
Textbooks: (a) Embedded Software Primer, David E. Simon, Addison Wesley
(b) Programming Embedded Systems with C and GNU Development Tools, 2nd Edition,

M. Barr and A. Massa, Oreilly Media Inc.

1

Real-Time Operating
Systems (Part I)

Embedded Software Design
熊博安

國立中正大學資訊工程研究所

pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

2

Contents

Tasks and Task States

Tasks and Data

Semaphores and Shared Data

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

3

Desktop OS v/s RTOS (1)

Desktop OS:
Boot: OS takes control, sets up environment

Applications: Run under OS, independently

Real-Time Embedded OS:
Boot: Application takes control, starts RTOS

Application: linked with OS, tied together

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

4

Desktop OS v/s RTOS (2)

Desktop OS:
multiuser need security, protection, etc.

check validity of pointers into system function

RTOS:
single user no need of security

for performance, pointers are not checked

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

5

Desktop OS v/s RTOS (3)

Desktop OS:
limited configuration

RTOS:
extensive configuration: leave out all what you
don’t need, e.g. file managers, I/O drivers,
utilities, and even memory management

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

6

Tasks and Task States

Task: a subroutine in RTOS
Task States:

Running: using microprocessor to execute
instructions
Ready: has instructions for microprocessor to
execute, but is not yet executing
Blocked: has nothing for microprocessor,
waiting for external event, e.g. network data
handler with no data from network, button
response task with button not yet pressed

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

7

Task States

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

8

Other Task States

Finer distinctions of ready and blocked states:
suspended

pended

waiting

dormant

delayed

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

9

The Scheduler

Keeps track of the states of each task

Decides which task should run

Based on priorities

priorities set by user

non-blocked task with highest priority runs

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

10

Consequences (1)

Can a task go from ready to blocked state?
Ans: NO!
Reason:

A task goes to blocked state only when it
decides for ITSELF if it needs to wait for
something or has nothing to do.
To make this decision, it needs to execute
some code, thus it is “running” before
“blocked”!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

11

Consequences (2)

Can a blocked task wake up on its own
(without any other task helping)?
Ans: NO!
Reason:

A blocked task will have something for
microprocessor to do only if some OTHER
task interrupts it and tells it that whatever it
was waiting for has happened!
Otherwise, the task will be blocked forever.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

12

Consequences (3)

Can a task switch from ready to running or
vice-versa on its own?
Ans: NO!
Reason:

Scheduler does all the switching between
ready and running states.
A blocked task can move to ready, and
immediately switch to running (if it has the
highest priority).

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

13

Q/A about scheduler and task states (1)

Qs: How does the scheduler know when a
task has become blocked or unblocked?

Ans: RTOS provides functions for tasks to tell
scheduler:

what events the tasks want to wait for

to signal that events have happened

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

14

Q/A about scheduler and task states (2)

Qs: What happens if all the tasks are blocked?

Ans: Scheduler spins in some tight loop in
the RTOS.

If nothing ever happens, that’s your fault!

Make sure something happens sooner or
later by having an interrupt routine call some
RTOS function to unblock a task.

＊

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

15

Q/A about scheduler and task states (3)

Qs: What if two tasks with the same priority
are ready?

Ans: Depends on RTOS.
Illegal to have two tasks with same priority

Time-slice between the two tasks

Run one until blocked, then run the other

Backup scheduling policy: round-robin, FIFO

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

16

Q/A about scheduler and task states (4)

Qs. If one task is running and another,
higher-priority task unblocks, does the task
that is running get stopped and moved to the
ready state right away?

Ans.
Preemptive RTOS: Yes!

Nonpreemptive RTOS: No!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

A Simple Example

The classic situation

This task will be unblocked as soon as the
user pushes a button.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

18

A Simple Example

The computational task

Blinking LED Example

Two Operating Systems
eCos: an open-source real-time OS for
embedded systems

Task = thread
Linux: embedded version of an open-source
desktop OS

Task = pthread

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

19

Blinking LED in eCos

#define TICKS_PER_SECOND (100)
#define LED_TASK_STACK_SIZE (4096)
#define LED_TASK_PRIORITY (12)
/* Declare the task variables. */
unsigned char
ledTaskStack[LED_TASK_STACK_SIZE];

cyg_thread ledTaskObj;
cyg_handle_t ledTaskHdl;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

20

Task Information

Task Handle

Blinking LED in eCos
#include <cyg/kernel/kapi.h>
#include "led.h”
void blinkLedTask(cyg_addrword_t data)
{

while (1)
{

/* Delay for 500 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 2);
ledToggle();

} }

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

21

Blinking LED in eCos
void cyg_user_start(void)
{

/* Configure the green LED control pin. */
ledInit();

/* Create the LED task. */
cyg_thread_create(LED_TASK_PRIORITY, blinkLedTask,

(cyg_addrword_t)0, "LED Task", (void *)ledTaskStack,
LED_TASK_STACK_SIZE, &ledTaskHdl, &ledTaskObj);

/* Notify the scheduler to start running the task. */
cyg_thread_resume(ledTaskHdl);

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

22

Scheduler runs
only after
cyg_user_start()
exits!

Blinking LED in Linux
#include <unistd.h>
#include "led.h”
void blinkLedTask(void *param)
{
while (1)
{

/* Delay for 500 milliseconds. */
usleep(50000);
ledToggle();

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

23

Time unit:
microseconds

Blinking LED in Linux
#include <pthread.h>
pthread_t ledTaskObj;
int main(void)
{

/* Configure the green LED control pin. */
ledInit();
/* Create the LED task using the default task
attributes. No parameters */
pthread_create(&ledTaskObj, NULL,

(void *)blinkLedTask, NULL);
/* Allow the LED task to run. */
pthread_join(ledTaskObj, NULL);
return 0;

}
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

24

Suspend main()
until the pthread
terminates!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

25

A Simple Example (RTOS tasks)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

26

A Simple Example (main())

Assigning the priorities

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

27

Features of Using an RTOS

Two tasks can be written independently of
one another, and the system will still respond
well.
The RTOS will make the response good
whenever the user presses a button by
turning the microprocessor over to the task
that responds to the buttons immediately.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

28

Tasks and Data: Context

Each task has its own private context.
the register values,
a program counter,
a stack.

All other data is shared among all of the tasks
in the system.

Global
static
initialized
...

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

29

An Example
A common data area

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

30

Sharing Data
Two main functions

vRespondToButton vCalculateTankLevels

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

31

Shared-Data Problems

Bug in previous slide (example task code)

vCalculateTankLevels() and
vRespondToButton() share the same data
structure: tankdata[MAX_TANKS]

The shared data structure could get corrupted
or inconsistent (refer to Chapter 4)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

32

Shared-Data Problems

Another example
Task2 interrupts Task1

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

33

A clearer examination

The assembly code

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

34

A clearer examination
The flow

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

35

Reentrancy

Reentrant function
can be called by more than one task and

will always work correctly,

even if RTOS switches from one task to
another in the middle of executing the function.

vCountErrors() is not a reentrant function.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

36

How to check reentrancy?

Apply 3 rules to check if a function is
reentrant

1. Does not use variables in a nonatomic way
unless

they are stored on stack of the calling task, or

they are private variables of the task

2. Does not call any non-reentrant functions

3. Does not use hardware in a nonatomic way

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

37

Review of C Variable Storage

fixed locations
in memory

on stackfixed location
in memory

on stack

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

38

Applying Reentrancy Rules

Qs: Is this
reentrant?

Ans: NO!
Violates rules:

(1) non-atomic
use of fError

(2) printf() may be
non-reentrant

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

39

Gray Areas of Reentrancy

Is the following code reentrant?
static int cErrors;
void vCountErrors(void) {

++cErrors;
}

Maybe! Depends on microprocessor and
compiler

8051: 9 assembly instructions (non-reentrant!)
80x86: 2 assembly instructions (reentrant!)

Is incrementing
cErrors atomic?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

40

Non-reentrant function in 8051
MOVDPTR,#cErrors+01H
MOVX A,@DPTR
INC A
MOVX @DPTR,A
JNZ noCarry
MOVDPTR,# cErrors
MOVX A,@DPTR
MOVX @DPTR,A

noCarry:
RET

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

41

Rentrant Function in 80x86

INC (cErrors)
RET

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

42

Semaphores and Shared Data

The scenario

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

43

RTOS Semaphores

Functions:
raise & lower
get & give
take & release
pend & post
p & v
wait and signal
take (for lower) & release (for raise)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

44

RTOS functions for binary semaphore

A binary semaphore
Only one task can have the semaphore at a
time.

TakeSemaphore
block until the semaphore is released

take the semaphore

ReleaseSemaphore
release a taken semaphore

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

45

Semaphores Protect Data

The tank application

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

46

The Sequence of Events

If a user presses a button while the levels task is still
modifying the data and still has the semaphore,

The RTOS will switch to the “button task,” just as
before, moving the levels task to the ready state.
When the button task tries to get the semaphore by
calling TakeSemaphore it will block because the levels
task already has the semaphore.
The RTOS will then look around for another task to run.
When the levels task releases the semaphore by
calling ReleaseSemaphore, the button task will no
longer be blocked.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

47

Execution Flow
The flow

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

48

Execution Flow
The flow

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

49

The Nuclear Reactor System

MicroC/OS RTOS
Semaphore-related functions

OSSemPost(): release the semaphore
OSSemPend(): take the semaphore
OSSemCreate(): initialize the semaphore

Related data structures
OS_EVENT: the data representing the semaphore
WAIT_FOREVER: indicates that the task making the
call is willing to wait forever

Other functions
OSTimeDly(): block functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

50

The Code

The data structures

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

51

The Code

The main function

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

52

The Code

Two tasks

A potential bug!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

53

Initializing Semaphores
in Nuclear Reactor

How do you know that OSSemCreate
happens before OSSemPend in
vReadTemperatureTask?

Because of delay by calling OSTimeDly(5)?
Some higher priority task might take up all the
delay introduced!

Change Task Priorities?
Someone later might change back the task
priorities and not know of the time bomb!

Correct solution
Place OSSemCreate BEFORE OSStart in main!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

54

Reentrancy and Semaphores

Now adding a semaphore to the previous
code (using Nucleus RTOS system calls)

Atomic now!

Mutex Task Synchronization in
eCos

Two tasks share a variable
gSharedVariable

incrementTask: increments the variable
value
decrementTask: decrements the variable
value

A mutex is used to protect this shared
variable

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

55

Mutex Task Synchronization in
eCos (main program)
#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
cyg_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0;

void cyg_user_start(void) {
/* Create the mutex for accessing the shared variable. */
cyg_mutex_init(&sharedVariableMutex);

/* Create the increment and decrement tasks. */
cyg_thread_create(INCREMENT_TASK_PRIORITY, incrementTask,

(cyg_addrword_t)0, "Increment Task",
(void *)incrementTaskStack, INCREMENT_TASK_STACK_SIZE,
&incrementTaskHdl, &incrementTaskObj);

cyg_thread_create(DECREMENT_TASK_PRIORITY, decrementTask,
(cyg_addrword_t)0, "Decrement Task",
(void *)decrementTaskStack, DECREMENT_TASK_STACK_SIZE,
&decrementTaskHdl, &decrementTaskObj);

/* Notify the scheduler to start running the tasks. */
cyg_thread_resume(incrementTaskHdl);
cyg_thread_resume(decrementTaskHdl);
diag_printf("eCos mutex example.\\n");

}
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

56

Mutex Task Synchronization in
eCos (incrementTask)
void incrementTask(cyg_addrword_t data) {

while (1) {
/* Delay for 3 seconds. */
cyg_thread_delay(TICKS_PER_SECOND * 3);

/* Wait for the mutex to become available. */
cyg_mutex_lock(&sharedVariableMutex);
gSharedVariable++;
diag_printf("Increment Task: shared variable

value is %d\\n", gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedVariableMutex);

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

57

Mutex Task Synchronization in
eCos (decrementTask)
void decrementTask(cyg_addrword_t data) {

while (1) {
/* Delay for 7 seconds. */
cyg_thread_delay(TICKS_PER_SECOND * 7);

/* Wait for the mutex to become available. */
cyg_mutex_lock(&sharedVariableMutex);
gSharedVariable--;
diag_printf("Decrement Task: shared variable

value is %d\\n", gSharedVariable);

/* Release the mutex. */
cyg_mutex_unlock(&sharedVariableMutex);

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

58

Mutex Task Synchronization in
Linux (main program)
#include <pthread.h>
pthread_mutex_t sharedVariableMutex;
int32_t gSharedVariable = 0;

int main(void) {
/* Create the mutex for accessing the shared variable using
* the default attributes. */
pthread_mutex_init(&sharedVariableMutex, NULL);

/* Create the increment and decrement tasks */
pthread_create(&incrementTaskObj, NULL,

(void *)incrementTask, NULL);
pthread_create(&decrementTaskObj, NULL,

(void *)decrementTask, NULL);

/* Allow the tasks to run. */ pthread_join(incrementTaskObj, NULL);
pthread_join(decrementTaskObj, NULL);
return 0;

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

59

Mutex Task Synchronization in
Linux (incrementTask)
#include <stdio.h>
#include <unistd.h>

void incrementTask(void *param) {
while (1) {

/* Delay for 3 seconds. */
sleep(3);

/* Wait for the mutex before accessing the GPIO
registers. */

pthread_mutex_lock(&sharedVariableMutex);
gSharedVariable++;
printf("Increment Task: shared variable value is %d\\n",

gSharedVariable);
/* Release the mutex for other task to use. */
pthread_mutex_unlock(&sharedVariableMutex);

}
} Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

60

Mutex Task Sychronization in
Linux (decrementTask)
void decrementTask(void *param) {

while (1) {
/* Delay for 7 seconds. */
sleep(7);

/* Wait for the mutex to become available. */
pthread_mutex_lock(&sharedVariableMutex);
gSharedVariable--;
printf("Decrement Task: shared variable value is

%d\\n", gSharedVariable);

/* Release the mutex. */
pthread_mutex_unlock(&sharedVariableMutex);

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

61

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

62

Multiple Semaphores

Some RTOS allows you to have as many
semaphores as you like.
Advantage

In a system with only one semaphore, if the lower-
priority task takes the semaphore to change data, the
higher-priority task might block waiting for the
semaphore.

How does the RTOS know which semaphore protects
which data?

It doesn’t.
You must decide what shared data each of your
semaphores protects!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

63

Semaphores as a Signaling Device

Another common use of semaphores is as a
simple way to communicate

from one task to another or
from an interrupt routine to a task.

For example,
printing task
formatting task

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

64

Semaphores as a Signaling Device

Data structures

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

65

Semaphores as a Signaling Device

Functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

66

Semaphores as a Signaling Device

Functions

Semaphore Task Synchronization
in eCos (main program)
#include <cyg/kernel/kapi.h>
#include <cyg/infra/diag.h>
#include "led.h"
cyg_sem_t semButton;

void cyg_user_start(void) {
/* Configure the green LED control pin. */
ledInit();
/* Create the semaphore with an initial value of zero. */
cyg_semaphore_init(&semButton, 0);
/* Create the producer and consumer tasks. */
cyg_thread_create(PRODUCER_TASK_PRIORITY, producerTask,

(cyg_addrword_t)0, "Producer Task", (void *)producerTaskStack,
PRODUCER_TASK_STACK_SIZE, &producerTaskHdl, &producerTaskObj);

cyg_thread_create(CONSUMER_TASK_PRIORITY, consumerTask,
(cyg_addrword_t)0, "Consumer Task", (void *)consumerTaskStack,
CONSUMER_TASK_STACK_SIZE, &consumerTaskHdl, &consumerTaskObj);

/* Notify the scheduler to start running the tasks. */
cyg_thread_resume(producerTaskHdl);
cyg_thread_resume(consumerTaskHdl);
diag_printf("eCos semaphore example - press button SW0.\\n");

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

67

Semaphore Task Synchronization
in eCos (producerTask)
#include "button.h"

void producerTask(cyg_addrword_t data) {
int buttonOn;

while (1) {
/* Delay for 10 milliseconds. */
cyg_thread_delay(TICKS_PER_SECOND / 100);

/* Check whether the SW0 button has been pressed. */
buttonOn = buttonDebounce();

/* If button SW0 was pressed, signal consumer task. */
if (buttonOn) cyg_semaphore_post(&semButton);

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

68

Semaphore Task Synchronization
in eCos (debounce)
int buttonDebounce(void) {

static uint16_t buttonState = 0;
uint8_t pinState; pinState = buttonRead();

/* Store the current debounce status. */
buttonState = ((buttonState << 1) | pinState | 0xE000);

if (buttonState == 0xF000)
return TRUE;

return FALSE;
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

69

Semaphore Task Synchronization
in eCos (consumerTask)
void consumerTask(cyg_addrword_t data) {
while (1) {

/* Wait for the signal. */
cyg_semaphore_wait(&semButton);

diag_printf("Button SW0 was pressed.
\\n");

ledToggle();
}

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

70

Semaphore Task Synchronization
in Linux (main program)
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#include "led.h"

sem_t semButton;

int main(void) {
/* Configure the green LED control pin. */
ledInit();

/* Create semaphore for this process only and with an initial value of 0. */
sem_init(&semButton, 0, 0);

/* Create the producer and consumer tasks */
pthread_create(&producerTaskObj, NULL, (void *)producerTask, NULL);
pthread_create(&consumerTaskObj, NULL, (void *)consumerTask, NULL);
printf("Linux semaphore example - press button SW0.\\n");

/* Allow the tasks to run. */
pthread_join(producerTaskObj, NULL);
pthread_join(consumerTaskObj, NULL);
return 0;

}
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

71

Semaphore Task Synchronization
in Linux (producerTask)
#include <unistd.h>
#include "button.h"

void producerTask(void *param) {
int buttonOn;
while (1) {

/* Delay for 10 milliseconds. */
usleep(10000);

/* Check if the SW0 button has been pressed. */
buttonOn = buttonDebounce();

/* If button SW0 was pressed, signal consumer */
if (buttonOn) sem_post(&semButton);

}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

72

Semaphore Task Synchronization
in Linux (consumerTask)
void consumerTask(void *param) {
while (1) {

/* Wait for the signal. */
sem_wait(&semButton);

printf("Button SW0 was pressed.\\n");

ledToggle();
}

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

73

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

74

Semaphore Problems

Forgetting to take the semaphore
Forgetting to release the semaphore
Taking the wrong semaphore
Holding a semaphore for a long time
Priority Inversion
Causing a deadly embrace
Use semaphores only when you have to!
Avoid them when you can!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

75

Priority Inversion

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

76

Deadly Embrace

AMX RTOS code
Both tasks may block

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

77

Semaphore Variants

Counting semaphores
take = decrement integer
release = increment integer
block when integer = 0

Resource semaphores
released only by task that took them

Mutex semaphores
automatically handle priority inversion problem
(not all RTOS call such semaphores mutexes!)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

78

Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Taking semaphores
Most targeted
Response times of interrupts and non data-sharing
tasks are unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks

	Real-Time Operating Systems (Part I)
	Contents
	Desktop OS v/s RTOS (1)
	Desktop OS v/s RTOS (2)
	Desktop OS v/s RTOS (3)
	Tasks and Task States
	Task States
	Other Task States
	The Scheduler
	Consequences (1)
	Consequences (2)
	Consequences (3)
	Q/A about scheduler and task states (1)
	Q/A about scheduler and task states (2)
	Q/A about scheduler and task states (3)
	Q/A about scheduler and task states (4)
	A Simple Example
	A Simple Example
	Blinking LED Example
	Blinking LED in eCos
	Blinking LED in eCos
	Blinking LED in eCos
	Blinking LED in Linux
	Blinking LED in Linux
	A Simple Example (RTOS tasks)
	A Simple Example (main())
	Features of Using an RTOS
	Tasks and Data: Context
	An Example
	Sharing Data
	Shared-Data Problems
	Shared-Data Problems
	A clearer examination
	A clearer examination
	Reentrancy
	How to check reentrancy?
	Review of C Variable Storage
	Applying Reentrancy Rules
	Gray Areas of Reentrancy
	Non-reentrant function in 8051
	Rentrant Function in 80x86
	Semaphores and Shared Data
	RTOS Semaphores
	RTOS functions for binary semaphore
	Semaphores Protect Data
	The Sequence of Events
	Execution Flow
	Execution Flow
	The Nuclear Reactor System
	The Code
	The Code
	The Code
	Initializing Semaphores �in Nuclear Reactor
	Reentrancy and Semaphores
	Mutex Task Synchronization in eCos
	Mutex Task Synchronization in eCos (main program)
	Mutex Task Synchronization in eCos (incrementTask)
	Mutex Task Synchronization in eCos (decrementTask)
	Mutex Task Synchronization in Linux (main program)
	Mutex Task Synchronization in Linux (incrementTask)
	Mutex Task Sychronization in Linux (decrementTask)
	Multiple Semaphores
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphores as a Signaling Device
	Semaphore Task Synchronization in eCos (main program)
	Semaphore Task Synchronization in eCos (producerTask)
	Semaphore Task Synchronization in eCos (debounce)
	Semaphore Task Synchronization in eCos (consumerTask)
	Semaphore Task Synchronization in Linux (main program)
	Semaphore Task Synchronization in Linux (producerTask)
	Semaphore Task Synchronization in Linux (consumerTask)
	Semaphore Problems
	Priority Inversion
	Deadly Embrace
	Semaphore Variants
	Ways to Protect Shared Data

