嵌入式系統程式設計 Embedded System Program Design (Fall 2007)

熊博安

(Pao-Ann Hsiung)

國立中正大學資訊工程研究所

(National Chung Cheng Univ., CSIE)

http://www.cs.ccu.edu.tw/~pahsiung/courses/esd/

pahsiung@cs.ccu.edu.tw

(05)2720411 ext. 33119

Class: EA-205

Office: EA-512

What will you learn from this course?

- ♦ What is an embedded system?
 - Hardware
 - Software
- ♦ What are the design issues?
 - Constraints: time, memory, power, ...
 - Code efficiency, optimization, size, etc.
- How to design embedded software?
- Embedded Software Examples

Who should take this course?

- ◆ Interested in becoming an embedded system (software) engineer
- ◆ Interested in designing embedded software
- ◆ <u>EE background</u>: learn real-time OS, embedded software design, ...
- ◆ <u>CS background</u>: learn embedded system architecture, embedded software design, ...
- ◆ Essential background: C/C++ programming, computer architecture, OS

Who should NOT take this course?

- Only wants course credits
- Only because embedded system is popular
- Does not like research
- Does not like projects
- Does not like using tools or lab work
- Not creative (lack of new ideas)
- Yawns and goes to sleep when someone is talking about system design

Textbooks

♦ Textbook 1:

David E. Simon, "An Embedded Software Primer," Addison Wesley, 2001.

♦ Textbook 2:

Michael Barr and Anthony Massa, "Programming Embedded Systems in C and C++," 2nd Edition, O'reilly & Associates, 2007.

Course Syllabus & Schedule

Topic	Week
Introduction	1
Hardware Fundamentals (ARM)	2
Processor Instructions (ARM)	3
Getting Started	4, 5
Interrupts	5, 6
♦ Mid-Term	7
 Software Architectures 	8
Peripherals	9
Real-time OS	10, 11, 12
◆ Java	13
◆ Project	14
◆ Final Exam	15

Course Grading

- ♦ Mid-Term Exam 25%
- ♦ Final Exam 25%
- ◆ Project 20%
- ◆ Labs and Assignments 30%
- ♦ Bonus: class Q/A, quiz, attendance, etc.

Dates & Deadlines

- Labs & Assignments
- Project Proposal
- Mid-Term Exam
- ♦ Final Exam
- Project Results Presentation Jan 8

2 weeks due

Nov 13

Nov 13

Jan 15

Term Project

- Platform
 - Creator (ARM+FPGA)
 - You may use your own board, also!
- Topics
 - HW-SW Codesign
 - Embedded software in FPGA systems
 - Embedded software in HW IPs
 - HW-SW interface development (drivers)
 - GUI development with Embedded QT / Linux
 - Embedded software code generation

Term Project (contd)

- Topics (continued)
 - Applications
 - Sensor network application
 - Pervasive computing applications (食衣住行)
 - Dispatch/Navigation system (GPS, GIS, GPRS)
 - Physiological monitor (sensors, recorders, GPRS)
 - Medical systems (sensors, controllers, GPRS)
 - Home appliances (intelligence, sensors, networked)
 - Theory
 - Embedded software scheduling
 - Embedded software verification
 - Embedded software modeling and design paradigms

- ♦ What to do?
 - Form a group of 3 ~ 5 persons
 - Demonstrate your lab within 2 weeks from announcement
 - Platform
 - Creator (ARM + FPGA) Board
 - Labs
 - Totally 5 labs (need to submit only 4 labs)

Assignments

- ♦ Individual assignment
- Written homework
- ◆ Due 2 weeks from announcement
- ♦ Source: Embedded Software Primer

Embedded Software Engineering

ENJOY THE COURSE!!!