Real-Time Operating
Systems (Part 1)

Embedded Software Design
s s %
YR IR N e D RS
pahsiung@cs.ccu.edu.tw

Textbooks: Embedded Software Primer, David E. Simon, Addison Wesley 1
Programming Embedded Systems with C and GNU Development Tools, Michael Barr & Anthony Massa

mailto:pahsiung@cs.ccu.edu.tw

Contents

Intertask Communication
Timer Services

Memory Management
Events

RTOS and ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Intertask Communication

Shared data
atomically-accessed variables
reentrant functions

Semaphores

binary, counting semaphores
monitors

Message Queues
Mailboxes
Pipes

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queues

Simple Example:

2 tasks discover error conditions that must be
reported on the network (time consuming!)

1 more task handles the error reporting

Taskl and Task?2 report errors to ErrorsTask

Qs: How to implement this in an RTOS?
Ans: Use an RTOS queue!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Example

Three tasks
= Taskl

= Task?2

= ErrorsTask

Task1

ErrorsTask

Task?2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Example: Code

Taskl and Task?2

/* RTOS queue function prototypes */
void AddToQueue (int iData); -

void Taskl (void)
{

if (!lproblem arises) (
vLogError (ERROR_TYPE_X);

void ReadFromQueue (int *p_iData);

void Task2 (void)

Il Other things that need to be dof ;¢ (!lproblem arises)

vLogError (ERROR_TYPE_Y):

I'l Other things that need to be done soon.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Example: Code

ErrorsTask
void vLogError (int iErrorType)
{
AddToQueue (iErrorType);
) |
If the queue
static int cErrors;)]
IS empty, this
void ErrorsTask (void) fUﬂCtiOﬂ WI”
(.
int iErrorType; block the
| - calling task.
while (FOREVER)
{

ReadFromQueue (&iErrorType);
++cErrors;
Il Send cErrors and iErrorType out on network

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Example

AddtoQueue

add an integer to a queue in RTOS

ReadFromQueue

read value from head of queue

Both functions must be reentrant!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Detalils

Queues must be initialized before using
call an initialization function

must initialize before any task tries to use
them

may have to allocate memory for queue
RTOSs allow multiple queues

must identify queue in function calls
Condition handler for full queue:

write operation failed error, OR

block until space available after some read

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue Detalils

Condition handler for empty queue:
gqueue empty error return, AND
block until data available in queue

Write block size allowed by RTOS <

Write block size desired by task
Qs: How to handle this situation?

Ans:
Write actual data to a buffer

Write buffer pointer, a (void *)-sized block, into
queue

10

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue In uCOS

Queue data structures and operations

/* RTOS queue function prototypes */

0S_EVENT *0SQCreate (void **ppStart, BYTE bySize);

unsigned char 0SQPost (OS_EVENT *pOse, void *pvMsg);

void *0SQPend (0S_EVENT *pOse, WORD wTimeout, BYTE *pByErr);
ffdefine WAIT_FOREVER 0

/* Qur message queue */
static OS_EVENT *pOseQueue;

/* The data space for our queue. The RTOS will manage this. */

f#define SIZEOF_QUEUE 25
void *apvQueue[SIZEOF_QUEUE];

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

11

Message Queue In uCOS

main, Taskl and Task?2

void Taskl (void)
void main (void) (
{ .
if (!lproblem arises)
' ERROR_TYPE_X);
/* The queue gets initialized before the tasks are started */ vLogError (- -
= UEUE);

pOseQueue = 0SQCreate (apvQueue, SIZEOF_Q) |1 Other things that need to be done soon.

!l Start Taskl

I'l Start TaskZ

: void Task2 (void)

{

}

if (!lproblem arises)
vLogError (ERROR_TYPE_Y);

!'l Other things that need to be done soon.

) 12

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue In uCOS

vLogError

void vLogError (int iErrorType)

{
BYTE byReturn; /* Return code from writing to queue */

/* Write to the queue. Cast the error type as a void pointer
to keep the compiler happy. */
byReturn = 0SQPost (pOseQueue, (void *) iErrorType);

if (byReturn != 0S_NO_ERR)
!l Handle the situation that arises when the queue is full

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queue In uCOS

ErrorsTasks

static int cErrors;

void ErrorsTask (void)

{
int iErrorType;
BYTE byErr;
while (FOREVER)
{

/* Cast the value received from the queue back to an int.
(Note that there is no possible error from this, so
we ignore byErr.) */

iErrorType =
(int) 0SQPend (pOseQueue, WAIT_FOREVER, &byErr);

EE oS

!l Send cErrors and iErrorType out on network

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Message Queues & Pointers

/* Queue function prototypes */

OS_EVENT *0SQCreate (void **ppStart, BYTE bySize);

unsigned char 0SQPost (OS_EVENT *pOse, void *pvMsg);

void *0SQPend (OS_EVENT *pOse, WORD wTimeout, BYTE *pByErr);
ftfdefine WAIT_FOREVER O

static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)

{
int *pTemperatures;

while (TRUE)

{ .
!! Wait until it’s time to read the next temperature

/* Get a new buffer for the new set of temperatures. */
pTemperatures = (int *) malloc (2 * sizeof *pTemperatures);

pTemperatures[0] = !! read in value from hardware;
pTemperatures[1] = !! read in value from hardware;

/* Add a pointer to the new temperatures to the queue */
0SQPost (pOseQueueTemp, (void *) pTemperatures);

15

Message Queues & Pointers

void vMainTask (void)

{
int *pTemperatures;
BYTE byErr;
while (TRUE)
{
pTemperatures =
(int *) 0SQPend (pOseQueueTemp. WAIT_FOREVER, &byErr);
if (pTemperatures[0] != pTemperatures[1])
!'l Set off howling alarm;
free (pTemperatures);
}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

16

Message Passing In Linux
(main program)

#include <pthread.h>

#include <mqueue.h>

#include "led.h"

Int8_t messageQueuePath[] = '‘message queue';

int main(void) {
mgd_t messageQueueDescr;

/* Configure the green LED control pin. */

ledinit();

/* Create the message queue for sending information between tasks. */
messageQueueDescr = mg_open(messageQueuePath, (O _CREAT | O _EXCL | O_RDWR));
/* Create the producer task using the default task attributes. */
pthread create(&producerTaskObj, NULL, (void *)producerTask, NULL);
/* Create the consumer task using the default task attributes. */
pthread create(&consumerTaskObj, NULL, (void *)consumerTask, NULL);
/* Allow the tasks to run. */

pthread join(producerTaskObj, NULL);

pthread join(consumerTaskObj, NULL);

return O;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

Message Passing In Linux
(producerTask)

#include <unistd.h>
#include "button.h"
typedef union { uint32_t count; uint8_t buf[4]; } msgbuf_t;
void producerTask(void *param) {
uint32_t buttonPressCount = 0;
mgd_t messageQueueDescr;
uint8_t button;
msgbuf_t msg;
messageQueueDescr = mq_open(messageQueuePath, O WRONLY);
while (1) {
/* Delay for 10 milliseconds. */
usleep(10000);
/* Check whether SWO button has been pressed. */
button = buttonDebounce();
/* 1T button SWO was pressed, send a message to consumer. */
1T (button & BUTTON_SWO) {

buttonPressCount++; msg.count = buttonPressCount;
mg_send(messageQueueDescr, &msg.buf[0],
sizeof(buttonPressCount), 0);

I

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

18

Message Passing In Linux
(consumerTask)

void consumerTask(void *param) {
mgd_t messageQueueDescr;
msgbuf t rcvMsg;

/* Open the existing message queue */
messageQueueDescr = mg open(messageQueuePath, O _RDONLY);

while (1) {
/* Wait for a new message. */
mqg_receive(messageQueueDescr, &rcvMsg.buf[0], 4, NULL);

printf("'Button SWO pressed %d times.\\n", rcvMsg.count);
ledToggle();

19

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mailboxes

Like queues

Mailbox functions:
Create a mailbox
Write to a mailbox
Read from a mailbox
Check if a mailbox has any message

Destroy an unused mailbox

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

20

Mailboxes

Variations

Mailbox size
One message: write only once, must read before
next write
User-defined: size parameter in create mailbox
function

Unlimited: each mailbox is not limited, but total
size of all mailboxes is limited

Priority
higher-priority messages read before low-priority
ones, regardless of write order

21

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mailbox Example in MultiTask!

Each message is a void pointer

Must create all mailboxes you need when you

configure the system
Three functions:

Mailbox ID
~

Message

~~

Int sndmsg (unsigned int uMbld, void *p_vMsqg,

unsigned int uPriority);
Msg Priority ‘

void *rcvmsg (unsigned int uMbld,

unsigned int uTimeout);

void *chkmsg (unsigned int uMbld);

Return 1st Msg, or NULL

Block Time ‘

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

22

Malilbox Iin eCos (main program)

#include <cyg/kernel/kapi.h>

#include <cyg/infra/diag.h>

#include "led.h"

cyg_handle_t mailboxHdl;

cyg_mbox mai lbox;

void cyg user_start(void) {
/* Configure the green LED control pin. */
ledinit();
/* Create the mailbox for sending messages between tasks. */
cyg_mbox create(&mailboxHdl, &mailbox);
/* Create the producer and consumer tasks. */

cyg_thread create(PRODUCER_TASK_PRIORITY, producerTask,
(cyg_addrword_t)0, "Producer Task™"™, (void *)producerTaskStack,

PRODUCER_TASK_STACK_SIZE, &producerTaskHdl, &producerTaskObj);
cyg_thread create(CONSUMER_TASK_PRIORITY, consumerTask,
(cyg_addrword_t)0, "Consumer Task™"™, (void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE, &consumerTaskHdl, &consumerTaskObj);
/* Notify the scheduler to start running the tasks. */
cyg_thread resume(producerTaskHdl);
cyg_thread resume(consumerTaskHdl);
diag_printf('eCos mailbox example - press button SWO.\\n"");

3 23

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Malilbox in eCos (producerTask)

#include "button.h*
void producerTask(cyg_addrword t data) {
uint32_t buttonPressCount = O;
int buttonOn;
while (1) {
/* Delay for 10 milliseconds. */
cyg_thread delay(TICKS_PER_SECOND / 100);

/* Check 1f the SWO button has been pressed. */
buttonOn = buttonDebounce();

/* 1T button SWO was pressed, send a message to consumer. */
it (buttonOn) {

buttonPressCount++;

cyg_mbox_put(mailboxHdl, (void *)buttonPressCount);

24

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Malilbox in eCos (consumerTask)

void consumerTask(cyg addrword t data) {
uint32_t rcvMsg;

while (1) {
/* Wait for a new message. */
rcvMsg = (Uint32_t)cyg mbox get(&mailboxHdI) ;

diag_printf("'Button SWO pressed %d times.\\n",

rcvMsg) ;

ledToggle();

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

25

Pipes

Like queues

Functions:
» Create

= Write to

= Read from

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

26

Pipes

Variations:
Varying lengths of write block size

Byte-oriented
Task 1 writes 11 bytes to pipe
Task 2 writes 19 bytes to pipe

Task 3 reads 14 bytes from pipe
11 bytes from task 1
3 bytes from task 2

16 bytes remaining in pipe

Some RTOSs use C functions: fread, fwrite

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

27

Which Should | Use?

Depends on RTOS

Each RTOS has different implementations for
message queues, mailboxes, and pipes.

Trade-off among flexibility, speed, memory
space, length of interrupt disabled time, ...

Read RTOS documents and decide which
best meets your requirements

28

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Pitfalls

No restrictions on reader/writer of queue,
mailbox, or pipe

temperature data written to a queue read by
task expecting error codes =» system failure

Data type mismatch between write and read
wrong interpretation of data
e.g.: write int, read pointer
compilers can find obvious errors, BUT
compilers cannot find interpretation errors

29
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Pitfalls (Data type mismatch:
caught by compiler)

/* Declare a function that takes a pointer parameter */
void vFunc (char *p_ch);

void main (void)
{

int i

/* Call it with an int, and get a compiler error */
vFunc (i);

30

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Pitfalls (Data type mismatch:
uncaught by compiler)

static OS_EVENT *pOseQueue;

void TaskA (void)

{

}

int i

/* Put an integer on the queue. */
0SQPost (pOseQueue, (void *) 1i);

void TaskB (void)

{

char *p_ch;
BYTE byErr;

/* Expect to get a character pointer. */
p_ch = (char *) 0SQPend (pOseQueue, FOREVER, byErr);

31

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Pitfalls

Running out of space in queues, mailboxes,
or pipes is a disaster

Communication is not optional

Good solution: make it large enough in the first
place

Passing pointers through queues, mailboxes,
or pipes = shared data!

32

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Pointer passing = shared data bug

No malloc and free

/* Queue function prototypes */

0S EVENT *0SQCreate (void **ppStart, BYTE bySize);

unsigned char 0SQPost (OS_EVENT *pOse, void *pvMsg);

void *0SQPend (0S_EVENT *pOse, WORD wTimeout, BYTE *pByErr);
ftdefine WAIT_FOREVER O

static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)

{
int *pTemperatures;

while (TRUE)

{
Il Wait until it’s time to read the next temperature

/* Get a new buffer for the new set of temperatures. */
pTemperatures = (int *) malloc (2 * sizeof *pTemperatures);

1l read in value from hardware;
!l read in value from hardware;

pTemperatures[0]
pTemperatures[1]

/* Add a pointer to the new temperatures to the queue */
0SQPost (pOseQueueTemp, (void *) pTemperatures);

Before

/* Queue function prototypes */
0S_EVENT *0SQCreate (void **ppStart, BYTE bySize);
unsigned char 0SQPost (OS_EVENT *pOse, void *pvMsg);
void *0SQPend (OS_EVENT *pOse, WORD wTimeout,

BYTE *pByErr);
fdefine WAIT_FOREVER 0
static OS_EVENT *pOseQueueTemp;

void vReadTemperaturesTask (void)

{
int iTemperatures[2];
while (TRUE)
{
!l Wait until it’s time to read the next temperature
iTemperatures[0] = /! read in value from hardware;
iTemperatures[1] = /! read in value from hardware;
/* Add to the queue a pointer to the temperatures
we just read */
0SQPost (pOseQueueTemp, (void *) iTemperatures);
}
}

After

33

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

An Example

No malloc and free

void vMainTask (void)

{
int *pTemperatures;

BYTE byErr;

while (TRUE)

{
pTemperatures =
(int *) 0SQPend (pOseQueueTemp, WAIT_FOREVER, &byErr);

if (pTemperatures[0] != pTemperatures[1])
!l Set off howling alarm;

free (pTemperatures);

void vMainTask (void)

{
int *pTemperatures;
BYTE byErr;

while (TRUE)
{
pTemperatures = (int *)

0SQPend (pOseQueueTemp, WAIT_FOREVER, &byErr);

if (pTemperatures[Q] != pTemperatures[1])
Il Set off howling alarm;

After

Before

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

34

Timer Functions

Most embedded systems must keep track of
the passage of time

cordless bar-code scanner turns itself off after
a certain number of seconds

wait for ack, re-transmit data on network
wait for robot arms to move
wait for motors to come up to speed

RTOS provides a delay function

35

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

/* Message queue for phone numbers to dial. */
extern MSG_Q_ID queuePhoneCall;

void vMakePhoneCallTask (void)
{
jfdefine MAX_PHONE_NUMBER 11
char a_chPhoneNumber[MAX_PHONE_NUMBER];

/* Buffer for null-terminated ASCII number */
char *p_chPhoneNumber;
/* Pointer into a_chPhoneNumber */

VXWOorks e awe
{
msgQreceive (queuePhoneCall, a_chPhoneNumber,
R I OS MAX_PHONE_NUMBER, WAIT_FOREVER);
/* Dial each of the digits */
De I a p_chPhoneNumber = a_chPhoneNumber;
while (*p_chPhoneNumber)
{
F t- taskDelay (100): /* 1/10th of a second silence */
unC Ion vDialingToneOn (*p_chPhoneNumber -°0°);
taskDelay (100); /* 1/10th of a second with tone */
vDialingToneOff ();

/* Go to the next digit in the phone number */
++p_chPhoneNumber;

}
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Questions

What is the unit of time for the taskDelay
function? milliseconds?

No! It is the number of system ticks!

Length of one system tick can be controlled
when you set up the system

How accurate are the delays?
Accurate to the nearest system tick
Heartbeat timer: a hardware timer
taskDelay(n) = n-1 < TimerExpires < n

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

37

Timer Function Accuracy

vTaskDelay(3)

vTaskDelay (3)
starts task delay.

N\

Task delay ends at vTaskDelay (3) Task delay ends at
timer interrupt. starts task delay. timer interrupt.

2.93 ticks |/ \l 2.16 ticks |/

-
\

| T T T Time
/ / — [«—1 System tick

Timer interrupts

38

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Questions

How does RTOS know how to setup
hardware timer?

RTOS is microprocessor dependent and so Is
the hardware timer, thus RTOS engineers
know a priori how to setup the microprocessor
hardware timer

Many RTOS vendors provide “board support
packages” (BSPs), which contain driver
software for common hardware components,
such as timers, etc.

39

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Questions

What is the “normal length” for the system tick?

None!

Short =»

accurate timings

frequent execution of timer interrupt routines =»
decreased system performance

What if | need extremely accurate timing?
Make system tick short enough
Use a separate hardware timer for those
timings

40

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Other Timing Services

To limit waiting time of a task for a message
from a queue or a mailbox or for a
semaphore

Issue:

High-priority task attempts to get a semaphore

Time limit expires, task does not have the
semaphore, task cannot access shared data

Need to write recovery code
Solution:

send instructions about using shared data
through a mailbox to a low-priority task

41

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Other Timing Services

To call a function after a given number of system
ticks

An Example:

Handle radio hardware: turn on & off from time to
time
Turn radio off: cut the power
Turn radio on:
turn on power to basic radio hardware
after waiting 12 ms, set radio frequency

after waiting 3 ms, turn on transmitter / receiver
radio is ready to function

42

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer Callback Functions

Figure 7.7 Using Timer Callback Functions

/* Message queue for radio task. */
extern MSG_Q_ID queueRadio;

/* Timer for turning the radio on. */
static WDOG_ID wdRadio;

static int iFrequency; /* Frequency to use. */

void vSetFrequency (int i);
void vTurnOnTxorRx (int i);

void vRadioControlTask (void)
{
fidefine MAX_MSG 20
char a_chMsg[MAX_MSG + 1]; /* Message sent to this task */

enum
{
RADIO_OFF,
RADIO_STARTING, (continued)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

43

Figure 7.7 (continued)

RADIO_TX_ON,
RADIO_RX_ON,
} eRadioState; /* State of the radio */

eRadioState = RADIO_OFF;

/* Create the radio timer */
wdRadio = wdCreate ();

- hile (TRUE)
Timer e

/* Find out what to do next */

Ca”baCk msgQReceive (queueRadio, a_chMsg, MAX_MSG, WAIT_FOREVER);

- /* The first character of the message tells this task what
FunCtlonS the message is. */
switch (a_chMsg[0])
{
case 'T’:
case 'R’:
/* Someone wants to turn on the transmitter */
if (eRadioState == RADIO_OFF)
{

!'! Turn on power to the radio hardware.

eRadioState = RADIO_STARTING;
(continued)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer C_g_l_[_t)ack Functions

Figure 7.7 (continued)

/* Get the frequency from the message */
iFrequency = * (int *) a_chMsg[1];

!l Store what needs doing when the radio is on.

/* Make the next step 12 milliseconds from now. */

wdStart (wdRadio, 12, vSetFrequency,

(int) a_chMsg[0]);

}
else

!l Handle error. Can’t turn radio on if not off
break;

case 'K’:
/* The radio is ready. */
eRadioState = RADIO_TX_ON;
!! Do whatever we want to do with the radio
break;

case 'L':
/* The radio is ready. */
eRadioState = RADIO_RX_ON;
!! Do whatever we want to do with the radio
break;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer Callback Functions

case 'X':
/* Someone wants to turn off the radio. */
if (eRadioState == RADIO_TX_ON ||
eRadioState == RADIO_RX_ON)

{
!!1 Turn off power to the radio hardware.

eRadioState = RADIO_OFF;

}

else
!!1 Handle error. Can’t turn radio off if not on

break;

default:
11 Deal with the error of a bad message

break:

} (continued)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

46

Figure 7.7 (continued)

void vSetFrequency (int 1)

{
!l Set radio frequency to 1Frequency;
/* Turn on the transmitter 3 milliseconds from now. */
wdStart (wdRadio, 3, vTurnOnTxorRx, 1);

}

void vTurnOnTxorRx (int 1)

: {
Tlmer if (i == (int) 'T*)

{

!l Turn on the transmitter
Callback

/* Tell the task that the radio is ready to go. */
msgQSend (queueRadio, "K", 1,

F u n Cti O nS WAIT_FOREVER, MSG_PRI_NORMAL);
) .

else
{
Il Turn on the receiver

/* Tell the task that the radio is ready to go. */
msgQSend (queueRadio, "L", 1,
WAIT_FOREVER, MSG_PRI_NORMAL);

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Events

Event = a Boolean flag that tasks can

set, reset, and wait for

Task1

Task?2

Example: cordless bar-code scanner

user pulls trigger =

laser scanning mechanism must start

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

48

Features of Events

More than one task can block wait for an event, when
event occurs

all blocked tasks are unblocked, and
RTOS executes them in priority order
RTOS forms groups of events:
tasks can wait for any subset of an event group

Example: {key-press on scanner keypad, trigger-pull}
=» start scanning

Resetting of events:
automatically done by RTOS
done by user task software

49

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Using Event In AMX

Figure 7.8 Using Events

/* Handle for the trigger group of events. */
AMXID amxidTrigger;

/* Constants for use in the group. */
f#fdefine TRIGGER_MASK 0x0001

ffdefine TRIGGER_SET 0x0001
f#define TRIGGER_RESET 0x0000

f#define KEY_MASK 0x0002
f#fdefine KEY_SET 0x0002
f#define KEY_RESET 0x0000

void main (void)

{

/* Create an event group with
the trigger and keyboard events reset */
ajevcre (&amxidTrigger, 0, °“°‘EVIR"’);

Using Events in AMX

void interrupt vTriggerISR (void)

{
/* The user pulled the trigger. Set the event. */

ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_SET);

void interrupt vKeyISR (void)
{
/* The user pressed a key. Set the event. */

ajevsig (amxidTrigger, KEY_MASK, KEY_SET);
!l Figure out which key the user pressed and store that value

(continued)

51

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Using Events in AMX

Figure 7.8 (continued)

void vScanTask (void)
{

while (TRUE)

{
/* Wait for the user to pull the trigger. */
ajevwat (amxidTrigger, TRIGGER_MASK, TRIGGER_SET,
WAIT_FOR_ANY, WAIT_FOREVER):
/* Reset the trigger event. */
ajevsig (amxidTrigger, TRIGGER_MASK, TRIGGER_RESET);
Il Turn on the scanner hardware and l1ook for a scan.
!'! When the scan has been found, turn off the scanner.
}

52
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Using Events in AMX

void vRadioTask (void)

{
while (TRUE)
{
/* Wait for the user to pull the trigger or press a key. */
ajevwat (amxidTrigger, TRIGGER_MASK | KEY_MASK,
TRIGGER_SET | KEY_SET, WAIT_FOR_ANY,
WAIT_FOREVER);
/* Reset the key event. (The trigger event will be reset
by the ScanTask.) */
ajevsig (amxidTrigger, KEY_MASK, KEY_RESET):
!! Turn on the radio.
!! When data has been sent, turn off the radio.
}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

53

AMX Event Functions

~ Figure 7.9 AMX Event Functions

The AMX functions used in Figure 7.8 are the following:

ajevcre (AMXID *p_amxidGroup, unsigned int uValuelnit,
char *p_chTag)

The ajevcre function creates a group of 16 events, the handle for which is written
into the location pointed to by p_amxidGroup. The initial values of those events—
set and reset—are contained in the uValueInit parameter. AMX assigns the group a
four-character name pointed to by p_chTag; this is a special feature of AMX, which
allows a task to find system objects by name if it does not have access to the handle.

e ajevsig (AMXID amxidGroup, unsigned int uMask,

unsigned int uValueNew)

The ajevsig function sets and resets the events in the group indicated by
amxidGroup. The uMask parameter indicates which events should be set or reset,

and the uValueNew parameter indicates the new values that the events should have.
54

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

AMX Event Functions

ajevwat (AMXID amxidGroup, unsigned int uMask,
unsigned int uValue, int iMatch, long 1Timeout)

The ajevwat function causes the task to wait for one or more events within the
group indicated by amxidGroup. The uMask parameter indicates which events the
task wants to wait for, and uValue indicates whether the task wishes to wait for
those events to be set or reset. The iMatch parameter indicates whether the task
wishes to unblock when all of the events specified by uMask have reached the values
specified by uValue or when any one of the events has reached the specified value.
The 1Timeout parameter indicates how long the task is willing to wait for the events.

AMX also includes functions to delete a group of events that are no longer needed,
to read the current values of all the events in a group and to read the values of all the
events in a group as of the moment that a task unblocked because an event occurred
for which it was waiting.

55

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Comparison: Semaphores, Events

Semaphores are usually the fastest and simplest
methods.

However, not much information can pass through a
semaphore.

Events are a little more complicated than
semaphores and take up just a hair more
microprocessor time than semaphores.

ADV: A task can wait for any one of several events at

the same time, whereas it can only wait for one
semaphore.

ADV: Some RTOSs make it convenient to use events
and make it inconvenient to use semaphores.

56

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Comparison: Queues

Queues allow you to send a lot of information
from one task to another.

The drawbacks

putting messages into and taking messages out
of queues IS more microprocessor-intensive

that gueues offer you many more opportunities to
Insert bugs into your code.

57

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Memory Management

RTOS have memory management

But, not malloc() and free():

slow

unpredictable execution times
Solution:

allocate and free fixed-size buffers

fast and predictable functions
Example:

MultiTask! RTOS

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

58

MultiTask! Memory Management

Pool = a collection of memory buffers of the
same size

Users can declare and use different pools

void *regbuf(unsigned int uPoolld);

request a buffer from pool uPoolld,

return NULL if no buffer available
void *getbuf(unsigned int uPoolld, unsigned
Int uTimeout);

get a buffer from pool uPoolld

block walit for uTimeout

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

59

MultiTask! Memory Management

void relbuf (unsigned int uPoolld,
void *p_vBuffer);

release buffer *p_vBuffer into pool uPoolld

RTOS does not check if buffer belongs to pool
for efficiency,
drastic consequence on error

RTOS does not know where is free memory
Application needs to tell RTOS!
Initialize memory pool init. mem_pool()

60

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

MultiTask! Memory Management

INt init._mem__pool (

unsigned int uPoolld,
void *p vMemory,
unsigned int uBufSize,

unsigned int uBufCount,

p_vMemory —

unsigned int uPoolType

uBufCount

uBufSize

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

61

Example of Memory Management In
MultiTask!

Underground tank monitoring system

Slow thermal printer prints a few lines per
second
2 tasks

high priority task: formats report

low priority task: feeds lines to printer

one line at a time

40-character line =» buffer-size = 40 bytes =
waste of memory =» solution: use diff pools

62

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Example of Memory Management In
- MultiTask!

Figure 7.11 Using Memory Management Functions

ffdefine LINE_POOL 1
ffdefine MAX_LINE_LENGTH 40
ffdefine MAX_LINES 80

static char a_lines[MAX_LINESJ[MAX_LINE_LENGTH];

void main (void)
{ | ‘

init_mem_pool (LINE_POOL, a_lines,

MAX_LINES, MAX_LINE_LENGTH, TASK_POOL);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

63

Example of Memory Management In
MultiTask!

void vPrintFormatTask (void)

{
char *p_chLine; /* Pointer to current line */

/* Format lines and send them to the vPrintOutputTask */
p_chLine = getbuf (LINE_POOL, WAIT_FOREVER);
sprintf (p_chlLine, "INVENTORY REPORT");
sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL);
p_chLine = getbuf (LINE_POOL, WAIT_FOREVER);
sprintf (p_chLine, "Date: %02/%02/%02",

iMonth, iDay, iYear % 100);
sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL);
p_chLine = getbuf (LINE_POOL, WAIT_FOREVER);
sprintf (p_chlLine, "Time: %02:%02", iHour, iMinute);
sndmsg (PRINT_MBOX, p_chLine, PRIORITY_NORMAL);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Example of Memory Management In
MultiTask!

void vPrintOutputTask (void)

{
char *p_chline;
while (TRUE)
{
/* Wait for a line to come in. */
p_chLine = rcvmsg (PRINT_MBOX, WAIT_FOREVER);
!l Do what is needed to send the line to the printer
/* Free the buffer back to the pool */
relbuf (LINE_POOL, p_chLine);
}
}

65

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Routines in an RTOS

Rules for ISR (not for tasks):

Rule 1: ISR must not call any RTOS function
that might block the caller

Must NOT:
get semaphores
read from empty queues, mailboxes, etc.
wait for event, ...

Must run to completion to reset hardware to be
ready for next interrupt

66

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Routines in an RTOS

Rule 2: ISR may not call any RTOS function
that cause task switching, unless RTOS

knows that it is an ISR (& thus will not switch
task)

May not

write to mailboxes, queues on which tasks may
be waiting

set events

release semaphores, ...

67
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 1: No Blocking

Fié{ire 7.12 Interrupt Routines Cannot Use Semaphores

static int iTemperatures[2];

void interrupt vReadTemperatures (void)
{
ISR ShOUId GetSemaphore (SEMAPHORE_TEMPERATURE); /***NOT ALLOWED***/
iTemperatures[0] = !! read in value from hardware;
Not ggegt iTemperatures[1] = !! read in vailue from hardware;
GiveSemaphore (SEMAPHORE_TEMPERATURE);
semaphore!!! B

void vTaskTestTemperatures (void)

{
int iTempO, iTempl;

while (TRUE)

{
GetSemaphore (SEMAPHORE_TEMPERATURE);
iTempO0 = iTemperatures[0];
iTempl = iTemperatures[1];
GiveSemaphore (SEMAPHORE_TEMPERATURE);
if (iTempQ != iTempl)

!l Set off howling alarm;

68

Rule 1: No Blocking

Task Is running (semaphore held)

Interrupt occurs, ISR tries to get semaphore
ISR is blocked, task is blocked

Semaphore is never released

All lower-priority tasks are also blocked

One-armed deadly embrace

ISR vReadTemperatures() interrupts task
vTaskTestTemperatures()

69

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Post Queue In ISR? (Eg In VRTX)

Figure 7.13 Legal Uses of RTOS Functions in Interrupt Routines

/* Queue for temperatures. */
int 1QueueTemp;

void interrupt vReadTemperatures (void)

{
int aTemperatures[2]; /* 16-bit temperatures. */
int iError;

/* Get a new set of temperatures. */
aTemperatures[0] = !! read in value from hardware;
aTemperatures[1l] = !! read in value from hardware;

/* Add the temperatures to a queue. */
sc_gpost (iQueueTemp,
(char *) ((aTemperatures[0] << 16) | aTemperatures[1]),
&iError);
} 70

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Post Queue In ISR? (Eg In VRTX)

void vMainTask (void)

{

long int 1Temps; /* 32 bits; the same size as a pointer. */
int aTemperatures[2];
int iError;

while (TRUE)

{
1Temps = (long) sc_gpend (iQueueTemp, WAIT_FOREVER,

sizeof(int), &iError);
aTemperatures[0] = (int) (1Temps >> 16);
aTemperatures[1] = (int) (1Temps & 0x0000ffff);
if (aTemperatures[0] != aTemperatures[1])

Il Set off howling alarm;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

71

Post Queue In ISR?

No problem!
Posting to a gueue is non-blocking!

ISR can post a queue

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

72

Rule 2: No RTOS Calls without Fair
Warning

A naive view

ISR
RTOS

| Send message
TaskHigh to mailbox.
TaskLow

\i

Time

73

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2: No RTOS Calls without Fair
Warning

What would really happen!

ISR
RTOS

Send message ‘\\
TaskHigh to mailbox. .
TaskLovw SN

Time

RTOS unblocks a high priority task, is unaware of ISRs,
switches to high priority task, ISR is delayed! 74

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2: No RTOS Calls without Fair
Warning

Solutions:

Plan A: Let RTOS know those functions are
SRs, need to register ISRs and which
nardware interrupt corresponds to which ISR

Plan B: In ISR, call a function to let RTOS
Know that we're in ISR (suspend task

switching temporarily), jump or call at end of
ISR (to switch to tasks)

Plan C: Separate set of functions to ISR,
which always return to ISR

75
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2: No RTOS Calls without Fair
Warning

ISR
Call Return
RTOS
| Send message
TaskHigh to mailbox.
TaskLow

Plan A: let RTOS know about ISRs, hardware interrupts

76

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2: No RTOS Calls without Fair
Warning

ISR
Jump or call.

RTOS

Enter Send message

i ilbox.
TaskHigh interrupt to mai box

routine.
TaskLow

Plan B: suspend scheduler in ISR

77

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2: No RTOS Calls without Fair
Warning
Plan C:

Call OSISRSemPost() instead of
OSSemPost()

OSISRSemPost() always return to ISR

78

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2 and Nested Interrupts

Nest Interrupts: Higher priority interrupt
Interrupts low-priority ISR

When higher priority ISR finishes, it must
return to low-priority ISR and not to another
ready task (otherwise low priority ISR will be
delayed!)

Must suspend scheduler until all nested ISRs
have finished execution

79

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Rule 2 and Nested Interrupts

RTOS scheduler goes to TaskHigh
instead of finishing low-priority ISR.

High-priority
ISR B I

LOW—pI‘iOI'itY | _

ISR | i
|
RTOS i =
Send message
. to mailbox.
TaskHigh
High-priority

TaskLow [0 interrupt

occurs.

Time

80

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Handling in eCos

Interrupt handling in eCos is divided into

ISR: Interrupt Service Routine
Only the most urgent handling
Cannot signal a semaphore via a non-blocking call
Higher priority than DSR
Eg: character saving

DSR: Deferred Service Routine
More computing intensive handling
Can signal semaphores
Higher priority than all tasks
Eg: command construction

81

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt-Driven Blinking LED In
eCos (main program)

#include <cyg/kernel/kapi.h>

#include "timer.h"

#include "led.h"

/* Declare the ISR variables. */

cyg _handle_t timerinterruptHdl;

cyg_interrupt timerinterruptObj;

cyg _vector_t timerinterruptVector = TIMER1 INT;

cyg_sem_t ledToggleSemaphore;

void cyg _user_start(void) {
/* Configure the green LED control pin. */ ledInit();
/* Create semaphore for task signaling, initialized as 0 */
cyg_semaphore_init(&ledToggleSemaphore, 0);
/* Create the LED task. */

cyg_thread create(LED_TASK_ PRIORITY, blinkLedTask, (cyg addrword_t)O,
"LED Task'™, (void *)ledTaskStack, LED TASK STACK_ SIZE, &ledTaskHdl, &ledTaskObj);

/* Notify the scheduler to start running the task. */ cyg thread resume(ledTaskHdl);
/* Initialize the interrupt for the timer. */

cyg_interrupt_create(timerinterrup tVector, 0, O, timerlsr, timerDsr,
&timeriInterruptHdl, &timerinterruptObj);

cyg_interrupt_attach(timerinterruptHdl);

cyg_interrupt_acknowledge(timerlnterruptVector);
cyg_interrupt_unmask(timerlnterruptVector);

/* Initialize the timer registers. */ timerinit(); }
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

82

Interrupt-Driven Blinking LED In
eCos (timerlsr)

#include <cyg/hal/hal_intr._h>
uilnt32_t timerlsr(cyg _vector_t vector, cyg addrword t data) {

/* Block timer interrupt from occurring until DSR runs. */
cyg_interrupt_mask(timerinterruptVector);

/* Acknowledge the interrupt in interrupt controller & In
timer peripheral. */

cyg_interrupt _acknowledge(timerlnterruptVector);
TIMER_STATUS REG = TIMER_1 MATCH;

/* Inform OS that the iInterrupt i1s handled by this ISR and
that the DSR needs to run. */

return (CYG_ISR_HANDLED | CYG_ISR_CALL_DSR):

83

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt-Driven Blinking LED In
eCos (timerDsr)

void timerDsr(cyg_vector_t vector, cyg ucount32 count,
cyg_addrword_t data) {

/* Signal the task to toggle the LED. */
cyg semaphore post(&ledToggleSemaphore);

/* Set the new timer iInterval. */

TIMER 1 MATCH REG = (TIMER COUNT REG +
TIMER_INTERVAL 500MS);

/* Enable processing of incoming timer interrupts. */
cyg interrupt _unmask(timerlinterruptVector);

84

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt-Driven Blinking LED In
eCos (blinkLedTask)

void blinkLedTask(cyg addrword t data) {
while (1) {
/* Wait for signal to toggle the LED. */
cyg_semaphore wairt(&ledToggleSemaphore);

/* Change the state of the green LED. */
ledToggle(); }

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

85

	Real-Time Operating Systems (Part II)
	Contents
	Intertask Communication
	Message Queues
	Message Queue Example
	Message Queue Example: Code
	Message Queue Example: Code
	Message Queue Example
	Message Queue Details
	Message Queue Details
	Message Queue in COS
	Message Queue in COS
	Message Queue in COS
	Message Queue in COS
	Message Queues & Pointers
	Message Queues & Pointers
	Message Passing in Linux �(main program)
	Message Passing in Linux�(producerTask)
	Message Passing in Linux�(consumerTask)
	Mailboxes
	Mailboxes
	Mailbox Example in MultiTask!
	Mailbox in eCos (main program)
	Mailbox in eCos (producerTask)
	Mailbox in eCos (consumerTask)
	Pipes
	Pipes
	Which Should I Use?
	Pitfalls
	Pitfalls (Data type mismatch: �caught by compiler)
	Pitfalls (Data type mismatch: �uncaught by compiler)
	Pitfalls
	Pointer passing = shared data bug
	An Example
	Timer Functions
	VxWorks�RTOS Delay Function
	Questions
	Timer Function Accuracy
	Questions
	Questions
	Other Timing Services
	Other Timing Services
	Timer Callback Functions
	Timer �Callback �Functions
	Timer Callback Functions
	Timer Callback Functions
	Timer �Callback �Functions
	Events
	Features of Events
	Using Event in AMX
	Using Events in AMX
	Using Events in AMX
	Using Events in AMX
	AMX Event Functions
	AMX Event Functions
	Comparison: Semaphores, Events
	Comparison: Queues
	Memory Management
	MultiTask! Memory Management
	MultiTask! Memory Management
	MultiTask! Memory Management
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Example of Memory Management in MultiTask!
	Interrupt Routines in an RTOS
	Interrupt Routines in an RTOS
	Rule 1: No Blocking
	Rule 1: No Blocking
	Post Queue in ISR? (Eg in VRTX)
	Post Queue in ISR? (Eg in VRTX)
	Post Queue in ISR?
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2: No RTOS Calls without Fair Warning
	Rule 2 and Nested Interrupts
	Rule 2 and Nested Interrupts
	Interrupt Handling in eCos
	Interrupt-Driven Blinking LED in eCos (main program)
	Interrupt-Driven Blinking LED in eCos (timerIsr)
	Interrupt-Driven Blinking LED in eCos (timerDsr)
	Interrupt-Driven Blinking LED in eCos (blinkLedTask)

