
Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

1

SOFTWARE
ARCHITECTURES

Embedded Software Design
熊博安

國立中正大學資訊工程研究所

pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
2

Contents

Round-Robin

Function-Queue Scheduling

Real-Time Operating Systems

Selecting an Architecture

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
3

Software Architectures

When you are designing embedded software, what
architecture will be the most appropriate for a given
system?

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
4

Decision Factors

The most important factor
how much control you need to have over
system response.

Good response
Absolute response time requirements
The speed of your microprocessor
and the other processing requirements

Few, loose reqts simple architecture
Many, stringent reqts complex architecture

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
5

Some Examples

The control of an air conditioner
This system can be written with a very simple
software architecture.
The response time can be within a number of
tens of seconds.
The major function is to monitor the
temperature readings and turn on and off the
air conditioner.
A timer may be needed to provide the turn-on
and turn-off time.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
6

Some Examples

The software design of the control of an air
conditioner

A simple assembly program for a low-end
microprocessor
Inputs

Input buttons
Temperature readings
Timer readings

Output
The on-off control of the air conditioner
The power control

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
7

Some Examples

Digital telephone answering machine
A telephone answering machine with digital
memory, using speech compression.
The performance and functions

It should be able to record about 30 minutes of
total voice.
Voice data are sampled at the standard
telephone rate of 8kHz.
OGM of up to 10 seconds
Three basic modes

default/play back/OGM editing mode

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
8

Some Examples

The class diagram for the answering machine

Microphone

Line-in

Line-out

Buttons

Speaker

Record

Lights

Controls

Playback Incoming Message

Outgoing Message

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
9

Some Examples

The state diagram for the controls activate
behavior

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
10

Some Examples

The software design for the answering
machine

It must respond rapidly to many different
events.
It has various processing requirements.
It has different deadlines and different
priorities.

A more complex architecture

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
11

4 Basic SW Architectures

Round-Robin

Round-Robin with Interrupts

Function-Queue Scheduling

Real-Time Operating System

Increasing

Complexity

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
12

Round-Robin Architecture

Very simple
No interrupts
No shared data
No latency concerns
Main loop:

checks each I/O device in turn
services any device requests

E.g.: Digital Multimeter

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
13

Round-Robin Architecture
The simplest architecture

Device A

Device B

Device Z

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
14

An Application

Digital multimeter
Measures

R, I, and V readings
I/O

Two probes
A digital display
A rotary switch

Function
Continuous measurements
Update display

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
15

Digital Multimeter
The possible pseudo-code

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
16

Digital Multimeter

Round-robin works well for this system because:
only 3 I/O devices
no lengthy processing
no tight response requirements

Emergency control
No such requirements
Users are unlikely to notice the few fractions of a
second it takes for the microprocessor to get around
the loop

Adequate because it is a SIMPLE system!

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
17

Discussion

Advantages
Simplicity
Low development cost
Short development cycle

Shortcomings
This architecture cannot handle complex
problems.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
18

Shortcomings

If any one device needs response in less time
Two possible improvements for the RR
architecture

Squeezing the loop
Carefully arranging the sequence
(A,Z,B,Z,C,Z,D,Z,…)

If there is any lengthy processing to do
Every other event is also postponed.

This architecture is fragile
A single additional device or requirement may
break everything.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
19

Round-Robin with Interrupts

A little bit more control
In this architecture,

ISRs deal with the very urgent needs of the
hardware and set corresponding flags
the main loop polls the flags and does any follow-
up processing

ISR can get good response
All of the processing that you put into the ISR
has a higher priority than the task code

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
20

A Little Bit More Control

You can control the priorities among the ISR
as well.
The software is more event-driven.

Task Code ISRISR

Shared Variables

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
21

The Architecture
Two main parts

Interrupt Service Routines The main loop

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
22

RR vs. RR-INT

Priority levels

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
23

Discussion

Advantage
The processing is more effectively.

Disadvantage
All of the shared-data problems can potentially
jump and bite you.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
24

An Example of A Simple Bridge

A device with two ports on it that forwards data traffic
received on the first port to the second and vice versa.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
25

Some Assumptions

Whenever a character is received on one of
the communication links, it causes an
interrupt.
The Interrupt must be serviced reasonably
quickly.

Interrupt

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
26

Some Assumptions

The microprocessor must write characters to
the I/O hardware one at a time.
The I/O transmitter hardware on that
communication link will be busy while it sends
the character.
Then, it will interrupt to indicate that it is ready
for the next character.

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
27

Some Assumptions

We have routines that will
read characters from and write characters to
queues and
test whether a queue is empty or not

These routines can be called from ISRs as
well as from the task code.
They deal correctly with the shared-data
problems.
Encrypt / decrypt one character at a time

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
28

Possible Code

Data structures

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
29

Possible Code
Interrupt service routines

Interrupts
upon
receiving
characters

Interrupts
upon sending
characters

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
30

Possible Code
The main loop

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
31

Possible Code
encrypt() and decrypt()

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
32

Bridge code

Interrupt routines:
read characters from hardware
put them into queues: qDataFromLink[AB]

Main routine:
reads data from queues: qDataFromLink[AB]
encrypts and decrypts data
write data to queues: qDataToLink[AB]

I/O Hardware:
2 vars to keep track: fLink[AB]ReadyToSend

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
33

Bridge code

Shared-Data Problem:
disable / enable interrupts

Response Time:
Characters received from hardware by
interrupt routines, thus HIGHER priority
moving characters among queues, encrypting,
decrypting, sending them out, etc. are of
LOWER priority
Burst of characters will not overrun system

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
34

Cordless Bar-Code Scanner

Get data from laser reading bar codes

Send data out on the radio

Only real response requirements
Service hardware quickly enough

Thus, round-robin-with-interrupts is sufficient

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
35

Characteristics of RR-with-Interrupts

Shortcomings:
Not as simple as RR
All task code executes at the same priority

C must wait 400 ms
If C cannot wait that long system wrong

Handle Device A

200 ms

Handle Device B

200 ms

Handle Device C

200 ms

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
36

Characteristics of RR-with-Interrupts

Possible Solutions:
Move task code for C into interrupt routine

ISR exec time will increase by 200 ms
Lower priority devices will have to wait

Change sequence: A, C, B, C, D, E, C, …
Response time for C improves
Response times for other devices may be not
acceptable
Tuning Fragile

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
37

Characteristics of RR-with-Interrupts

Worst-case response time for task code for
any given device

RR loop passes task for that device

Interrupt for that device occurs immediately
after loop passes

Worst-case response time = Sum of task
code execution times of all other devices

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
38

Examples of Systems for which
RR-with-Interrupts does not work well

Laser printer
Calculating locations for black dots is very
time consuming

Underground tank-monitoring system
Calculating gasoline level in tank is very time
consuming

Processor hog Task code gets stuck

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
39

Function Queue Scheduling
Architecture

In this architecture, the interrupt service
routines add function pointers to a queue of
function pointers.

*foo()
foo()
{

}

foo()
{

}

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
40

Function-Queue Scheduling

Interrupt routines:
add function pointers to a queue

Main routine:
reads pointers from queue
calls the functions

Main need not call functions in the order of
occurrence
A priority scheme can be used for ordering
the function pointers

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
41

The Framework of FQS
Three parts

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
42

Worst-case Execution Time

Worst wait for highest-priority task code
function = length of longest task code function
(Better than RR-with-Interrupts)
Trade-off

Response for lower-priority task code
functions may get worse

Problem
Starvation: lower-priority task code may never
get executed!

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
43

Real-Time Operating System

Interrupt routines
take care of most urgent operations
“signal” that there is work for task code to do

Differences with other architectures:
Signaling between interrupt routines and task
code is handled by RTOS (no need of shared
variables)
No main loop deciding what to do next, RTOS
decides the scheduling
RTOS can suspend on task code subroutine
to run another

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
44

A Paradigm

The sample code

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
45

Worst case execution

Suppose Task1 has higher priority
Suppose Task2 is running
Interrupt occurs and vHandleDeviceA sets
signal X
Task2 is suspended
Task1 is started
Worst case execution time for the highest
priority task code subroutine = 0 (+ ISR time)

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
46

Advantages / Disadvantages of RTOS

Changes to any task code in the RR or
function-queue scheduling schemes have a
global effect: affects all tasks
Changes to lower priority task code in RTOS
does not affect response time of higher
priority tasks
RTOS are widely available, immediate
solutions to your response problems
Disadvantage: RTOS itself needs some
processing time, throughput is affected

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
47

Priority Levels

A comparison

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
48

Selecting an Architecture

Select the simplest architecture that will meet
your response requirements
If your response constraints requires an
RTOS, then buy one and use it because there
are also several debugging tools for it
You can create hybrids of the architectures.
In RTOS or RR, main task code can poll slow
hardware devices that do not need fast
response (leaving interrupts for faster
hardware)

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
49

Characteristics of Architectures

Round-robin

Round-robin with
Interrupts

Function-queue
scheduling

Real-time
operating system

