Real-Time Operating
Systems (Part I)

Embedded Software Design
s s %
YR IR N e D RS
pahsiung@cs.ccu.edu.tw

Textbooks: (a) Embedded Software Primer, David E. Simon, Addison Wesley 1
(b) Programming Embedded Systems with C and GNU Development Tools, 2"d Edition,
M. Barr and A. Massa, Oreilly Media Inc.

mailto:pahsiung@cs.ccu.edu.tw

Contents

Tasks and Task States
Tasks and Data

Semaphores and Shared Data

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Desktop OS v/s RTOS (1)

Desktop OS:
Boot: OS takes control, sets up environment
Applications: Run under OS, independently
Real-Time Embedded OS.
Boot: Application takes control, starts RTOS
Application: linked with OS, tied together

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Desktop OS v/s RTOS (2)

Desktop OS:
multiuser - need security, protection, etc.

check validity of pointers into system function
RTOS:

single user = no need of security

for performance, pointers are not checked

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Desktop OS v/s RTOS (3)

Desktop OS:
limited configuration
RTOS:

extensive configuration: leave out all what you
don’t need, e.qg. file managers, I/O drivers,
utilities, and even memory management

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Tasks and Task States

Task: a subroutine in RTOS

Task States:

Running: using microprocessor to execute
Instructions

Ready: has instructions for microprocessor to
execute, but is not yet executing

Blocked: has nothing for microprocessor,
waiting for external event, e.g. network data
handler with no data from network, button
response task with button not yet pressed

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Task States

Whatever the task
needs, happens.

This is Another

highest ready task
Task needs priority is higher
something ready task. priorityb
to happen before)

it can continue.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Other Task States

Finer distinctions of ready and blocked states:
= suspended

= pended

= waiting

= dormant

= delayed

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Scheduler

Keeps track of the states of each task
Decides which task should run

Based on priorities
priorities set by user

non-blocked task with highest priority runs

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Consequences (1)

Can a task go from ready to blocked state?
Ans: NO!

Reason:

A task goes to blocked state only when it
decides for ITSELF if it needs to walit for
something or has nothing to do.

To make this decision, it needs to execute
some code, thus it is “running” before
“blocked”!

10

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Consequences (2)

Can a blocked task wake up on its own
(without any other task helping)?

Ans: NOI

Reason:

A blocked task will have something for
microprocessor to do only if some OTHER
task interrupts it and tells it that whatever it
was waiting for has happened!

Otherwise, the task will be blocked forever.

11

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Consequences (3)

Can a task switch from ready to running or
vice-versa on Iits own?

Ans: NOI

Reason:

Scheduler does all the switching between
ready and running states.

A blocked task can move to ready, and
Immediately switch to running (if it has the
highest priority).

12

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Q/A about scheduler and task states (1)

Qs: How does the scheduler know when a
task has become blocked or unblocked?

Ans: RTOS provides functions for tasks to tell
scheduler:

what events the tasks want to wait for

to signal that events have happened

13

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Q/A about scheduler and task states (2)

Qs: What happens if all the tasks are blocked?

Ans: Scheduler spins in some tight loop In
the RTOS.

If nothing ever happ&ns, that’s your fault!

Make sure something happens sooner or
later by having an interrupt routine call some
RTOS function to unblock a task.

14

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Q/A about scheduler and task states (3)

Qs: What if two tasks with the same priority
are ready?

Ans: Depends on RTOS.
lllegal to have two tasks with same priority
Time-slice between the two tasks
Run one until blocked, then run the other
Backup scheduling policy: round-robin, FIFO

15

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Q/A about scheduler and task states (4)

Qs. If one task is running and another,
higher-priority task unblocks, does the task
that is running get stopped and moved to the
ready state right away?

Ans.
Preemptive RTOS: Yes!
Nonpreemptive RTOS: No!

16

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Simple Example

The classic situation

/* "Button Task"™ */.
void vButtonTask (void) /* High priority */
{
while (TRUE)
{
I'l Block until user pushes a button
!'l Quick: respond to the user

}

This task will be unblocked as soon as the
user pushes a button.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

A Simple Example

The computational task

/* "Levels Task"™ */
void vLevelsTask (void) /* Low priority */

{
while (TRUE)

{
I'l Read levels of floats in tank

I'l Calculate average float level

I'l Do some interminable calculation
I'l Do more interminable calculation
I'l Do yet more interminable calculation

I'l Figure out which tank to do next

18

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Blinking LED Example

Two Operating Systems

eCos: an open-source real-time OS for
embedded systems

Task = thread

Linux: embedded version of an open-source
desktop OS

Task = pthread

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

19

Blinking LED in eCos

#define TICKS PER SECOND (100)
#define LED TASK STACK SIZE (4096)
#define LED TASK PRIORITY (12)
/™ Declare the task varirables. */

unsigned char
ledTaskStack[LED TASK STACK SIZE];

cyd_thread ledTaskObj;— " [Taskinformation

cyg_handle_t ledTaskHdl; — rogiage

20

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Blinking LED in eCos

#include <cyg/kernel/kapi.h>
#include "led.h”
voild blinkLedTask(cyg addrword t data)

{
while (1)
{
/* Delay for 500 milliseconds. */
cyg thread delay(TICKS PER SECOND / 2);
ledToggle();

i

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

21

Blinking LED in eCos

void cyg_user_start(void)

{

[* Configure the green LED control pin. */
ledInit();

[* Create the LED task. */

cyg_thread create(LED _TASK_ PRIORITY, blinkLedTask,
(cyg_addrword_t)0, "LED Task", (void *)ledTaskStack,
LED TASK_STACK_SIZE, &ledTaskHdl, &ledTaskObj);

/* Notify the scheduler to start running the task. */

cyg_thread resume(ledTaskHdl); Scheduler runs

only after
} cyg_user_start()
exits!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Blinking LED In Linux

#include <unistd.h>
#include "led.h”
void blinkLedTask(void *param)
{
while (1)
{
/* Delay for 500 milliseconds. */
usleep(50000);
IedToggIe(); Time unit:

microseconds

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

23

Blinking LED In Linux

#include <pthread.h>
pthread t ledTaskObj;
int main(void)

{

/* Configure the green LED control pin. */
ledInit();

/* Create the LED task using the default task
attributes. No parameters */

pthread create(&ledTaskObj, NULL,

(void *)blinkLedTask, NULL); Suspend main()

/* Allow the LED task to run. */ until the pthread
pthread join(ledTaskObj, NULL); terminates!
return O;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

24

A Simple Example (RTOS tasks)

vLevelsTask is User presses button; vButtonTask vButtonTask
busy calculating RTOS switches does everything it finishes its work
while vButtonTask Mmicroprocessor to needs to do to and blocks again;
is blocked. vButtonTask; respond to the RTOS switches
vLlevelsTask button. MICroprocessor
is ready. back to
\ / / vievelsTask.
vButtonTask =

vievelsTask [

Time >

The microprocessor’s attention switches
from task to task in response to the buttons.

25

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Simple Example (main())

Assigning the priorities

void main (void)
{
/* Initialize (but do not start) the RTQS */
InitRTOS ();
/* Tell the RTOS about our tasks */
StartTask (vRespondToButton, HIGH_PRIQRITY):
StartTask (vCalculateTankLevels, LOW_PRIORITY):
/* Start the RTO0S. (This function never returns.) */
StartRTOS ():
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

26

Features of Using an RTOS

Two tasks can be written independently of
one another, and the system will still respond
well.

The RTOS will make the response good
whenever the user presses a button by
turning the microprocessor over to the task
that responds to the buttons immediately.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

27

Tasks and Data: Context

Each task has its own private context.
the register values,
a program counter,
a stack.

All other data is shared among all of the tasks
In the system.

Global
static
Initialized

28

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

An Example

A common data area

RTOS
data RTOS
structures

Task 1 registers ~ Task 1 stack

All other

data

!

Task 2 stack Task 2 registers

Task 3 registers Task 3 stack

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

29

Sharing Data

Two main functions
vRespondToButto

vCalculateTankLevelg

struct
{

long 1TankLevel:
Tong TTimeUpdated;
} tankdata[MAX_TANKS];

/* "Button Task" */

void vRespondToButton (void) /* High priority */

{
int 1;
while (TRUE)
{
!'l Block until user pushes a button
i = 111D of button pressed;
printf ("\nTIME: %081d LEVEL: %081d",
tankdata[i].1TimeUpdated,
tankdata[i].1TankLevel);
}
}

/* "Levels Task" */

void vCalculateTankLevels (void)

{

/* Low priority */

int i = 0;
while (TRUE)

{

}

!l Read levels of floats in tank i
Il Do more interminable calculation
Il Do yet more interminable calculation

/* Store the result */
tankdata[i].1TimeUpdated = !! Current time
/* Between these two instructions is a
bad place for a task switch */
tankdatali].1TankLevel = !! Result of calculation

!l Figure out which tank to do next
i = 1! something new

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Shared-Data Problems

Bug in previous slide (example task code)

vCalculateTankLevels() and
vRespondToButton() share the same data
structure: tankdata|MAX_ TANKS]

The shared data structure could get corrupted
or inconsistent (refer to Chapter 4)

31

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Shared-Data Problems

void Taskl (void)

Another example (
= Task2 interrupts Taskl

vCountErrors (9);

}

void Task2 (void)
{

vCountErrors (11);

}
static int cErrors;

void vCountErrors (int cNewErrors)

{
cErrors += cNewErrors;

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

32

A clearer examination

The assembly code

.
’

; {

.
’

: Assembly code for vCountErrors

- void vCountErrors (int cNewErrors)

cErrors += cNewErrors;
MOVE R1, (cErrors)
ADD R1, (cNewErrors)
Move (cErrors), Rl
RETURN

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

33

A clearer examination

The flow

Time

Task1 calls vCountErrors (9)
MOVE RI1, (cErrors)
ADD R1, (cNewErrors)

RTOS switches to Task 2

Task2 calls vCountErrors (11)
MOVE R1, (cErrors)
ADD R1, (cNewErrors)
MOVE (cErrors), Rl

RTOS switches to Task1
MOVE (cErrors), R1

R1 forTaskl R1 for Task2 cErrors

I

—
e —— - —

34

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Reentrancy

Reentrant function
can be called by more than one task and
will always work correctly,

even if RTOS switches from one task to
another in the middle of executing the function.

vCountErrors() is not a reentrant function.

35

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

How to check reentrancy?

Apply 3 rules to check if a function is
reentrant

Does not use variables in a nonatomic way
unless

= they are stored on stack of the calling task, or
= they are private variables of the task
Does not call any non-reentrant functions

Does not use hardware in a nonatomic way

36
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Review of C Variable Storage

static int static_int:
int public_int;
int initialized = 4; ~

char *string = "Where does|this string go?":
void *vPointer; B,

void function (int parm, int *parm_ptr)
— _/
{ YT

static int static_local;
int local;—

37

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Applying Reentrancy Rules

Qs: Is this BOOL fError; /* Someone else sets this */
reentrant? void display (int)
{
Ans: NO! if (IfError)
i {
Violates rules: printf ("\nValue: %d", J):
j=0;
(1) non_atomic } fError = TRUE;
use of fError else
{
— I printf ("\nCould not display value");
(2) prlntf() may be fError = FALSE;
non-reentrant }
}

38

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Gray Areas of Reentrancy

|s the following code reentrant?
static Int cErrors;

void vCountErrors(void) {

++CErrors;« Is incrementing
} CErrors atomic?

Maybe! Depends on microprocessor and
compiler
8051: 9 assembly instructions (non-reentrant!)
80x86: 2 assembly instructions (reentrant!)

39

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Non-reentrant function in 8051

MOVDPTR ,#cErrors+01H
MOVX A,@DPTR

INC A

MOVX @DPTR, A

JNZ noCarry

MOVDPTR,# cErrors

MOV X A,@DPTR

MOV X @DPTR, A
noCarry:

RET

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

40

Rentrant Function in 80x86

INC (cErrors)
RET

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

41

Semaphores and Shared Data

The scenario

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

42

RTOS Semaphores

Functions:

= raise & lower

= get & give

= take & release

= pend & post

mp&vV

= wait and signal

= take (for lower) & release (for raise)

43

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

RTOS functions for binary semaphore

A binary semaphore

Only one task can have the semaphore at a
time.

TakeSemaphore
block until the semaphore is released
take the semaphore
ReleaseSemaphore

release a taken semaphore

44

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphores Protect Data

The tank application

struct

{
Tong 1TankLevel; o .
Tong 1TimeUpdated; | . / ‘ Levels Task" */
} tankdata[MAX_TANKS]; void vCalculateTankLevels (void) /* Low priority */
R {
/* "Button Task" */ 1nF i=0;
void vRespondToButton (void) /* High priority */ while (TRUE)
{ {
int i;
i E
¥h11e (TRoe) TakeSemaphore ();
Il Block until user pushes a button | !1 Set tankdata[i].1Timelpdated
i = 11 Get ID of button pressed !l Set tankdata[i].1TankLevel
Takeéémaphore (): ReleaseSemaphore ();
printf ("\nTIME: %081d LEVEL: %081d",
tankdata[i].1TimeUpdated,)
tankdata[i].1TankLevel);]
ReleaseSemaphore ();
}
}

45
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Sequence of Events

If a user presses a button while the levels task is still
modifying the data and still has the semaphore,

The RTOS will switch to the “button task,” just as
before, moving the levels task to the ready state.

When the button task tries to get the semaphore by
calling TakeSemaphore it will block because the levels
task already has the semaphore.

The RTOS will then look around for another task to run.

When the levels task releases the semaphore by
calling ReleaseSemaphore, the button task will no
longer be blocked.

46

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Execution Flow

The flow

Code in the vCalculateTankLevels task. Code in the vRespondToButton task.

Button task is blocked
waiting for a button.

Levels task is calculating
tank levels. l

TakeSemaphore ();
Il Set tankdata[i].1TimeUpdated

\ The user pushes a button; the
higher-priority button task

unblocks: the RTOS swiches tasks.

|
|
|
|
|
I
|
[
[
|
|
|
|
|
|

|

|

! i =11 Get ID of button
I TakeSemaphore ();

: (This does not return yet)

|
|

The semaphore is not available; th(:/
button task blocks; the RTOS

/ switches back.
|

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

47

Execution Flow

The flow

|
The semaphore is not available; the/
button task blocks; the RTOS

switches back.

[
[
Il Set tankdata[i].1TankLevel :
ReleaseSemaphore (); I

|

|
Releasing the semaphore unblocks
the button task; the RTOS
switches again.

(Now TakeSemaphore returns)
printf (. . .);
ReleaseSemaphore ();

I
|
I
I
|
I
I
: Il Block until user pushes a button
I

I

I

The button task blocks; the RTOS
resumes the levels task.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

48

The Nuclear Reactor System

MicroC/OS RTOS

Semaphore-related functions
OSSemPost(): release the semaphore
OSSemPend(): take the semaphore
OSSemCreate(): initialize the semaphore

Related data structures

OS EVENT: the data representing the semaphore

WAIT FOREVER: indicates that the task making the
call is willing to wait forever

Other functions
OSTimeDlIy(): block functions

49

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Code

The data structures

fdefine TASK_PRIORITY READ 11

ffdefine TASK_PRIORITY CONTROL 12

fdefine STK_SIZE 1024

static unsigned int ReadStk [STK _SIZE]:
static unsigned int ControlStk [STK_SIZE];

static int iTemperatures[2];
OS_EVENT *p_semTemp;

50

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Code

The main function

void main (void)

{
/* Initialize (but do not start) the RTOS */

0SInit ();

/* Tell the RTOS about our tasks */
0STaskCreate (vReadTemperatureTask, NULLP,
(void *)&ReadStk[STK_SIZE], TASK_PRIORITY_READ);

0STaskCreate (vControlTask, NULLP,
(void *)&ControlStk[STK_SIZE], TASK_PRIORITY_CONTROL);

/* Start the RT0S. (This function never returns.) */
0SStart ();

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

51

The Code

Two tasks

{

void vReadTemperatureTask (void)

while (TRUE)

{
0STimeDly (5); /* Delay about 1/4 second */

0SSemPend (p_semTemp, WAIT_FOREVER);
!l read in iTemperatures[0];

Il read in iTemperatures[1];
0SSemPost (p_semTemp);

A potential bugi

void vControlTask (void)

{
p_semTemp = 0SSemInit (1);

hile (TRUE)

{
0SSemPend (p_semTemp, WAIT_FOREVER);

if (iTemperatures[0] != iTemperatures[1])
Il Set off howling alarm;
0SSemPost (p_semTemp);

1! Do other useful work

52

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Initializing Semaphores
In Nuclear Reactor

How do you know that OSSemCreate
happens before OSSemPend In
vReadTemperatureTask?

Because of delay by calling OSTimeDly(5)?

Some higher priority task might take up all the
delay introduced!

Change Task Priorities?

Someone later might change back the task
priorities and not know of the time bomb!

Correct solution
Place OSSemCreate BEFORE OSStart in main!

53

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Reentrancy and Semaphores

Now adding a semaphore to the previous
code (using Nucleus RTOS system calls)

static int cErrors; static int cErrors;
static NU _SEMAPHORE semErrors;

void vCountErrors (int cNewErrors)
{ void vCountErrors (int cNewErrors)

cErrors += cNewErrors; {
} NU_Obtain_Semaphore (&semErrors, NU_SUSPEND);

cErrors += cNewErrors;
NU Release_Semaphore (&semErrors);

Atomic now!‘

54

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
eCos

Two tasks share a variable
gSharedVariable

incrementTask: increments the variable
value
decrementTask: decrements the variable
value

A mutex Is used to protect this shared
variable

55

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
eCos (main program)

#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
cyg_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0;

void cyg user_start(void) {
/* Create the mutex for accessing the shared variable. */
cyg _mutex_init(&sharedvariableMutex);

/* Create the increment and decrement tasks. */
cyg_thread create(INCREMENT_TASK PRIORITY, incrementTask,
(cyg_addrword_t)0, "Increment Task™,
(void *)incrementTaskStack, INCREMENT_TASK_ STACK SIZE,

&incrementTaskHdl, &incrementTaskObj);
cyg_thread create(DECREMENT_TASK PRIORITY, decrementTask,

(cyg_addrword_t)0, "Decrement Task™,
(void *)decrementTaskStack, DECREMENT_TASK_STACK SIZE,

&decrementTaskHdl, &decrementTaskObj);

/* Notify the scheduler to start running the tasks. */
cyg_thread resume(incrementTaskHdl);

cyg_thread resume(decrementTaskHdl);
diag_printf('eCos mutex example.\\n");

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
eCos (IncrementTask)

void incrementTask(cyg addrword t data) {
while (1) {
/* Delay for 3 seconds. */
cyg_thread delay(TICKS PER_SECOND * 3);

/* Wait for the mutex to become available. */
cyg_mutex lock(&sharedvVariableMutex) ;
gSharedVariable++;

diag_printf("'Increment Task: shared variable
value 1s %d\\n", gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedvVariableMutex);

} 57

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
eCos (decrementTask)

void decrementTask(cyg addrword t data) {
while (1) {
/* Delay for 7 seconds. */
cyg_thread delay(TICKS PER_SECOND * 7);

/* Wait for the mutex to become available. */
cyg_mutex lock(&sharedvVariableMutex) ;
gSharedVariable--;

diag_printf(''Decrement Task: shared variable
value 1s %d\\n", gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedvVariableMutex);

} 58

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
Linux (main program)

#include <pthread.h>
pthread mutex t sharedVariableMutex;
INt32_t gSharedvVariable = O;

int main(void) {
/* Create the mutex for accessing the shared variable using
* the default attributes. */
pthread mutex_init(&sharedVariableMutex, NULL);

/* Create the iIncrement and decrement tasks */

pthread create(&incrementTaskObj, NULL,
(void *)incrementTask, NULL);

pthread create(&decrementTaskObj, NULL,
(void *)decrementTask, NULL);

/* Allow the tasks to run. */ pthread_join(incrementTaskObj, NULL);
pthread join(decrementTaskObj, NULL);
return O;

59
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Synchronization in
Linux (IncrementTask)

#include <stdio.h>
#include <unistd.h>

void incrementTask(void *param) {
while (1) {
/* Delay for 3 seconds. */
sleep(3);

/* Wait for the mutex before accessing the GPIO
registers. */

pthread mutex lock(&sharedVariableMutex) ;

gSharedVariable++;
printf(""Increment Task: shared variable value i1s %d\\n",
gSharedVariable);

/* Release the mutex for other task to use. */
pthread mutex unlock(&sharedVariableMutex) ;

} Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Mutex Task Sychronization in
Linux (decrementTask)

void decrementTask(void *param) {
while (1) {
/* Delay for 7 seconds. */
sleep(7);

/> Wait for the mutex to become available. */

pthread mutex lock(&sharedVariableMutex) ;
gSharedVariable--;

printf(*'Decrement Task: shared variable value 1s
%d\\n"", gSharedVariable);

/* Release the mutex. */
pthread mutex unlock(&sharedVariableMutex);

} 61

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Multiple Semaphores

Some RTOS allows you to have as many
semaphores as you like.

Advantage

In a system with only one semaphore, if the lower-
priority task takes the semaphore to change data, the
higher-priority task might block waiting for the
semaphore.

How does the RTOS know which semaphore protects
which data?
It doesn't.

You must decide what shared data each of your
semaphores protects!

62

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphores as a Signaling Device

Another common use of semaphores is as a
simple way to communicate

from one task to another or

from an interrupt routine to a task.
For example,

printing task

formatting task

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

63

Semaphores as a Signaling Device

Data structures

/* Place to construct report. */
static char a_chPrint[10][21];

~/* Count of lines in report. */
static int iLinesTotal;

/* Count of lines printed so far. */
static int iLinesPrinted;

/* Semaphore to wait for report to finish. */
static OS_EVENT *semPrinter;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

64

Semaphores as a Signaling Device

void vPrinterTask(void) |

. {
FunCtlonS BYTE byError; /* Place for an error return. */

Int wMsg;

/* Initialize the semaphore'as already taken. */
semPrinter = 0SSemInit(0);

while (TRUE)

{
/* Wait for a message telling what report to format. */
wMsg = (int) 0SQPend (QPrinterTask, WAIT_FOREVER, &byError);

!'l Format the report into a_chPrint
iLinesTotal = /! count of Tines in the report

/* Print the first 1ine of the report */
iLinesPrinted = 0;
vHardwarePrinterOutputLine (a_chPrint[iLinesPrinted++]);

/* Wait for print job to finish. */
0SSemPend (semPrinter, WAIT_FOREVER, &byError);

65
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphores as a Signaling Device

Functions
void vPrinterInterrupt (void)
{
if (iLinesPrinted == ilinesTotal)
/* The report is done. Release the semaphore. */
0SSemPost (semPrinter);
else |
/* Print the next line. */
vHardwarePrinterQutputLine (a_chPrint[ilLinesPrinted++]);
}

66

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Task Synchronization
In eCos (main program)

#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
#include "led.h"

cyg_sem_t semButton;

void cyg user_start(void) {
/* Configure the green LED control pin. */
ledInit();
/* Create the semaphore with an initial value of zero. */
cyg_semaphore_init(&semButton, 0);

/* Create the producer and consumer tasks. */

cyg_thread create(PRODUCER_TASK_PRIORITY, producerTask,
(cyg_addrword_t)0, "Producer Task™"™, (void *)producerTaskStack,
PRODUCER_TASK_STACK_SIZE, &producerTaskHdl, &producerTaskObj);

cyg_thread create(CONSUMER_TASK_PRIORITY, consumerTask,
(cyg_addrword_t)0, "Consumer Task™"™, (void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE, &consumerTaskHdl, &consumerTaskObj);

/* Notify the scheduler to start running the tasks. */
cyg_thread resume(producerTaskHdl);

cyg_thread resume(consumerTaskHdl);

diag_printf("'eCos semaphore example - press button SWO.\\n"");

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

67

Semaphore Task Synchronization
In eCos (producerTask)

#include "button.h"

void producerTask(cyg addrword t data) {
int buttonOn;

while (1) {
/* Delay for 10 milliseconds. */
cyg thread delay(TICKS _PER_SECOND / 100);

/* Check whether the SWO button has been pressed. */
buttonOn = buttonDebounce();

/* 1T button SWO was pressed, signal consumer task. */
iIT (buttonOn) cyg semaphore post(&semButton);

68

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Task Synchronization
In eCos (debounce)

int buttonDebounce(void) {
static uintl6 _t buttonState = 0;
uint8 _t pinState; pinState = buttonRead();

/* Store the current debounce status. */
buttonState = ((buttonState << 1) | pinState | OxEO000);

1T (buttonState == 0OxFO000)
return TRUE;

return FALSE;

69
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Task Synchronization
In eCos (consumerTask)

voild consumerTask(cyg addrword t data) {
while (1) {
/* Wait for the signal. */
cyg_semaphore wailt(&semButton);

diag _printf("'Button SWO was pressed.

\\n"");

ledToggle();

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

70

Semaphore Task Synchronization
In Linux (main program)

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include "led.h"

sem_t semButton;

int main(void) {
/* Configure the green LED control pin. */
ledinit();

/* Create semaphore for this process only and with an initial value of 0. */
sem_init(&semButton, 0, 0);

/* Create the producer and consumer tasks */

pthread create(&producerTaskObj, NULL, (void *)producerTask, NULL);
pthread create(&consumerTaskObj, NULL, (void *)consumerTask, NULL);
printf("'Linux semaphore example - press button SWO.\\n");

/* Allow the tasks to run. */
pthread join(producerTaskObj, NULL);
pthread join(consumerTaskObj, NULL); 71

return O; . . . S
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Task Synchronization
In Linux (producerTask)

#include <unistd.h>
#include "button.h"

void producerTask(void *param) {
Int buttonOn;
while (1) {
/* Delay for 10 milliseconds. */
usleep(10000);

/* Check 1t the SWO button has been pressed. */
buttonOn = buttonDebounce();

/* 1T button SWO was pressed, signal consumer */
1T (buttonOn) sem post(&semButton);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

72

Semaphore Task Synchronization
In Linux (consumerTask)

voild consumerTask(void *param) {
while (1) {
/* Wait for the signal. */
sem wailt(&semButton);

printf("'Button SWO was pressed.\\n"");

ledToggle();

73

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Problems

Forgetting to take the semaphore
Forgetting to release the semaphore
Taking the wrong semaphore

Holding a semaphore for a long time
Priority Inversion

Causing a deadly embrace

Use semaphores only when you have to!
Avoid them when you can!

74

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Priority Inversion

Task A gets a
message in its queue
and unblocks; RTOS
switches to Task A.

Task B gets a Task A tries to take
message in its queue the semaphore that

and unblocks; RTOS Task C already has taken.
switches to Task B.

. Task B goes on running
Task C takes a - and running and running,
semaphore that it never giving Task C a
shares with Task A. chance to release the

semaphore. Task A is blocked.
Task A

Task B

Task C

Time *

The task the microprocessor is executing

75
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Deadly Embrace

AMX RTOS code int a;

int b;
AMXID hSemaphoreA;
BOth taSkS may bIOCk AMXID hSemaphoreB;

void vTaskl (void)

{
ajsmrsv (hSemaphoreA, 0, 0);
ajsmrsv (hSemaphoreB, 0, 0);
a=>n;
ajsmrls (hSemaphoreB);
ajsmrls (hSemaphoreA);

}

void vTask? (void)
{
ajsmrsv (hSemaphoreB, 0, 0);
ajsmrsv (hSemaphoreA, 0, 0);
b= a;
ajsmrls (hSemaphoreA);
ajsmrls (hSemaphoreB);
} 76

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Semaphore Variants

Counting semaphores
take = decrement integer
release = increment integer
block when integer =0
Resource semaphores
released only by task that took them
Mutex semaphores
automatically handle priority inversion problem
(not all RTOS call such semaphores mutexes!)

77

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Ways to Protect Shared Data

Disabling interrupts
Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)
Taking semaphores
Most targeted

Response times of interrupts and non data-sharing
tasks are unaffected

Not work for interrupts
Disabling task switches

In-between the above two

No effect on interrupt routines

Affects all other tasks

78

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

	Real-Time Operating Systems (Part I)
	Contents
	Desktop OS v/s RTOS (1)
	Desktop OS v/s RTOS (2)
	Desktop OS v/s RTOS (3)
	Tasks and Task States
	Task States
	Other Task States
	The Scheduler
	Consequences (1)
	Consequences (2)
	Consequences (3)
	Q/A about scheduler and task states (1)
	Q/A about scheduler and task states (2)
	Q/A about scheduler and task states (3)
	Q/A about scheduler and task states (4)
	A Simple Example
	A Simple Example
	Blinking LED Example
	Blinking LED in eCos
	Blinking LED in eCos
	Blinking LED in eCos
	Blinking LED in Linux
	Blinking LED in Linux
	A Simple Example (RTOS tasks)
	A Simple Example (main())
	Features of Using an RTOS
	Tasks and Data: Context
	An Example
	Sharing Data
	Shared-Data Problems
	Shared-Data Problems
	A clearer examination
	A clearer examination
	Reentrancy
	How to check reentrancy?
	Review of C Variable Storage
	Applying Reentrancy Rules
	Gray Areas of Reentrancy
	Non-reentrant function in 8051
	Rentrant Function in 80x86
	Semaphores and Shared Data
	RTOS Semaphores
	RTOS functions for binary semaphore
	Semaphores Protect Data
	The Sequence of Events
	Execution Flow
	Execution Flow
	The Nuclear Reactor System
	The Code
	The Code
	The Code
	Initializing Semaphores �in Nuclear Reactor
	Reentrancy and Semaphores
	Mutex Task Synchronization in eCos
	Mutex Task Synchronization in eCos (main program)
	Mutex Task Synchronization in eCos (incrementTask)
	Mutex Task Synchronization in eCos (decrementTask)
	Mutex Task Synchronization in Linux (main program)
	Mutex Task Synchronization in Linux (incrementTask)
	Mutex Task Sychronization in Linux (decrementTask)
	Multiple Semaphores
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphore Task Synchronization in eCos (main program)
	Semaphore Task Synchronization in eCos (producerTask)
	Semaphore Task Synchronization in eCos (debounce)
	Semaphore Task Synchronization in eCos (consumerTask)
	Semaphore Task Synchronization in Linux (main program)
	Semaphore Task Synchronization in Linux (producerTask)
	Semaphore Task Synchronization in Linux (consumerTask)
	Semaphore Problems
	Priority Inversion
	Deadly Embrace
	Semaphore Variants
	Ways to Protect Shared Data

