
Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency in JavaConcurrency in Java

Prof. Stephen A. Edwards

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java LanguageThe Java Language

Developed by James Gosling et al. at
Sun Microsystems in the early 1990s

Originally called “Oak,” first intended
application was as an OS for TV set
top boxes

Main goals were portability and safety

Originally for embedded consumer
software

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java LanguageThe Java Language

Set-top boxes: nobody cared
Next big application: “applets”

• Little programs dynamically added to web browsers

Enormous Sun marketing blitz
Partial failure:

• Incompatible Java implementations
• Few users had enough bandwidth
• Fantastically slow Java interpreters

Javascript has largely taken over this role
• High-level scripting language
• Has nothing to do with the Java language

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java LanguageThe Java Language

Where does Java succeed?

Corporate programming
• E.g., dynamic web page generation from large

corporate databases in banks
• Environment demands simpler language

Unskilled programmers, unreleased software
• Speed, Space not critical

Tends to be run on very large servers
• Main objective is reduced development time

Copyright © 2001 Stephen A. Edwards All rights reserved

The Java LanguageThe Java Language

Where does Java succeed?

Education
• Well-designed general-purpose programming language
• Spares programmer from many common pitfalls

Uninitialized pointers
Memory management

• Widely known and used, not just a teaching language

Embedded Systems?
• Jury is still out

Copyright © 2001 Stephen A. Edwards All rights reserved

Overview of JavaOverview of Java

Derived from C++, but incompatible
Didn’t want to call it “C += 2”?
No “loose” functions: everything part of a class
Better package support (no preprocessor)
Safer object references instead of pointers
Large, powerful class library
Automatic garbage collection

• Programmer spared from memory management

Copyright © 2001 Stephen A. Edwards All rights reserved

Concurrency in JavaConcurrency in Java

Language supports threads

Multiple contexts/program counters running within
the same memory space

All objects can be shared among threads

Fundamentally nondeterministic

Language provide some facilities to help avoid it

Copyright © 2001 Stephen A. Edwards All rights reserved

Thread BasicsThread Basics

How to create a thread:

class MyThread extends Thread {

public void run() { /* thread body */ }

}

MyThread mt = new MyThread; // Create thread
mt.start(); // Starts thread running at run()

// Returns immediately

Copyright © 2001 Stephen A. Edwards All rights reserved

Thread BasicsThread Basics

A thread is a separate program counter
… and stack, local variables, etc.

Not an object or a collection of things

Classes, objects, methods, etc. do not belong to a
thread

Any method may be executed by one or more threads,
even simultaneously

Copyright © 2001 Stephen A. Edwards All rights reserved

The Sleep MethodThe Sleep Method

public void run() {
for(;;) {

try {
sleep(1000); // Pause for 1 second

} catch (InterruptedException e) {
return; // caused by thread.interrupt()

}
System.out.println(“Tick”);

}
}

Copyright © 2001 Stephen A. Edwards All rights reserved

The Sleep MethodThe Sleep Method

public void run() {
for(;;) {

try {
sleep(1000);

} catch (InterruptedException e) {
return;

}
System.out.println(“Tick”);

}
}

Does this print Tick once a
second? No.

sleep() delay a lower bound

Rest of loop takes
indeterminate amount of time

Copyright © 2001 Stephen A. Edwards All rights reserved

RacesRaces
In a concurrent world, always
assume someone else is
accessing your objects
Other threads are your
adversary
Consider what can happen
when simultaneously reading
and writing:

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

RacesRaces

Thread 1 goes first
Thread 1 reads original values

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

RacesRaces

Thread 2 goes first
Thread 1 reads new values

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

RacesRaces

Interleaved execution
Thread 1 sees one new value, one old value

f1 = a.field1

f2 = a.field2

a.field1 = 1

a.field2 = 2

Thread 1 Thread 2

Copyright © 2001 Stephen A. Edwards All rights reserved

Non-atomic OperationsNon-atomic Operations

32-bit reads and writes are guaranteed atomic
64-bit operations may not be

Therefore,

int i; double d;
Thread 1 Thread 2
i = 10; i = 20; i will contain 10 or 20
d = 10.0; d = 20.0; i might contain garbage

Copyright © 2001 Stephen A. Edwards All rights reserved

Per-Object LocksPer-Object Locks

Each Java object has a lock that may
be owned by at least one thread

A thread waits if it attempts to obtain
an already-obtained lock

The lock is a counter: one thread
may lock an object more than once

Copyright © 2001 Stephen A. Edwards All rights reserved

The Synchronized StatementThe Synchronized Statement

A synchronized statement gets an object’s lock
before running its body

Counter mycount = new Counter;
synchronized(mycount) {
mycount.count();

}

Releases the lock when the body terminates
Choice of object to lock is by convention

“get the lock for
mycount before calling
count()”

Copyright © 2001 Stephen A. Edwards All rights reserved

Synchronized MethodsSynchronized Methods

class AtomicCounter {
private int _count;

public synchronized void count() {
_count++;

}
}

“get the lock for the
AtomicCounter object before
running this method”

This implementation
guarantees at most one
thread can increment the
counter at any time

Copyright © 2001 Stephen A. Edwards All rights reserved

DeadlockDeadlock

synchronized(Foo) {
synchronized(Bar) {
/* Deadlocked */

}
}

synchronized(Bar) {
synchronized(Foo) {
/* Deadlocked */

}
}

Rule: always acquire locks in the same order

Copyright © 2001 Stephen A. Edwards All rights reserved

PrioritiesPriorities

Each thread has a priority from 1 to 10 (5 typical)

Scheduler’s job is to keep highest-priority threads
running

thread.setPriority(5)

Copyright © 2001 Stephen A. Edwards All rights reserved

What the Language Spec. SaysWhat the Language Spec. Says
From The Java Language Specification

Vague enough for you?

Every thread has a priority. When there is
competition for processing resources,
threads with higher priority are generally
executed in preference to threads with
lower priority. Such preference is not,
however, a guarantee that the highest
priority thread will always be running, and
thread priorities cannot be used to reliably
implement mutual exclusion.

Copyright © 2001 Stephen A. Edwards All rights reserved

Multiple threads at same priority?Multiple threads at same priority?

Language gives implementer freedom

Calling yield() suspends current thread to allow other
at same priority to run … maybe

Solaris implementation runs threads until they stop
themselves (wait(), yield(), etc.)

Windows implementation timeslices

Copyright © 2001 Stephen A. Edwards All rights reserved

StarvationStarvation

Not a fair scheduler

Higher-priority threads can consume all resources,
prevent lower-priority threads from running

This is called starvation

Timing dependent: function of program, hardware,
and Java implementation

Copyright © 2001 Stephen A. Edwards All rights reserved

Waiting for a ConditionWaiting for a Condition

Say you want a thread to wait for a condition before
proceeding

An infinite loop may deadlock the system

while (!condition) {}

Yielding avoids deadlock, but is very inefficient

while (!condition) yield();

Copyright © 2001 Stephen A. Edwards All rights reserved

Java’s Solution: wait() and notify()Java’s Solution: wait() and notify()

wait() like yield(), but requires other thread to
reawaken it

while (!condition) wait();

Thread that might affect this condition calls() notify
to resume the thread

Programmer responsible for ensuring each wait() has
a matching notify()

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()wait() and notify()

Each object has a set of threads that are waiting for
its lock (its wait set)

synchronized (obj) { // Acquire lock on obj
obj.wait(); // suspend

// add thread to obj’s wait set
// relinquish locks on obj

In other thread:
obj.notify(); // enable some waiting thread

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()wait() and notify()

1. Thread 1 acquires lock on object
2. Thread 1 calls wait() on object
3. Thread 1 releases lock on object, adds itself to

object’s wait set

4. Thread 2 calls notify() on object (must own lock)

5. Thread 1 is reawakened: it was in object’s wait set
6. Thread 1 reacquires lock on object
7. Thread 1 continues from the wait()

Copyright © 2001 Stephen A. Edwards All rights reserved

wait() and notify()wait() and notify()

Confusing enough?

notify() non-deterministically chooses one thread to
reawaken (may be many waiting on same object)

• What happens when there’s more than one?

notifyAll() enables all waiting threads
• Much safer?

Copyright © 2001 Stephen A. Edwards All rights reserved

Building a Blocking BufferBuilding a Blocking Buffer

class OnePlace {
El value;

public synchronized void write(El e) { … }
public synchronized El read() { … }

}

Idea: One thread at a time can write to or read from
the buffer

Thread will block on read if no data is available
Thread will block on write if data has not been read

Copyright © 2001 Stephen A. Edwards All rights reserved

Building a Blocking BufferBuilding a Blocking Buffer

synchronized void write(El e) throws InterruptedException
{
while (value != null) wait(); // Block while full
value = e;
notifyAll(); // Awaken any waiting read

}

public synchronized El read() throws InterruptedException
{
while (value == null) wait(); // Block while empty
El e = value; value = null;
notifyAll(); // Awaken any waiting write
return e;

}

Copyright © 2001 Stephen A. Edwards All rights reserved

Thread StatesThread States
born

ready

running

blocked

dead

sleepingwaiting

start()

sleep()
y
i
e
l
d
(
)

wait()

no
ti
fy
() timeout

terminate

I/O started

I/O
completed

