
Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

1

PERIPHERALS

Embedded Software Design
熊博安

國立中正大學資訊工程研究所

pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
2

Contents

Control and Status Registers

The Device Driver Philosophy

A Serial Device Driver

Device Driver Design

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
3

Introduction

Besides processor and memory, there are
other hardware devices called “peripherals”
Type Classification

Application domain specific (ASICs)
Common ones

Timers/counters
Serial ports

Location Classification
On-chip or internal (same chip)
Off-chip or external (different chips)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
4

Control and Status Registers

Basic interface between embedded processor
and a peripheral device

Part of peripheral devices

Register locations, size, and individual
meanings are features of the peripherals

Address mapping:
Memory-mapped (popular! easy!)

I/O-mapped

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
5

Memory-Mapped Device

Memory-mapped registers
Look like ordinary variables (pointers)

Example: GPIO registers in PXA255
uint32_t *pGpio0Set = (uint32_t *)(0x40E00018);

Difference from ordinary variable
Can be changed by hardware

Use keyword “volatile” for register variables
Warns compiler not to make any assumptions
about the data stored at that address

Turns off compiler optimizations on that variable

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
6

Use of “volatile” keyword
uint32_t volatile *pGpio0Set = (uint32_t
volatile *)(0x40E00018);

void gpioFunction(void) {
/* Set GPIO pin 0 high */
pGpio0Set = 1; /* First write */

delay_ms(1000);

/* Set GPIO pin 1 high */
pGpio0Set = 2; / Second write */

}

Bit Manipulation

C language operators for bit manipulation
& (AND)
| (OR)
~ (NOT)
^ (XOR)
<< (left shift)
>> (right shift)

How to test, set, clear, toggle individual bits?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
7

Bit Manipulation

pTimerStatus
A pointer to a timer status register
Least Significant Bit (LSB)

bit 0
represented by 0x01

Most Significant Bit (MSB)
bit 7
represented by 0x80

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
8

Testing Bits

To see whether bit 3 is set in the timer status
register using the & operator
If (*pTimerStatus & 0x08) {

/* Do something here … */
}

Suppose *pTimerStatus = 0x4C

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
9

Setting Bits

To set bit 4, using | operator
*pTimerStatus |= 0x10;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
10

Clearing Bits

To clear bit 2, using & and ~ operators
*pTimerStatus &= ~(0x04);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
11

= 0xFB

Toggling Bits

To toggle bit 7, using ^ operator
*pTimerStatus ^= 0x80;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
12

Shifting Bits

To right shift by 1 bit
bitCount >>= 1;

To left shift by 2 bits
bitCount <<= 2;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
13

Used when performing
an operation on EACH
bit of a register:
• Bitmask with one bit

set/clear
• Shift it one bit at a

time

Bitmasks

Bitmask
A constant used with bitwise operators to
manipulate one or more bits in a larger integer
field.
Used to set, test, clear, toggle bits.
Examples

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
14

Bitmask Macros

Handy macro to avoid typos in long
hexadecimal literals
#define BIT(X) (1<<(X))

Usage:
To define a specific register bit in a bitmask,
such as bit 22, use this macro
#define TIMER_STATUS BIT(22)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
15

Bitfields

Bitfield
A field of one or more bits within a larger
integer value.
Used for bit manipulations
Supported within C struct

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
16

Bitfields

To test bits using bitfield

To set bits using bitfield

To toggle a bit using bitfield

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
17

Bitfield Unions

Bitfields are not portable
Compilers: start either from LSB or MSB!

Solution
Enclose within a “union”
union {

uint8_t byte;
struct {

uint8_t bit0 : 1;
uint8_t bit1 : 1;
uint8_t bit2 : 1;
uint8_t bit3 : 1;
uint8_t nibble : 4;

} bits;
} foo;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
18

Bitfield Unions

Bitfield unions can be used to
Initialize a register

Still access individual bits

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
19

Struct Overlays

Overlay a C struct onto a peripheral’s control
and status registers
Benefits

Read/write through pointer to struct
Register described nicely by struct
Code can be kept clean
Compiler does address construction at
compile time

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
20

Struct Overlays

Example
Not properly aligned registers

Use reserved members in struct

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
21

Struct member Offset
count 0x00
maxCount 0x02
_reserved1 0x04
control 0x06

Struct Overlays

To test bits

To set bits

To clear bits

To toggle bits

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
22

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
23

The Device Driver Philosophy
Goal: Hide the hardware completely!!!
Device driver module: the only piece of
software that reads or writes registers directly
Solution: Create API that need no change if
underlying peripheral is replaced by another
from its general class
Example: Flash memory devices all have
sectors (but different sizes!), erase an entire
sector, write single byte or word, driver
should work with all flash memories of
different sector sizes

Flash Driver API

An erase operation can be performed only on
an entire sector.
Once erased, individual bytes and words can
be rewritten.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
24

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
25

Benefits of good device drivers

Modularization: easy to
maintain: add or modify features

Single module with direct
access: state of hardware
can be more accurately tracked

Software changes due to
hardware changes: localized to
device driver

blink.c

led.c

GPIO

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
26

Driver Implementation (5 Steps)

Data Structure: to overlay memory-mapped
registers

State Variables: to track hardware and driver
states

Initialization Routine: to initialize hardware to
a known state

API Routines: for users to use

Interrupt Service Routines (ISR): for IRQs

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
27

1. Data Structure

Create a C-style struct looking like
memory-mapped registers (an overlay)

study data book for peripheral

create table of registers and their offsets

begin filling struct from lowest offset

place dummy variables for unused space

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
28

2. State Variables

Variables to track hardware and driver states:

Hardware initialized?

Length of timer countdown?

Multiple software timers using a single
hardware timer

Length of each timer countdown?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
29

3. Initialization Routine

After knowing how to check hardware state

Initialize hardware to a known state

Good way to learn how to interact with and
control hardware

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
30

4. API Routines

To add functionalities to driver

Choose names and purposes of various
routines

Decide on parameters and return values

Implement API routines

Test API routines

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
31

5. Interrupt Service Routines

Best to design, implement, and test most
device driver routines BEFORE ENABLING
INTERRUPTS for the first time

Use polling to get the driver working first

Then, switch to interrupts

There are often some problems related to
interrupts

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
32

A Serial Device Driver

Universal Asynchronous Receiver
Transmitter (UART)

A serial communication device

Transmission

A parallel byte is received from processor

Byte is serialized

Each bit is transmitted at appropriate time

UART

PXA255 processor has 4 on-chip UARTs
This example uses the Full Function UART
(FFUART) at COM1 port of Arcom’s board

FFUART registers start at 0x40100000

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
33

UART

Read docs to understand
Control register structures

How to setup communication?
How to get data into and out of the peripheral?

Addresses of control and status registers
Polling or interrupt?
For interrupt-driven communication

Interrupt conditions?
How is software driver informed of interrupt?
How is interrupt acknowledged?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
34

1. Register Interface

Struct overlay for UART registers (memory-
mapped)

Address:

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
35

2. State Variables

Serial driver parameters
serialparams_t

Initialization tracking
bInitialized

Bitmask values: enumerated types for
Parity: parity_t
Data bits: databits_t
Stop bits: stopbits_t

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
36

2. State Variables

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
37

PARITY_EVEN=(PARITY_ENABLE |
EVEN_PARITY_ENABLE)} parity_t;

2. State Variables

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
38

3. Initialization Routine

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
39

Programming
of registers

Initialized only
once

4. Device Driver API

For sending characters
serialPutChar

Waits until transmitter is ready
Then, sends a single character via serial port

For receiving characters
serialGetChar

Waits until a character is received
Data ready bit is checked in UART status register

Then, reads a character from serial port

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
40

4. Device Driver API (send)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
41

4. Device Driver API (get)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
42

Testing Driver

Connect COM1 to PC’s serial port
Start HyperTerminal or minicom on PC

Use default parameter values
Same as those used by RedBoot

Need a Command Line Interface (CLI) to
interact with terminal

An indispensable tool commonly implemented
in embedded systems

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
43

Testing Driver (CLI)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
44

Testing Driver (CLI)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
45

Extending Functionality

Develop a more robust and useful program
Selectable configuration

serialInit(initial communication
parameters …)

Error checking
Define and return error codes to application

parameter error, hardware error, …

Additional APIs
String functions: serialGetStr,
serialPutStr

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
46

Extending Functionality

FIFO usage
FIFOs as buffers for receive and transmit
channels more robust

Interrupts
Better than polling
No need of busy waiting for incoming
character in serialGetChar

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
47

Device Driver Design

More than one device driver
Interrupt priorities

Determine and set appropriate priority levels
Complete requirements

Allow peripherals to function fully

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
48

Device Driver Design

Resource usage
What resources are needed by a peripheral?
Example: Ethernet device needs a large buffer,
so don’t use a small buffer, otherwise will
affect throughput

Resource sharing
Access to common hardware (e.g. I/O pins) or
common memory
Think about how to share them!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
49

		PERIPHERALS
	Contents
	Introduction
	Control and Status Registers
	Memory-Mapped Device
	Use of “volatile” keyword
	Bit Manipulation
	Bit Manipulation
	Testing Bits
	Setting Bits
	Clearing Bits
	Toggling Bits
	Shifting Bits
	Bitmasks
	Bitmask Macros
	Bitfields
	Bitfields
	Bitfield Unions
	Bitfield Unions
	Struct Overlays
	Struct Overlays
	Struct Overlays
	The Device Driver Philosophy
	Flash Driver API
	Benefits of good device drivers
	Driver Implementation (5 Steps)
	1. Data Structure
	2. State Variables
	3. Initialization Routine
	4. API Routines
	5. Interrupt Service Routines
	A Serial Device Driver
	UART
	UART
	1. Register Interface
	2. State Variables
	2. State Variables
	2. State Variables
	3. Initialization Routine
	4. Device Driver API
	4. Device Driver API (send)
	4. Device Driver API (get)
	Testing Driver
	Testing Driver (CLI)
	Testing Driver (CLI)
	Extending Functionality
	Extending Functionality
	Device Driver Design
	Device Driver Design

