
Textbook: Embedded Software Primer, David E. Simon, Addison Wesley 1

Real-Time Operating 
Systems (Part III)

Embedded Software Design
熊博安

國立中正大學資訊工程研究所

pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw


Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

2

Contents

Principles of Embedded Software Design

How many tasks?

Task Structure

Tank Monitoring System Example

Encapsulating Semaphores & Queues

Saving Memory Space

Saving Power



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

3

Overview

Specification of a system is as difficult as 
designing it (preciseness, timing, …)
Cordless bar-code scanner

respond on time 99% of the cases
slightly too slow 1% of the cases
SOFT real-time system

Nuclear reactor system
absolute deadlines (100% satisfaction)
HARD real-time system



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

4

Principles

Embedded systems start doing something 
only if:

time has elapsed (timer expired!), OR
external event arrived (interrupts)

RTOS tasks are blocked most of the time 
waiting for some event
Interrupt causes a cascade of signals and 
task activities (chain reaction!)
Example: Telegraph Operation



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

5

Telegraph 
Operation



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

6

Write Short ISRs

Why? Because:
lowest priority ISR is executed in preference to highest 
priority task code slower task code response

ISR more bug-prone and harder to debug

When an interrupt occurs, there may be several 
things to do (reset port, save data, reset controller, 
analyze data, formulate response, etc.)

Distinguish between urgent & non-urgent tasks!

Perform the urgent ones in ISR!

Signal a task to do the non-urgent ones!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

7

Example: how to write ISR

System Requirements
System must respond to commands from 
serial port
Commands end with carriage return
Commands arrive one at a time; next 
command will arrive only after current 
command is responded to
Serial port hardware stores 1 character at a 
time, and characters arrive quickly
System can respond to commands slowly



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

8

Example: how to write ISR

Possible Solution Designs
Everything in 1 ISR long, complex, difficult 
to debug, slow response for all operations

Brainless ISR (forward each character to 
command parsing task) short, lots of 
messages for transmitting, chars arrive 
quickly ISR not able to keep up

Compromise save chars in buffer, lookout 
for carriage return, send single msg to task



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

9

Keeping
ISR
short
(in 
VRTX)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

10

Keeping ISR short (in VRTX)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

11

How Many Tasks?

One of the first problems in an embedded-
system design is to divide your system’s work 
into RTOS tasks.
Am I better off with more tasks or with fewer
tasks?



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

12

How Many Tasks?

Advantages of Many Tasks

Better control over response times 

better response for higher-priority tasks

More modular

1 task for 1 device

Encapsulate data more effectively 

e.g.: network connection handled separately



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

13

How Many Tasks?

Disadvantages of Many Tasks
More data sharing among tasks (more bugs, 
more semaphores, more time lost)
More communication (more message queues, 
mailboxes, pipes, more memory, more time 
lost, more bugs)
Each task requires a stack (more memory)
More task switching (more time lost, less 
throughput)
More calls to RTOS (more time lost, less 
throughput)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

14

Timings of an RTOS on 20 MHz Intel 
80386



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

15

When Do You Need Tasks?

You need tasks for priority
better control over response times
E.g.: response to user button presses

You need tasks for encapsulation
to deal with shared hardware / software
E.g.: LCD display on printer

user button press
printing task (error reporting)
“TONER JAM ON LINE NOW”

Task1

Task2

LCD



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

16

Task to Control Shared Hardware

Laser Printer



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

A Separate Task to Handle Shared 
Flash Memory Hardware



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

18

Shared Flash Memory Hardware



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

19

Shared Flash Memory Hardware



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

20

Shared Flash Memory Hardware



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
21

Shared 
Flash 
Memory 
Hardware



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

22

Task to Control Shared Software

Example: Error log

Log is handled by a separate task

Centralize:

all writes of new errors into the log

flushing old data out of log when full

culling duplicates out of log, if necessary



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

23

Common wrong suggestions

Have many small tasks, so that each is 
simple

share a lot of data, semaphores, inter-task 
communications, task switching time, etc.

Have separate tasks for work that needs to 
be done in response to separate stimuli

use tasks for prioritization and encapsulation 
instead of stimuli-based



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

24

Tasks for Separate Stimuli



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

25

Recommended 
Task Structure



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

26

Recommended Task Structure
Task should block in only one place

too many blockings will be difficult to debug
When another task puts a request on the task’s queue, 
this task is not off waiting for some other event that 
may or may not happen in a timely fashion.

Nothing to do input queue empty task will block 
use no CPU time

No public data to share
other tasks must make requests to read/write private 
data
no need of semaphores



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

27

Avoid Creating & Destroying Tasks

Create all tasks at system start
Avoid creating & destroying tasks dynamically

time-consuming functions
creating a task = reliable operation, but
destroying a task = leaves little pieces lying 
around to cause bugs!

E.g.: Semaphore-owning task destroyed, other 
tasks need semaphore blocked forever
Some RTOS takes care automatically, but:
message in task’s queue? destroy queue, delete 
message? what if it has a pointer to memory to 
be freed later? memory leak!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

28

Turn off Time-Slicing

Same priority may use time slicing

Time-slicing fair use of resources good for 
interactive users not for embedded systems!

Cuts throughput (more task switches)

Example: 6 tanks, 6 computations of gasoline 
amounts (each 5 seconds)

one after another better throughput

all 6 results after 30 seconds bad throughput



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

29

Restrict Use of RTOS

Configure RTOS
remove from RTOS whatever is not necessary for your 
applications
save memory space and time
Example: 7 pipes, 1 queue 

replace queue with an 8th pipe, no need of queue 
code in RTOS, OR
replace all 7 pipes with 7 queues, if queues are 
smaller in size than pipes!

Use fixed size messages in a pipe (opcode, error code, 
pointer) less bugs, predictable time
Use a shell, all code access RTOS through shell 
RTOS-independent, more portable!!!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

30

Underground Tank Monitoring System



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

31

Tank Monitoring System 
Requirements

8 underground tanks
Read thermometers and floats in each tank
Calculate #gallons of gasoline in a tank using 
temperature and float readings
Monitor tank level periodically,

indicate leak
warn possible overflow

16-button keypad, 20-char LCD, thermal 
printer



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

32

Initial Questions

How often to read floats?
Several times per second

How quickly to respond to user button push?
In no more than 0.1 second

How fast does printer print?
2 or 3 lines per second

What microprocessor to use?
8-bit microcontroller (no profit from this system)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

33

Initial Questions

How long is the gasoline amount calculation?
4 or 5 seconds (not definite, depends on CPU)

How long to recognize leak/overflow?
some hundredths of a sec (need experiments)

Read level from more than 1 tank at once?
No, one after another

How difficult to turn alarm bell on & off?
Simple! Just writing 1 or 0 to a bit



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

34

Resolving a Timing Problem

Check each tank several times per second
4 or 5 seconds to calculate gas quantity!
Impossible to build!

Use 20 times faster CPU? No!
Detect overflow from raw float levels? Yes!
Use RTOS? Yes!

Calculation: processor hog
Button response: need interrupts



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

35

Dividing the Work into Tasks

A level calculation task
An overflow detection task
A float hardware task
A button handling task
A display task
An alarm bell task
A print formatting task



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

36

Dividing Work into Tasks

Level Calculation Task
takes as input float levels, temperatures
calculates gasoline in tank
detects leaks by looking at previous readings
4 or 5 seconds processor hog
separate, low-priority task in RTOS
How many tasks?

one task per tank? (one float level reading at 
once! communication between tasks!)
only one task? Yes!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

37

Dividing Work into Tasks

Overflow Detection Task
read float levels
fast, high-priority
separate task

Floats are read by both level calculation task 
and overflow detection task

separate float hardware task? OR
use a semaphore?

waiting at most 1 or 2 ms on semaphore!
yes, all the tasks can wait that long! No problem!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

38

Dividing Work into Tasks

Button Handling Task
need state machine to track buttons pressed 
by user
need interrupt routine

Shared LCD Display Task?
use semaphore? OR

Suppose “Leak!!” message on LCD, user presses 
button before he can read the leak message, 
message is gone!

separate display task? Yes!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

39

Semaphore 
Cannot 
Protect LCD



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

40

Dividing Work into Tasks

Alarm bell
separate task? No!
direct control by other tasks? Yes!

bell is never “in the middle of something”!
user turns bell off? intentionally!

Print Formatting Task
report formatting and printing is slower than 
button responses required (0.1 sec)
several reports in queue to format



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

41

Dealing with the Shared Data

The level data is shared by several tasks
The level calculation task
The display task
The print formatting task

A semaphore or another task?
What is the longest that any one task will hold 
on to the semaphore?
Can every other task wait that long?



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

42

Moving System Forward

Button Press button hardware interrupts
CPU button ISR sends message to button 
handling task interpret commands 
forward messages to display task, printer task
Timer to read floats at a specific rate, check 
for possible overflow
Float reading set up by tasks, floats read 
hardware interrupts
Print formatting task sends 1st line to printer, 
then printer interrupts after finishing each line



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

43

Tasks in Underground Tank System



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

44

Tank 
Monitoring 
Design



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

45

Encapsulating Semaphores & Queues

Encapsulate semaphores and queues into 
functions

no direct access of semaphores or queues

fewer bugs

more modular



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

46

Encapsulating Semaphore



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

47

Encapsulating 
Semaphore



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

48

Encapsulating Semaphore



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

49

Wretched 
Alternative



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

50

Wretched Alternative



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

51

Encapsulating
Semaphore 
(float)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

52

Encapsulating Message Queue



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

53

Encapsulating Message Queue



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

54

Encapsulating Message Queue



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

55

Encapsulating 
Message 
Queue



Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

56

Encapsulating 
Message 
Queue



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

57

Saving Memory Space

Memory space is very limited in embedded 
systems (not like desktop systems with GBs!)
Program size must fit in ROM
Data size must fit in RAM
They are not interchangeable!
Squeezing data into efficient structures 
savings in data size, BUT
More code needed to read those data 
extra space needed in program size!!!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

58

Saving Memory Space

How to determine stack space size?
Analysis:

Each function call, parameter, local variable
Deepest combination of function nesting, 
parameters, and local variables
Worst-case nesting of interrupt routines
RTOS itself (in manual)

Experiment:
run and measure (not necessarily worst-case!)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

59

Saving Memory Space

Don’t use 2 functions to do same thing
28 memcpy, 1 memmove 

change memmove to memcpy OR 
change all memcpy to memmove

Check development tools which might drag 
unnecessary codes into your application

drags memmove, memset, memcmp, strcpy, strncpy 
along with memcpy

Configure RTOS to include only what you need
Check assembly-language listings created by compiler

different ways of doing same thing in C give different 
amount of assembly code



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

60

Saving Memory Space



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

61

Saving Memory Space



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

62

Saving Memory Space

Use static 
variables instead 
of variables on 
stack 
(parameters, 
local variables)



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

63

Saving Memory Space

On an 8-bit processor, use char instead of int



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

64

Saving Memory Space

If all else fails, write in assembly language!



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

65

Saving Power

Microprocessor has one or more power-
saving modes (sleep, low-power, standby)

Software can put microprocessor into one of 
those modes

by a special instruction, or

by writing into a control register



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

66

Common Power-Saving Mode (1)

stop executing instructions, stop peripherals, 
stop clock circuit saves lot of power
requires restarting software because 
microprocessor is reset
software must figure out if it just started or is 
restarting

by writing value 0x9283ab3c into location 0x0100
check location on starting

Static RAM uses little power no need of 
stopping



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

67

Common Power-Saving Mode (2)

stop executing instructions, peripherals 
continue to operate saves less power
no special hardware required
no need of restarting software
DMA continues to send data to UART
Timers continue to run, interrupt 
microprocessor, etc.



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

68

Common Power-Saving Mode (3)

Turn off entire system power consumption 
= 0
User turns it back on when needed
Example

Cordless bar-code scanner
User pulls trigger to initiate scan
Trigger-pull turns entire system back on
Software needs to turn system off
Software needs to save to EEROM



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

69

What to turn off?

Parts that have lots of signals that change 
frequently from high to low and back use the 
most power

Turn those parts off!

Lookup data sheets to find such parts and if it 
is worthwhile to turn them off


	Real-Time Operating Systems (Part III)
	Contents
	Overview
	Principles
	Telegraph �Operation
	Write Short ISRs
	Example: how to write ISR
	Example: how to write ISR
	Keeping�ISR�short�(in �VRTX)
	Keeping ISR short (in VRTX)
	How Many Tasks?
	How Many Tasks?
	How Many Tasks?
	Timings of an RTOS on 20 MHz Intel 80386
	When Do You Need Tasks?
	Task to Control Shared Hardware
	A Separate Task to Handle Shared Flash Memory Hardware
	Shared Flash Memory Hardware
	Shared Flash Memory Hardware
	Shared Flash Memory Hardware
	Shared �Flash �Memory �Hardware
	Task to Control Shared Software
	Common wrong suggestions
	Tasks for Separate Stimuli
	Recommended Task Structure
	Recommended Task Structure
	Avoid Creating & Destroying Tasks
	Turn off Time-Slicing
	Restrict Use of RTOS
	Underground Tank Monitoring System
	Tank Monitoring System Requirements
	Initial Questions
	Initial Questions
	Resolving a Timing Problem
	Dividing the Work into Tasks
	Dividing Work into Tasks
	Dividing Work into Tasks
	Dividing Work into Tasks
	Semaphore Cannot Protect LCD
	Dividing Work into Tasks
	Dealing with the Shared Data
	Moving System Forward
	Tasks in Underground Tank System
	Tank �Monitoring �Design
	Encapsulating Semaphores & Queues
	Encapsulating Semaphore
	Encapsulating Semaphore
	Encapsulating Semaphore
	Wretched �Alternative
	Wretched Alternative
	Encapsulating�Semaphore �(float)
	Encapsulating Message Queue
	Encapsulating Message Queue
	Encapsulating Message Queue
	Encapsulating Message Queue
	Encapsulating Message Queue
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Memory Space
	Saving Power
	Common Power-Saving Mode (1)
	Common Power-Saving Mode (2)
	Common Power-Saving Mode (3)
	What to turn off?

