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Desktop OS  v/s  RTOS (1)

Desktop OS:
Boot: OS takes control, sets up environment

Applications: Run under OS, independently

Real-Time Embedded OS:
Boot: Application takes control, starts RTOS

Application: linked with OS, tied together
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Desktop OS v/s RTOS (2)

Desktop OS:
multiuser need security, protection, etc.

check validity of pointers into system function

RTOS:
single user no need of security

for performance, pointers are not checked
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Desktop OS v/s RTOS (3)

Desktop OS:
limited configuration

RTOS:
extensive configuration: leave out all what you 
don’t need, e.g. file managers, I/O drivers, 
utilities, and even memory management
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Tasks and Task States

Task: a subroutine in RTOS
Task States:

Running: using microprocessor to execute 
instructions
Ready: has instructions for microprocessor to 
execute, but is not yet executing
Blocked: has nothing for microprocessor, 
waiting for external event, e.g. network data 
handler with no data from network, button 
response task with button not yet pressed
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Task States
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Other Task States

Finer distinctions of ready and blocked states:
suspended

pended

waiting

dormant

delayed
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The Scheduler

Keeps track of the states of each task

Decides which task should run

Based on priorities

priorities set by user

non-blocked task with highest priority runs
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Consequences (1)

Can a task go from ready to blocked state?
Ans: NO!
Reason: 

A task goes to blocked state only when it 
decides for ITSELF if it needs to wait for 
something or has nothing to do.
To make this decision, it needs to execute 
some code, thus it is “running” before 
“blocked”!
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Consequences (2)

Can a blocked task wake up on its own 
(without any other task helping)?
Ans: NO!
Reason: 

A blocked task will have something for 
microprocessor to do only if some OTHER 
task interrupts it and tells it that whatever it 
was waiting for has happened!
Otherwise, the task will be blocked forever.
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Consequences (3)

Can a task switch from ready to running or 
vice-versa on its own?
Ans: NO!
Reason:

Scheduler does all the switching between 
ready and running states.
A blocked task can move to ready, and 
immediately switch to running (if it has the 
highest priority).
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Q/A about scheduler and task states (1)

Qs: How does the scheduler know when a 
task has become blocked or unblocked?

Ans: RTOS provides functions for tasks to tell 
scheduler:

what events the tasks want to wait for

to signal that events have happened
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Q/A about scheduler and task states (2)

Qs: What happens if all the tasks are blocked?

Ans: Scheduler spins in some tight loop in 
the RTOS.

If nothing ever happens, that’s your fault!

Make sure something happens sooner or 
later by having an interrupt routine call some 
RTOS function to unblock a task.

＊
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Q/A about scheduler and task states (3)

Qs: What if two tasks with the same priority 
are ready?

Ans: Depends on RTOS.
Illegal to have two tasks with same priority

Time-slice between the two tasks

Run one until blocked, then run the other

Backup scheduling policy: round-robin, FIFO



Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

16

Q/A about scheduler and task states (4)

Qs. If one task is running and another, 
higher-priority task unblocks, does the task 
that is running get stopped and moved to the 
ready state right away?

Ans. 
Preemptive RTOS: Yes!

Nonpreemptive RTOS: No!
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A Simple Example

The classic situation

This task will be unblocked as soon as the 
user pushes a button.
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A Simple Example

The computational task



Blinking LED Example

Two Operating Systems
eCos: an open-source real-time OS for 
embedded systems

Task = thread
Linux: embedded version of an open-source 
desktop OS

Task = pthread
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Blinking LED in eCos

#define TICKS_PER_SECOND (100) 
#define LED_TASK_STACK_SIZE (4096) 
#define LED_TASK_PRIORITY (12) 
/* Declare the task variables. */ 
unsigned char 
ledTaskStack[LED_TASK_STACK_SIZE]; 

cyg_thread ledTaskObj; 
cyg_handle_t ledTaskHdl;
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Task Information

Task Handle



Blinking LED in eCos
#include <cyg/kernel/kapi.h>
#include "led.h”
void blinkLedTask(cyg_addrword_t data) 
{ 

while (1) 
{ 

/* Delay for 500 milliseconds. */ 
cyg_thread_delay(TICKS_PER_SECOND / 2); 
ledToggle( ); 

} }
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Blinking LED in eCos
void cyg_user_start(void) 
{ 

/* Configure the green LED control pin. */ 
ledInit( ); 

/* Create the LED task. */ 
cyg_thread_create(LED_TASK_PRIORITY, blinkLedTask, 

(cyg_addrword_t)0, "LED Task", (void *)ledTaskStack, 
LED_TASK_STACK_SIZE, &ledTaskHdl, &ledTaskObj); 

/* Notify the scheduler to start running the task. */ 
cyg_thread_resume(ledTaskHdl); 

}
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Scheduler runs 
only after 
cyg_user_start() 
exits!



Blinking LED in Linux
#include <unistd.h> 
#include "led.h”
void blinkLedTask(void *param) 
{ 
while (1) 
{ 

/* Delay for 500 milliseconds. */ 
usleep(50000);
ledToggle( );

} 
}
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Time unit: 
microseconds



Blinking LED in Linux
#include <pthread.h> 
pthread_t ledTaskObj; 
int main(void) 
{ 

/* Configure the green LED control pin. */ 
ledInit( ); 
/* Create the LED task using the default task 
attributes. No parameters */ 
pthread_create(&ledTaskObj, NULL, 

(void *)blinkLedTask, NULL); 
/* Allow the LED task to run. */ 
pthread_join(ledTaskObj, NULL); 
return 0; 

}
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Suspend main() 
until the pthread
terminates!
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A Simple Example (RTOS tasks)
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A Simple Example (main())

Assigning the priorities
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Features of Using an RTOS

Two tasks can be written independently of 
one another, and the system will still respond 
well.
The RTOS will make the response good
whenever the user presses a button by 
turning the microprocessor over to the task 
that responds to the buttons immediately.
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Tasks and Data: Context

Each task has its own private context.
the register values,
a program counter,
a stack.

All other data is shared among all of the tasks 
in the system.

Global
static
initialized
...
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An Example
A common data area
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Sharing Data
Two main functions

vRespondToButton vCalculateTankLevels
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Shared-Data Problems

Bug in previous slide (example task code)

vCalculateTankLevels() and 
vRespondToButton() share the same data 
structure: tankdata[MAX_TANKS]

The shared data structure could get corrupted 
or inconsistent (refer to Chapter 4)
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Shared-Data Problems

Another example
Task2 interrupts Task1
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A clearer examination

The assembly code
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A clearer examination
The flow
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Reentrancy

Reentrant function
can be called by more than one task and

will always work correctly,

even if RTOS switches from one task to 
another in the middle of executing the function.

vCountErrors() is not a reentrant function.
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How to check reentrancy?

Apply 3 rules to check if a function is 
reentrant

1. Does not use variables in a nonatomic way
unless

they are stored on stack of the calling task, or

they are private variables of the task

2. Does not call any non-reentrant functions

3. Does not use hardware in a nonatomic way
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Review of C Variable Storage

fixed locations 
in memory

on stackfixed location 
in memory

on stack
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Applying Reentrancy Rules

Qs: Is this 
reentrant?

Ans: NO!
Violates rules:

(1) non-atomic 
use of fError

(2) printf() may be
non-reentrant
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Gray Areas of Reentrancy

Is the following code reentrant?
static int cErrors;
void vCountErrors(void) {

++cErrors; 
}

Maybe! Depends on microprocessor and 
compiler

8051: 9 assembly instructions (non-reentrant!)
80x86: 2 assembly instructions (reentrant!)

Is incrementing 
cErrors atomic?
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Non-reentrant function in 8051
MOVDPTR,#cErrors+01H
MOVX A,@DPTR
INC A
MOVX @DPTR,A
JNZ noCarry
MOVDPTR,# cErrors
MOVX A,@DPTR
MOVX @DPTR,A

noCarry:
RET
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Rentrant Function in 80x86

INC (cErrors)
RET
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Semaphores and Shared Data

The scenario
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RTOS Semaphores

Functions:
raise & lower
get & give
take & release
pend & post
p & v
wait and signal
take (for lower) & release (for raise)
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RTOS functions for binary semaphore

A binary semaphore
Only one task can have the semaphore at a 
time.

TakeSemaphore
block until the semaphore is released

take the semaphore

ReleaseSemaphore
release a taken semaphore
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Semaphores Protect Data

The tank application
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The Sequence of Events

If a user presses a button while the levels task is still 
modifying the data and still has the semaphore,

The RTOS will switch to the “button task,” just as 
before, moving the levels task to the ready state.
When the button task tries to get the semaphore by 
calling TakeSemaphore it will block because the levels 
task already has the semaphore.
The RTOS will then look around for another task to run.
When the levels task releases the semaphore by 
calling ReleaseSemaphore, the button task will no 
longer be blocked.
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Execution Flow
The flow
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Execution Flow
The flow
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The Nuclear Reactor System

MicroC/OS RTOS
Semaphore-related functions

OSSemPost(): release the semaphore
OSSemPend(): take the semaphore
OSSemCreate(): initialize the semaphore

Related data structures
OS_EVENT: the data representing the semaphore
WAIT_FOREVER: indicates that the task making the 
call is willing to wait forever

Other functions
OSTimeDly(): block functions 
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The Code

The data structures
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The Code

The main function
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The Code

Two tasks

A potential bug!
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Initializing Semaphores 
in Nuclear Reactor

How do you know that OSSemCreate 
happens before OSSemPend in 
vReadTemperatureTask?

Because of delay by calling OSTimeDly(5)?
Some higher priority task might take up all the 
delay introduced!

Change Task Priorities?
Someone later might change back the task 
priorities and not know of the time bomb!

Correct solution
Place OSSemCreate BEFORE OSStart in main!
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Reentrancy and Semaphores

Now adding a semaphore to the previous 
code (using Nucleus RTOS system calls)

Atomic now!



Mutex Task Synchronization in 
eCos

Two tasks share a variable 
gSharedVariable

incrementTask: increments the variable 
value
decrementTask: decrements the variable 
value

A mutex is used to protect this shared 
variable
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Mutex Task Synchronization in 
eCos (main program)
#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
cyg_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0; 

void cyg_user_start(void) { 
/* Create the mutex for accessing the shared variable. */ 
cyg_mutex_init(&sharedVariableMutex); 

/* Create the increment and decrement tasks. */ 
cyg_thread_create(INCREMENT_TASK_PRIORITY, incrementTask, 

(cyg_addrword_t)0, "Increment Task", 
(void *)incrementTaskStack, INCREMENT_TASK_STACK_SIZE,
&incrementTaskHdl, &incrementTaskObj); 

cyg_thread_create(DECREMENT_TASK_PRIORITY, decrementTask,
(cyg_addrword_t)0, "Decrement Task", 
(void *)decrementTaskStack, DECREMENT_TASK_STACK_SIZE,
&decrementTaskHdl, &decrementTaskObj); 

/* Notify the scheduler to start running the tasks. */ 
cyg_thread_resume(incrementTaskHdl);
cyg_thread_resume(decrementTaskHdl);
diag_printf("eCos mutex example.\\n"); 

}
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Mutex Task Synchronization in 
eCos (incrementTask)
void incrementTask(cyg_addrword_t data) { 

while (1) { 
/* Delay for 3 seconds. */ 
cyg_thread_delay(TICKS_PER_SECOND * 3); 

/* Wait for the mutex to become available. */ 
cyg_mutex_lock(&sharedVariableMutex); 
gSharedVariable++; 
diag_printf("Increment Task: shared variable 

value is %d\\n", gSharedVariable); 

/* Release the mutex. */ 
cyg_mutex_unlock(&sharedVariableMutex); 

} 
}
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Mutex Task Synchronization in 
eCos (decrementTask)
void decrementTask(cyg_addrword_t data) { 

while (1) { 
/* Delay for 7 seconds. */ 
cyg_thread_delay(TICKS_PER_SECOND * 7); 

/* Wait for the mutex to become available. */ 
cyg_mutex_lock(&sharedVariableMutex); 
gSharedVariable--; 
diag_printf("Decrement Task: shared variable 

value is %d\\n", gSharedVariable); 

/* Release the mutex. */ 
cyg_mutex_unlock(&sharedVariableMutex); 

} 
} 
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Mutex Task Synchronization in 
Linux (main program)
#include <pthread.h> 
pthread_mutex_t sharedVariableMutex; 
int32_t gSharedVariable = 0;

int main(void) { 
/* Create the mutex for accessing the shared variable using
* the default attributes. */ 
pthread_mutex_init(&sharedVariableMutex, NULL); 

/* Create the increment and decrement tasks */ 
pthread_create(&incrementTaskObj, NULL, 

(void *)incrementTask, NULL); 
pthread_create(&decrementTaskObj, NULL, 

(void *)decrementTask, NULL); 

/* Allow the tasks to run. */ pthread_join(incrementTaskObj, NULL); 
pthread_join(decrementTaskObj, NULL); 
return 0; 

}
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Mutex Task Synchronization in 
Linux (incrementTask)
#include <stdio.h> 
#include <unistd.h> 

void incrementTask(void *param) { 
while (1) { 

/* Delay for 3 seconds. */ 
sleep(3); 

/* Wait for the mutex before accessing the GPIO 
registers. */ 

pthread_mutex_lock(&sharedVariableMutex); 
gSharedVariable++; 
printf("Increment Task: shared variable value is %d\\n", 

gSharedVariable); 
/* Release the mutex for other task to use. */ 
pthread_mutex_unlock(&sharedVariableMutex); 

} 
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Mutex Task Sychronization in 
Linux (decrementTask)
void decrementTask(void *param) { 

while (1) { 
/* Delay for 7 seconds. */ 
sleep(7); 

/* Wait for the mutex to become available. */ 
pthread_mutex_lock(&sharedVariableMutex); 
gSharedVariable--; 
printf("Decrement Task: shared variable value is 

%d\\n", gSharedVariable); 

/* Release the mutex. */ 
pthread_mutex_unlock(&sharedVariableMutex); 

} 
}
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Multiple Semaphores

Some RTOS allows you to have as many 
semaphores as you like.
Advantage

In a system with only one semaphore, if the lower-
priority task takes the semaphore to change data, the 
higher-priority task might block waiting for the 
semaphore.

How does the RTOS know which semaphore protects 
which data?

It doesn’t.
You must decide what shared data each of your 
semaphores protects!
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Semaphores as a Signaling Device

Another common use of semaphores is as a 
simple way to communicate

from one task to another or
from an interrupt routine to a task.

For example,
printing task
formatting task
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Semaphores as a Signaling Device

Data structures
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Semaphores as a Signaling Device

Functions
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Semaphores as a Signaling Device

Functions



Semaphore Task Synchronization 
in eCos (main program)
#include <cyg/kernel/kapi.h> 
#include <cyg/infra/diag.h> 
#include "led.h" 
cyg_sem_t semButton; 

void cyg_user_start(void) { 
/* Configure the green LED control pin. */ 
ledInit( ); 
/* Create the semaphore with an initial value of zero. */ 
cyg_semaphore_init(&semButton, 0); 
/* Create the producer and consumer tasks. */ 
cyg_thread_create(PRODUCER_TASK_PRIORITY, producerTask, 

(cyg_addrword_t)0, "Producer Task", (void *)producerTaskStack, 
PRODUCER_TASK_STACK_SIZE, &producerTaskHdl, &producerTaskObj); 

cyg_thread_create(CONSUMER_TASK_PRIORITY, consumerTask, 
(cyg_addrword_t)0, "Consumer Task", (void *)consumerTaskStack, 
CONSUMER_TASK_STACK_SIZE, &consumerTaskHdl, &consumerTaskObj); 

/* Notify the scheduler to start running the tasks. */ 
cyg_thread_resume(producerTaskHdl); 
cyg_thread_resume(consumerTaskHdl); 
diag_printf("eCos semaphore example - press button SW0.\\n"); 

}
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Semaphore Task Synchronization 
in eCos (producerTask)
#include "button.h" 

void producerTask(cyg_addrword_t data) { 
int buttonOn; 

while (1) { 
/* Delay for 10 milliseconds. */ 
cyg_thread_delay(TICKS_PER_SECOND / 100); 

/* Check whether the SW0 button has been pressed. */ 
buttonOn = buttonDebounce( ); 

/* If button SW0 was pressed, signal consumer task. */ 
if (buttonOn) cyg_semaphore_post(&semButton); 

} 
}
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Semaphore Task Synchronization 
in eCos (debounce)
int buttonDebounce(void) { 

static uint16_t buttonState = 0; 
uint8_t pinState; pinState = buttonRead( ); 

/* Store the current debounce status. */ 
buttonState = ((buttonState << 1) | pinState | 0xE000); 

if (buttonState == 0xF000) 
return TRUE; 

return FALSE; 
}
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Semaphore Task Synchronization 
in eCos (consumerTask)
void consumerTask(cyg_addrword_t data) {
while (1) { 

/* Wait for the signal. */ 
cyg_semaphore_wait(&semButton); 

diag_printf("Button SW0 was pressed. 
\\n"); 

ledToggle( ); 
} 

}
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Semaphore Task Synchronization 
in Linux (main program)
#include <stdio.h> 
#include <pthread.h> 
#include <semaphore.h> 
#include "led.h" 

sem_t semButton; 

int main(void) { 
/* Configure the green LED control pin. */ 
ledInit( ); 

/* Create semaphore for this process only and with an initial value of 0. */ 
sem_init(&semButton, 0, 0); 

/* Create the producer and consumer tasks */ 
pthread_create(&producerTaskObj, NULL, (void *)producerTask, NULL); 
pthread_create(&consumerTaskObj, NULL, (void *)consumerTask, NULL); 
printf("Linux semaphore example - press button SW0.\\n"); 

/* Allow the tasks to run. */ 
pthread_join(producerTaskObj, NULL); 
pthread_join(consumerTaskObj, NULL); 
return 0; 

}
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Semaphore Task Synchronization 
in Linux (producerTask)
#include <unistd.h> 
#include "button.h" 

void producerTask(void *param) { 
int buttonOn; 
while (1) { 

/* Delay for 10 milliseconds. */ 
usleep(10000); 

/* Check if the SW0 button has been pressed. */ 
buttonOn = buttonDebounce( ); 

/* If button SW0 was pressed, signal consumer */ 
if (buttonOn) sem_post(&semButton); 

} 
}
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Semaphore Task Synchronization 
in Linux (consumerTask)
void consumerTask(void *param) { 
while (1) { 

/* Wait for the signal. */ 
sem_wait(&semButton); 

printf("Button SW0 was pressed.\\n"); 

ledToggle( ); 
} 

}
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Semaphore Problems

Forgetting to take the semaphore
Forgetting to release the semaphore
Taking the wrong semaphore
Holding a semaphore for a long time
Priority Inversion
Causing a deadly embrace
Use semaphores only when you have to!
Avoid them when you can!
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Priority Inversion
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Deadly Embrace

AMX RTOS code
Both tasks may block
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Semaphore Variants

Counting semaphores
take = decrement integer
release = increment integer
block when integer = 0

Resource semaphores
released only by task that took them

Mutex semaphores
automatically handle priority inversion problem
(not all RTOS call such semaphores mutexes!)
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Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Taking semaphores
Most targeted
Response times of interrupts and non data-sharing 
tasks are unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks
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