13

G−w. A node w is called a hinge node if there exist two other nodes u and v in G such

that dG−w(u, v) > dG(u, v). It means that the distance between u and v is increased

after w is removed from G. Thus, a hinge node can be viewed as a critical node of the

corresponding network and the failure of such a node will increase the communication

cost to the remaining subnetwork. For example, we consider the network G in Figure 3.

The node v2 is a hinge node since dG−v2(v8, v9) = 3 > dG(v8, v9) = 2. Indeed, the set

of hinge nodes contained in G is {v2, v3, v4, v7, v8, v10}.

Suppose that we have several networks. Each network is connected and contains

at most n nodes, where 3 ≤ n ≤ 100. Assume now that you are hired to serve as

a network administrator and you should analyze the communication cost. For this

reason, you will be interested in finding all hinge nodes in a network. In particular,

you should design a program that can efficiently calculate the total number of hinge

nodes for each of the given networks.

Input: The input file consists more than one and less than six networks (cases).

Each test case starts with a positive integer n, where 3 ≤ n ≤ 100. The following n

lines represents the adjacency matrix of a network G. The last case is followed by a

”0” to indicate ”end of input.” An adjacency matrix of a network G with n nodes,

denoted by A(G) = [au,v], is an n× n 0, 1-matrix such that au,v = 1 if (u, v) ∈ E, and

au,v = 0 otherwise. Note that there is not any delimiter between any two elements in

each line of a 0, 1-matrix. For example, the adjacency matrix of the graph in Figure 3

is shown in test case 3 of the sample input.

Output: For each test case, output the total number of hinge nodes in a line.

14

Sample Input

3

010

101

010

3

011

101

110

10

0110001000

1001000111

1000001100

0100010101

0000000101

0001000001

1010000010

0111100000

0100001000

0101110000

0

Output for the Sample Input

1

0

6

15

Problem F
Area of Simple Polygons

Input File: pf.dat

There are N , 1 ≤ N ≤ 1, 000 rectangles in the 2-D xy-plane. The four sides of

a rectangle are horizontal or vertical line segments. Rectangles are defined by their

lower-left and upper-right corner points. Each corner point is a pair of two non-

negative integers in the range of 0 through 50,000 indicating its x and y coordinates.

Assume that the contour of their union is defined by a set S of segments. We can

use a subset of S to construct simple polygon(s). Please report the total area of the

polygon(s) constructed by the subset of S. The area should be as large as possible.

In a 2-D xy-plane, a polygon is defined by a finite set of segments such that every

segment extreme (or endpoint) is shared by exactly two edges and no subsets of edges

has the same property. The segments are edges and their extremes are the vertices of

the polygon. A polygon is simple if there is no pair of nonconsecutive edges sharing a

point. Notice that the area of a polygon includes the holes inside the polygon.

Example: Consider the following three rectangles:

rectangle 1: < (0, 0) (4, 4) >,

rectangle 2: < (1, 1) (5, 2) >,

rectangle 3: < (1, 1) (2, 5) >.

The total area of all simple polygons constructed by these rectangles is 18.

Input: The input consists of multiple test cases. A line of 4 −1’s separates each

test case. An extra line of 4 −1’s marks the end of the input. In each test case, the

rectangles are given one by one in a line. In each line for a rectangle, 4 non-negative

integers are given. The first two are the x and y coordinates of the lower-left corner.

The next two are the x and y coordinates of the upper-right corner.

Output: For each test case, output the total area of all simple polygons in a line.

16

Sample Input

0 0 4 4

1 1 5 2

1 1 2 5

-1 -1 -1 -1

0 0 2 2

1 1 3 3

2 2 4 4

-1 -1 -1 -1

-1 -1 -1 -1

Output for the Sample Input

18

10

17

Problem G
Model Checking

Input File: pg.dat

To build a complex system, software engineering methods suggest building a design

or prototype first before programming the real system. System correctness can be

tested or verified on such a design (or a model) so that serious errors can be found in

an earlier stage. As a result, software development cost and time can be significantly

reduced.

A design is often the abstract behaviors of the real system. Some representations,

such as finite-state machines (FSM), are suitable for describing the abstract behaviors

of a system. For example, if we want to build an oven system, we can first design a

FSM in Figure 4 to represent the oven we intend to build. Then, we can check system

correctness on the FSM.

To define the correctness, we label every state of the machine with propositions

{start,close,heat}. Each proposition at a state is either true or false. For instance,

at state 1, all propositions are false, which means at this state the start button is not

pressed, oven door is not closed, and oven is not heated. At state 3, proposition close

is true, which means at the state, oven door is closed.

An interesting problem is to ask if the FSM satisfies some properties. For example,

we may want to ask “Can the oven never heat up after start button is pressed?” Let

it be property A. If the FSM satisfies property A, we know the oven is a bad design

and it must be fixed before being made into a product. To check if the FSM satisfies

property A, it is equivalent to ask “if there exist some states that start is true and

heat is never true along an infinite run which begins from the states.” In order to

express the properties formally, we need the following notation.

An infinite sequence of states is a cycle or a path which finally goes into a cycle in

a FSM. For example, see Figure 4. States 1, 2, 5 and 3 form a cycle and constitute an

infinite sequence. States 7 and 4 constitute another infinite sequence since the path

starts from state 7 and finally goes into the cycle which only contains state 4. Let

EG(p) denote the states which constitute some infinite sequences with proposition p

being true along the sequences. For example, EG(∼heat) contains states 1, 2, 5 and 3.

However, state 6 is not in EG(∼heat) since it cannot constitute an infinite sequence

with other states satisfying p. EG(heat) contains states 7 and 4 which constitute an

infinite sequence with heat being true along the sequence.

18

~start
~close
~heat

Start
~close
~heat

~start
close
~heat

~start
close
heat

Start
close
~heat

Start
close
~heat

Start
close
heat

Start oven

Open door

Close door

Reset

Start oven

Open door
Close door

Open door

done

Start cooking

cook

w arm up

1

2
3 4

5
6

7

Figure 4: An oven’s finite-state machine with propositions.

Therefore, property A can be expressed by a formula (start∧EG(∼ heat)) which

contains states 2 and 5, where ∧ is the “and” relation of two propostions. The reason

is as follows: The states which satisfy propostion start are 2, 5, 6 and 7. The stats

which belong to EG(∼heat) are 1, 2, 3 and 5. Thus, only states 2 and 5 satisfy the

formula (start ∧ EG(∼ heat)).

Your goal. Given a FSM and a property formula, please write a program to

determine if the FSM satisfies the property. If it can be satisfied, please output the

states which satisfy the property.

Note that the property formula is limited to the form (term1∧ term2∧ ...∧ termn),

where each term is either a proposition p or EG(p). Between terms in a formula, we

always have the “and” relation.

19

Input

The input begins with a number of test data which is less than 10. Each test data

contains the following: A test data begins with the names of propositions. The first line

begins with (m prop1 prop2 . . . propm), where m, < 10, is the number of propositions,

propi is the name of ith proposition and each name contains less than 6 characters.

The second part is the information of a FSM. A FSM begins with (s t i) where

s < 50 is the number of states, t < 100 is the number of transitions and i < 100 is

the index of initial state. The index of states starts from 1. Next is s lines of data to

describe the states. Each state is of the form (si p1 p2 . . . pm), where si is the index

of the state and pi is the boolean value of propi. It can be either T or F . After the

state information is t lines of transition information. Each transition is described by

(st ed), where st and ed are the source and destination states of the transition. Note

that the label of transition is ignored because it is not a concern to our problem.

The final part is the property formula information. It is of the form (k term1

term2· · · termk) , where k is the length of the formula and termi can be either a

proposition name propi (with or without ∼) or EG(propi).

Output

The states which satisfy the property formula. If there are no states satisfying the

formula, please output “NO.”

20

Sample Input

2

3 start close heat

7 12 1

1 F F F

2 T F F

3 F T F

4 F T T

5 T T F

6 T T F

7 T T T

1 2

2 5

5 2

5 3

1 3

3 1

3 6

6 7

7 4

4 3

4 4

4 1

2 start EG~heat

2 a b

3 4 1

1 T T

2 F F

3 T F

1 2

2 3

1 3

3 3

2 EGa EG~b

Sample Output

2 5

3

21

Problem H
Composition of Functions

Input File: ph.dat

Professor T. T. Moh has invented a new public key cryptosystem. The new cryp-

tosystem is called TTM, and it is based on the composition of functions.

TTM is a block cipher. Assume that the block size is 100 bytes. Thus, a block of

message can be represented by m = (m1,m2, . . . ,m100).

A sequence of invertible transformations φ1, φ2, . . . , φn are designed to convert a

block of message into cipher. Each transformation, φi, contains 100 functions, φi =

(f i1, f
i
2, . . . , f

i
100), where each f ij is a polynomial. Thus, each transformation can convert

a block of 100 bytes into another block of 100 bytes.

After these functions are determined, the cipher c = (c1, c2, . . . , c100) can be com-

puted by

c = φn ◦ φn−1 ◦ · ◦ φ1(m).

The public key of the TTM cryptosystem is the composition of the transformations

φ = φn ◦ φn−1 ◦ · ◦ φ1, and the private key is the transformations φ1, φ2, . . . , φn. The

TTM cryptosystem is secure if the decomposition of functions is difficult,

Note that TTM does not treat a block of message as a large number. All computa-

tions in TTM is based on bytes. This is why the encryption and the decryption speed

can be very fast.

To implement the TTM cryptosystem, we first need to select a field which has 28

elements. We shall denote this field by F(28), the addition operation by “+” and the

multiplication operation by “·”.

An element of F(28) can be represented by an 8-bit binary number b8b7 · · · b0 or by

a 2-digit hexadecimal number h1h0.

To define “+” and “·” operation in F(28), we identify each element in F(28),

b7b6 · · · b0, with a polynomial

b7x
7 + b6x

6 + · · ·+ b0.

For example, 01010111 is the polynomial x6 + x4 + x2 + x+ 1.

The addition of two elements in F(28) is the addition of the two corresponding

polynomials. For example 01010111 + 10000011 = 11010100, since (x6 + x4 + x2 + x+

1) + (x7 + x+ 1) = x7 + x6 + x4 + x2.

22

To define “·” in F(28), we need an irreducible polynomial of degree 8. In this

problem, we assume that the irreducible polynomial is

m(x) = x8 + x4 + x3 + x+ 1.

Multiplication of two elements in F(28) is the product of the two polynomials modular

the irreducible polynomial m(x). That is, first multiply the two polynomials and

then divide the resulting polynomial by m(x) and find the remainder. For example,

01010111 · 10000011 = 11000001, since (x6 + x4 + x2 + x + 1) × (x7 + x + 1) =

x13 +x11 +x9 +x8 +x6 +x5 +x4 +x3 + 1 and x13 +x11 +x9 +x8 +x6 +x5 +x4 +x3 + 1

modulo x8 + x4 + x3 + x+ 1 equals x7 + x6 + 1.

Note that, in the addition and multiplication of the polynomials, the operation

of the coefficients is in Z2, not in the field F(28). That is, 0 + 0 = 1 + 1 = 0,

0 + 1 = 1 + 0 = 1, and 0× 0 = 0× 1 = 1× 0 = 0, 1× 1 = 1.

Although subtraction and division in F(28) are not needed in this problem, the

following facts can help you better understand the operations of the field. It is easy to

verify that 00000000 is the zero and 00000001 is the unit of the field F(28). Observe

that subtraction in this field is the same as addition. They are all equivalent to the

exclusive-or of the corresponding binary bits.

In this problem, we are going to design a simplified tool to generate keys for TTM.

Your program needs only do two types of operations: (1) create a function, and (2)

compute the composition of functions.

Creating a function means to read a function definition from the input file and

store it properly. A function is defined in the input file as

fi = t1 + t2 + · · ·+ tm.

In the above definition, i is the function number. Each function has a unique number.

Each term tj, j = 1, 2, . . . ,m is a product of the form

c xi1ˆj1 xi2ˆj2 · · · xirˆjr,

where c is an element in F(28), and each xikˆjk, k = 1, 2, . . . , r, means (xik)
jk . The

value of each ik is an integer in [1, 100]. We shall adopt the following conventions in

defining a term. If c = 1, the constant is omitted, except it is the only one in the term.

23

We assume that jk > 0, and if the exponent jk = 1, only xik will be shown. Note that

the exponent jk will be less than 256.

For example, “f1 = x1 + x2ˆ3 x3” and “f2 = 3f x10 x2 + x5ˆ7 + fe” are valid

function definitions, but “f3 = 256 x1 + 320” is not valid. Constants must be in the

range [0, 255] and expressed by at most two hexadecimal digits. To make it simple, no

parenthesis can be used in defining a function. For example, “f4 = (x1 + x2) x3” is

not allowed.

The composition of functions is also considered as a definition of a function and it

is expressed as

fi = fj(arguments)

where fj is a function define before, and the arguments is a list of functions fk1 , fk2 ,

. . ., fkr . each function in the list must be define before. Each occurrence of xl in

the function fj will be substituted by fkl We need not list 100 functions, but enough

functions must be listed to do the substitution.

Input

The input file contains a sequence of function definitions and function compositions.

Each function definition and each function composition will be written in a line. A

line will be very long, but no more than 900 characters.

Output

For each function definition, store the function properly. No outputs are needed

for function definitions. For each function composition, compute and simplify the

function and then print the results. You can either have a space or no space between

terms. The polynomial printed must be simplified in “sum of product” format, without

parenthesis, and two terms which differ in only the constants must be added together.

24

Sample Input

f1 = x1^2

f2 = x1 + x2

f3 = f1(f2)

f10 = x1^2 + x2^2

f11 = f10(f2, f2)

Output for the Sample Input

f3 = x1^2 + x2^2

f11 = 0

25

