
Textbooks: Embedded Software Primer, David E. Simon, Addison Wesley
Programming Embedded Systems with C and GNU Development Tools, Michael Barr & Anthony Massa

1

Real-Time Operating
Systems (Part II)

Embedded Software Design
熊博安

國立中正大學資訊工程研究所

pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

2

Contents

Intertask Communication

Timer Services

Memory Management

Events

RTOS and ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

3

Intertask Communication

Shared data
atomically-accessed variables
reentrant functions

Semaphores
binary, counting semaphores
monitors

Message Queues
Mailboxes
Pipes

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

4

Message Queues

Simple Example:
2 tasks discover error conditions that must be
reported on the network (time consuming!)

1 more task handles the error reporting
Task1 and Task2 report errors to ErrorsTask

Qs: How to implement this in an RTOS?
Ans: Use an RTOS queue!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

5

Message Queue Example
Three tasks

Task1
Task2
ErrorsTask

Task1

Task2

ErrorsTask

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

6

Message Queue Example: Code
Task1 and Task2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

7

Message Queue Example: Code
ErrorsTask

If the queue
is empty, this
function will
block the
calling task.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

8

Message Queue Example

AddtoQueue
add an integer to a queue in RTOS

ReadFromQueue
read value from head of queue

Both functions must be reentrant!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

9

Message Queue Details

Queues must be initialized before using
call an initialization function
must initialize before any task tries to use
them
may have to allocate memory for queue

RTOSs allow multiple queues
must identify queue in function calls

Condition handler for full queue:
write operation failed error, OR
block until space available after some read

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

10

Message Queue Details

Condition handler for empty queue:
queue empty error return, AND
block until data available in queue

Write block size allowed by RTOS <
Write block size desired by task

Qs: How to handle this situation?
Ans:

Write actual data to a buffer
Write buffer pointer, a (void *)-sized block, into
queue

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

11

Message Queue in μCOS

Queue data structures and operations

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

12

Message Queue in μCOS
main, Task1 and Task2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

13

Message Queue in μCOS

vLogError

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

14

Message Queue in μCOS
ErrorsTasks

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

15

Message Queues & Pointers

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

16

Message Queues & Pointers

Message Passing in Linux
(main program)
#include <pthread.h>
#include <mqueue.h>
#include "led.h"
int8_t messageQueuePath[] = "message queue";

int main(void) {
mqd_t messageQueueDescr;

/* Configure the green LED control pin. */
ledInit();
/* Create the message queue for sending information between tasks. */
messageQueueDescr = mq_open(messageQueuePath, (O_CREAT | O_EXCL | O_RDWR));
/* Create the producer task using the default task attributes. */
pthread_create(&producerTaskObj, NULL, (void *)producerTask, NULL);
/* Create the consumer task using the default task attributes. */
pthread_create(&consumerTaskObj, NULL, (void *)consumerTask, NULL);
/* Allow the tasks to run. */
pthread_join(producerTaskObj, NULL);
pthread_join(consumerTaskObj, NULL);
return 0;

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

Message Passing in Linux
(producerTask)
#include <unistd.h>
#include "button.h"
typedef union { uint32_t count; uint8_t buf[4]; } msgbuf_t;
void producerTask(void *param) {

uint32_t buttonPressCount = 0;
mqd_t messageQueueDescr;
uint8_t button;
msgbuf_t msg;
messageQueueDescr = mq_open(messageQueuePath, O_WRONLY);
while (1) {

/* Delay for 10 milliseconds. */
usleep(10000);
/* Check whether SW0 button has been pressed. */
button = buttonDebounce();
/* If button SW0 was pressed, send a message to consumer. */
if (button & BUTTON_SW0) {

buttonPressCount++; msg.count = buttonPressCount;
mq_send(messageQueueDescr, &msg.buf[0],

sizeof(buttonPressCount), 0);
} } }

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

18

Message Passing in Linux
(consumerTask)
void consumerTask(void *param) {

mqd_t messageQueueDescr;
msgbuf_t rcvMsg;

/* Open the existing message queue */
messageQueueDescr = mq_open(messageQueuePath, O_RDONLY);

while (1) {
/* Wait for a new message. */
mq_receive(messageQueueDescr, &rcvMsg.buf[0], 4, NULL);

printf("Button SW0 pressed %d times.\\n", rcvMsg.count);
ledToggle();

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

19

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

20

Mailboxes

Like queues

Mailbox functions:
Create a mailbox

Write to a mailbox

Read from a mailbox

Check if a mailbox has any message

Destroy an unused mailbox

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

21

Mailboxes

Variations
Mailbox size

One message: write only once, must read before
next write
User-defined: size parameter in create mailbox
function
Unlimited: each mailbox is not limited, but total
size of all mailboxes is limited

Priority
higher-priority messages read before low-priority
ones, regardless of write order

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

22

Mailbox Example in MultiTask!

Each message is a void pointer
Must create all mailboxes you need when you
configure the system
Three functions:
int sndmsg (unsigned int uMbId, void *p_vMsg,

unsigned int uPriority);
void *rcvmsg (unsigned int uMbId,

unsigned int uTimeout);
void *chkmsg (unsigned int uMbId);

Mailbox ID Message

Msg Priority

Block Time

Return 1st Msg, or NULL

Mailbox in eCos (main program)
#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
#include "led.h"
cyg_handle_t mailboxHdl;
cyg_mbox mailbox;
void cyg_user_start(void) {

/* Configure the green LED control pin. */
ledInit();
/* Create the mailbox for sending messages between tasks. */
cyg_mbox_create(&mailboxHdl, &mailbox);
/* Create the producer and consumer tasks. */
cyg_thread_create(PRODUCER_TASK_PRIORITY, producerTask,

(cyg_addrword_t)0, "Producer Task", (void *)producerTaskStack,
PRODUCER_TASK_STACK_SIZE, &producerTaskHdl, &producerTaskObj);

cyg_thread_create(CONSUMER_TASK_PRIORITY, consumerTask,
(cyg_addrword_t)0, "Consumer Task", (void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE, &consumerTaskHdl, &consumerTaskObj);

/* Notify the scheduler to start running the tasks. */
cyg_thread_resume(producerTaskHdl);
cyg_thread_resume(consumerTaskHdl);
diag_printf("eCos mailbox example - press button SW0.\\n");

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

23

Mailbox in eCos (producerTask)
#include "button.h“
void producerTask(cyg_addrword_t data) {

uint32_t buttonPressCount = 0;
int buttonOn;
while (1) {

/* Delay for 10 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 100);

/* Check if the SW0 button has been pressed. */
buttonOn = buttonDebounce();

/* If button SW0 was pressed, send a message to consumer. */
if (buttonOn) {

buttonPressCount++;
cyg_mbox_put(mailboxHdl, (void *)buttonPressCount);

}
}

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

24

Mailbox in eCos (consumerTask)
void consumerTask(cyg_addrword_t data) {

uint32_t rcvMsg;

while (1) {
/* Wait for a new message. */
rcvMsg = (uint32_t)cyg_mbox_get(&mailboxHdl);

diag_printf("Button SW0 pressed %d times.\\n",
rcvMsg);

ledToggle();
}

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

25

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

26

Pipes

Like queues

Functions:
Create

Write to

Read from

…

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

27

Pipes

Variations:
Varying lengths of write block size
Byte-oriented

Task 1 writes 11 bytes to pipe
Task 2 writes 19 bytes to pipe
Task 3 reads 14 bytes from pipe

11 bytes from task 1
3 bytes from task 2

16 bytes remaining in pipe

Some RTOSs use C functions: fread, fwrite

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

28

Which Should I Use?

Depends on RTOS

Each RTOS has different implementations for
message queues, mailboxes, and pipes.

Trade-off among flexibility, speed, memory
space, length of interrupt disabled time, …

Read RTOS documents and decide which
best meets your requirements

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

29

Pitfalls

No restrictions on reader/writer of queue,
mailbox, or pipe

temperature data written to a queue read by
task expecting error codes system failure

Data type mismatch between write and read
wrong interpretation of data
e.g.: write int, read pointer
compilers can find obvious errors, BUT
compilers cannot find interpretation errors

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

30

Pitfalls (Data type mismatch:
caught by compiler)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

31

Pitfalls (Data type mismatch:
uncaught by compiler)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

32

Pitfalls

Running out of space in queues, mailboxes,
or pipes is a disaster

Communication is not optional
Good solution: make it large enough in the first
place

Passing pointers through queues, mailboxes,
or pipes shared data!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

33

Pointer passing = shared data bug
No malloc and free

Before After

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

34

An Example

No malloc and free

Before After

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

35

Timer Functions

Most embedded systems must keep track of
the passage of time

cordless bar-code scanner turns itself off after
a certain number of seconds

wait for ack, re-transmit data on network

wait for robot arms to move

wait for motors to come up to speed

RTOS provides a delay function

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

36

VxWorks
RTOS
Delay
Function

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

37

Questions

What is the unit of time for the taskDelay
function? milliseconds?

No! It is the number of system ticks!
Length of one system tick can be controlled
when you set up the system

How accurate are the delays?
Accurate to the nearest system tick
Heartbeat timer: a hardware timer
taskDelay(n) n-1 < TimerExpires < n

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

38

Timer Function Accuracy

vTaskDelay(3)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

39

Questions

How does RTOS know how to setup
hardware timer?

RTOS is microprocessor dependent and so is
the hardware timer, thus RTOS engineers
know a priori how to setup the microprocessor
hardware timer
Many RTOS vendors provide “board support
packages” (BSPs), which contain driver
software for common hardware components,
such as timers, etc.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

40

Questions

What is the “normal length” for the system tick?
None!
Short

accurate timings
frequent execution of timer interrupt routines
decreased system performance

What if I need extremely accurate timing?
Make system tick short enough
Use a separate hardware timer for those
timings

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

41

Other Timing Services

To limit waiting time of a task for a message
from a queue or a mailbox or for a
semaphore
Issue:

High-priority task attempts to get a semaphore
Time limit expires, task does not have the
semaphore, task cannot access shared data
Need to write recovery code

Solution:
send instructions about using shared data
through a mailbox to a low-priority task

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

42

Other Timing Services

To call a function after a given number of system
ticks
An Example:
Handle radio hardware: turn on & off from time to
time
Turn radio off: cut the power
Turn radio on:

turn on power to basic radio hardware
after waiting 12 ms, set radio frequency
after waiting 3 ms, turn on transmitter / receiver
radio is ready to function

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

43

Timer Callback Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

44

Timer
Callback
Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

45

Timer Callback Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

46

Timer Callback Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

47

Timer
Callback
Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

48

Events

Event = a Boolean flag that tasks can
set, reset, and wait for

Example: cordless bar-code scanner
user pulls trigger

laser scanning mechanism must start

Task1 Task2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

49

Features of Events

More than one task can block wait for an event, when
event occurs

all blocked tasks are unblocked, and
RTOS executes them in priority order

RTOS forms groups of events:
tasks can wait for any subset of an event group
Example: {key-press on scanner keypad, trigger-pull}

start scanning
Resetting of events:

automatically done by RTOS
done by user task software

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

50

Using Event in AMX

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

51

Using Events in AMX

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

52

Using Events in AMX

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

53

Using Events in AMX

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

54

AMX Event Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

55

AMX Event Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

56

Comparison: Semaphores, Events
Semaphores are usually the fastest and simplest
methods.

However, not much information can pass through a
semaphore.

Events are a little more complicated than
semaphores and take up just a hair more
microprocessor time than semaphores.

ADV: A task can wait for any one of several events at
the same time, whereas it can only wait for one
semaphore.
ADV: Some RTOSs make it convenient to use events
and make it inconvenient to use semaphores.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

57

Comparison: Queues

Queues allow you to send a lot of information
from one task to another.

The drawbacks
putting messages into and taking messages out
of queues is more microprocessor-intensive
that queues offer you many more opportunities to
insert bugs into your code.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

58

Memory Management

RTOS have memory management
But, not malloc() and free():

slow
unpredictable execution times

Solution:
allocate and free fixed-size buffers
fast and predictable functions

Example:
MultiTask! RTOS

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

59

MultiTask! Memory Management

Pool = a collection of memory buffers of the
same size
Users can declare and use different pools
void *reqbuf(unsigned int uPoolId);

request a buffer from pool uPoolId,
return NULL if no buffer available

void *getbuf(unsigned int uPoolId, unsigned
int uTimeout);

get a buffer from pool uPoolId
block wait for uTimeout

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

60

MultiTask! Memory Management

void relbuf (unsigned int uPoolId,
void *p_vBuffer);

release buffer *p_vBuffer into pool uPoolId
RTOS does not check if buffer belongs to pool

for efficiency,
drastic consequence on error

RTOS does not know where is free memory
Application needs to tell RTOS!
Initialize memory pool init_mem_pool()

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

61

MultiTask! Memory Management

int init_mem_pool (

unsigned int uPoolId,

void *p_vMemory,

unsigned int uBufSize,

unsigned int uBufCount,

unsigned int uPoolType

);
used by task or ISR

used by functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

62

Example of Memory Management in
MultiTask!

Underground tank monitoring system
Slow thermal printer prints a few lines per
second
2 tasks

high priority task: formats report
low priority task: feeds lines to printer

one line at a time
40-character line buffer-size = 40 bytes
waste of memory solution: use diff pools

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

63

Example of Memory Management in
MultiTask!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

64

Example of Memory Management in
MultiTask!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

65

Example of Memory Management in
MultiTask!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

66

Interrupt Routines in an RTOS

Rules for ISR (not for tasks):
Rule 1: ISR must not call any RTOS function
that might block the caller

Must NOT:
get semaphores
read from empty queues, mailboxes, etc.
wait for event, …

Must run to completion to reset hardware to be
ready for next interrupt

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

67

Interrupt Routines in an RTOS

Rule 2: ISR may not call any RTOS function
that cause task switching, unless RTOS
knows that it is an ISR (& thus will not switch
task)

May not
write to mailboxes, queues on which tasks may
be waiting

set events

release semaphores, …

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

68

Rule 1: No Blocking

ISR should
not get

semaphore!!!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

69

Rule 1: No Blocking

Task is running (semaphore held)
Interrupt occurs, ISR tries to get semaphore
ISR is blocked, task is blocked
Semaphore is never released
All lower-priority tasks are also blocked
One-armed deadly embrace

ISR vReadTemperatures() interrupts task
vTaskTestTemperatures()

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

70

Post Queue in ISR? (Eg in VRTX)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

71

Post Queue in ISR? (Eg in VRTX)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

72

Post Queue in ISR?

No problem!

Posting to a queue is non-blocking!

ISR can post a queue

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

73

Rule 2: No RTOS Calls without Fair
Warning

A naïve view

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

74

Rule 2: No RTOS Calls without Fair
Warning

RTOS unblocks a high priority task, is unaware of ISRs,
switches to high priority task, ISR is delayed!

What would really happen!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

75

Rule 2: No RTOS Calls without Fair
Warning

Solutions:
Plan A: Let RTOS know those functions are
ISRs, need to register ISRs and which
hardware interrupt corresponds to which ISR
Plan B: In ISR, call a function to let RTOS
know that we’re in ISR (suspend task
switching temporarily), jump or call at end of
ISR (to switch to tasks)
Plan C: Separate set of functions to ISR,
which always return to ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

76

Rule 2: No RTOS Calls without Fair
Warning

Plan A: let RTOS know about ISRs, hardware interrupts

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

77

Rule 2: No RTOS Calls without Fair
Warning

Plan B: suspend scheduler in ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

78

Rule 2: No RTOS Calls without Fair
Warning

Plan C:

Call OSISRSemPost() instead of
OSSemPost()

OSISRSemPost() always return to ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

79

Rule 2 and Nested Interrupts

Nest Interrupts: Higher priority interrupt
interrupts low-priority ISR

When higher priority ISR finishes, it must
return to low-priority ISR and not to another
ready task (otherwise low priority ISR will be
delayed!)

Must suspend scheduler until all nested ISRs
have finished execution

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

80

Rule 2 and Nested Interrupts

Interrupt Handling in eCos

Interrupt handling in eCos is divided into
ISR: Interrupt Service Routine

Only the most urgent handling
Cannot signal a semaphore via a non-blocking call
Higher priority than DSR
Eg: character saving

DSR: Deferred Service Routine
More computing intensive handling
Can signal semaphores
Higher priority than all tasks
Eg: command construction

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

81

Interrupt-Driven Blinking LED in
eCos (main program)

#include <cyg/kernel/kapi.h>
#include "timer.h"
#include "led.h"
/* Declare the ISR variables. */
cyg_handle_t timerInterruptHdl;
cyg_interrupt timerInterruptObj;
cyg_vector_t timerInterruptVector = TIMER1_INT;
cyg_sem_t ledToggleSemaphore;
void cyg_user_start(void) {

/* Configure the green LED control pin. */ ledInit();
/* Create semaphore for task signaling, initialized as 0 */
cyg_semaphore_init(&ledToggleSemaphore, 0);
/* Create the LED task. */
cyg_thread_create(LED_TASK_PRIORITY, blinkLedTask, (cyg_addrword_t)0,

"LED Task", (void *)ledTaskStack, LED_TASK_STACK_SIZE, &ledTaskHdl, &ledTaskObj);
/* Notify the scheduler to start running the task. */ cyg_thread_resume(ledTaskHdl);
/* Initialize the interrupt for the timer. */
cyg_interrupt_create(timerInterrup tVector, 0, 0, timerIsr, timerDsr,

&timerInterruptHdl, &timerInterruptObj);
cyg_interrupt_attach(timerInterruptHdl);
cyg_interrupt_acknowledge(timerInterruptVector);
cyg_interrupt_unmask(timerInterruptVector);
/* Initialize the timer registers. */ timerInit(); }

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

82

Interrupt-Driven Blinking LED in
eCos (timerIsr)
#include <cyg/hal/hal_intr.h>
uint32_t timerIsr(cyg_vector_t vector, cyg_addrword_t data) {

/* Block timer interrupt from occurring until DSR runs. */
cyg_interrupt_mask(timerInterruptVector);

/* Acknowledge the interrupt in interrupt controller & in
timer peripheral. */
cyg_interrupt_acknowledge(timerInterruptVector);
TIMER_STATUS_REG = TIMER_1_MATCH;

/* Inform OS that the interrupt is handled by this ISR and
that the DSR needs to run. */
return (CYG_ISR_HANDLED | CYG_ISR_CALL_DSR);

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

83

Interrupt-Driven Blinking LED in
eCos (timerDsr)
void timerDsr(cyg_vector_t vector, cyg_ucount32 count,

cyg_addrword_t data) {
/* Signal the task to toggle the LED. */
cyg_semaphore_post(&ledToggleSemaphore);

/* Set the new timer interval. */
TIMER_1_MATCH_REG = (TIMER_COUNT_REG +
TIMER_INTERVAL_500MS);

/* Enable processing of incoming timer interrupts. */
cyg_interrupt_unmask(timerInterruptVector);

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

84

Interrupt-Driven Blinking LED in
eCos (blinkLedTask)
void blinkLedTask(cyg_addrword_t data) {

while (1) {
/* Wait for signal to toggle the LED. */
cyg_semaphore_wait(&ledToggleSemaphore);

/* Change the state of the green LED. */
ledToggle(); }

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

85

	Real-Time Operating Systems (Part II)
	Contents
	Intertask Communication
	Message Queues
	Message Queue Example
	Message Queue Example: Code
	Message Queue Example: Code
	Message Queue Example
	Message Queue Details
	Message Queue Details
	Message Queue in COS
	Message Queue in COS
	Message Queue in COS
	Message Queue in COS
	Message Queues & Pointers
	Message Queues & Pointers
	Message Passing in Linux �(main program)
	Message Passing in Linux�(producerTask)
	Message Passing in Linux�(consumerTask)
	Mailboxes
	Mailboxes
	Mailbox Example in MultiTask!
	Mailbox in eCos (main program)
	Mailbox in eCos (producerTask)
	Mailbox in eCos (consumerTask)
	Pipes
	Pipes
	Which Should I Use?
	Pitfalls
	Pitfalls (Data type mismatch: �caught by compiler)
	Pitfalls (Data type mismatch: �uncaught by compiler)
	Pitfalls
	Pointer passing = shared data bug
	An Example
	Timer Functions
	VxWorks�RTOS Delay Function
	Questions
	Timer Function Accuracy
	Questions
	Questions
	Other Timing Services
	Other Timing Services
	Timer Callback Functions
	Timer �Callback �Functions
	Timer Callback Functions
	Timer Callback Functions
	Timer �Callback �Functions
	Events
	Features of Events
	Using Event in AMX
	Using Events in AMX
	Using Events in AMX
	Using Events in AMX
	AMX Event Functions
	AMX Event Functions
	Comparison: Semaphores, Events
	Comparison: Queues
	Memory Management
	MultiTask! Memory Management
	MultiTask! Memory Management
	MultiTask! Memory Management
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Interrupt Routines in an RTOS
	Interrupt Routines in an RTOS
	Rule 1: No Blocking
	Rule 1: No Blocking
	Post Queue in ISR? (Eg in VRTX)
	Post Queue in ISR? (Eg in VRTX)
	Post Queue in ISR?
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2 and Nested Interrupts
	Rule 2 and Nested Interrupts
	Interrupt Handling in eCos
	Interrupt-Driven Blinking LED in eCos (main program)
	Interrupt-Driven Blinking LED in eCos (timerIsr)
	Interrupt-Driven Blinking LED in eCos (timerDsr)
	Interrupt-Driven Blinking LED in eCos (blinkLedTask)

