INTERRUPTS

Embedded Software Design
- fh &

YRS N e D RS

pahsiung@cs.ccu.edu.tw

Textbooks: An Embedded Software Primer, David E. Simon, Addison Wesley
Programming Embedded Systems with C and GNU Development Tools, 2" Edition,
Michael Barr and Anthony Massa, O’Reilly

mailto:pahsiung@cs.ccu.edu.tw

Contents

Microprocessor Architecture
Interrupt Basics
Shared-Data Problem

Interrupt Latency

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Microprocessor Architecture

Assembly language = human-readable
microprocessor instructions

1 assembly instruction = 1 CPU instruction
1 C statement = 1 or more CPU instructions

Every family of microprocessors has a
different assembly language

Microprocessor registers:
general-purpose: R1, R2, R3, ...
special: program counter, stack pointer, ...

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Assembly-Language Instructions

MOVE R3, R2

MOVE R5, (iITemperature)
MOVE R5, iTemperature
ADD R7, R3
NOT R4

JUMP NO_ADD
NO_ADD: MOVE (xyz), R1
SUBTRACT R1, R5
JCOND ZERO, NO_ MORE

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Assembly-Language Instructions

CALL ADD EM UP—
MOVE (xyz), R1<

ADD EM UP: -
ADD R1, R3
ADD R1, R4
ADD R1, R5
RETURN

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

C and Assembly Language

Figure 4.1 C and Assembly Language

X =y + 133;

MOVE
ADD
MOVE

if (X >= 2)

zZ 4=y,

w = sqrt (z);

MOVE

R1, (y)
R1, 133
(x), R1

R2, (2)

SUBTRACT R1, R2
JCOND NEG, L101

MOVE
ADD
MOVE

L101:

MOVE
PUSH
CALL
MOVE
PoP

R1, (y)
R2, R1
(z), R2
R1, (2)
R1

SQRT
(w), R1
R1

: Get the value of y into Rl
: Add 133
: Save the result in x

: Get the value of z
; Subtract z from x
; Skip if the result is negative

: Get the value of y into Rl
: Add it to z.
: Save the result in z

; Get the value of Z into Rl

; Put the parameter on the stack
: Call the sqrt function

: The result comes back in Rl

: Throw away the parameter

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Context Awareness

Since embedded systems are closely
relevant to the contexts, how can these
external events be noticed?

&=

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

1/0 Interrupts

The most common approach is to use
Interrupts.
Interrupts cause the microprocessor in the
embedded system
to suspend doing whatever it is doing, and
to execute some different code instead.

Interrupts can solve the response problem,
but not without some difficult programming,
and without introducing some new problems

of their own.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Hardware

This signal tells the microprocessor
that the serial port chip needs service.

Yyvy

Interrupt
request pins.

This signal tells the microprocessor
that the network chip needs service.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Wiring

Functions: disabling, prioritizing,

showing active interrupts Peripheral A Peripheral B
\\\\\ = | M~
Peripheral A Peripheral B &| Interrupt Controlle
r
= = r~| "
p— = = = =
= = =|= =
Processor Processor
A B

10

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Partial interrupt list (PXA255)

Interrupt number Interrupt source

38
9
11
26
27
28

GPIO Pin 0
GPIO Pin 1
USB

Timer O
Timer 1
Timer 2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng Univers

ity

11

Exception vs. Interrupt vs. Trap

Exception
Software interrupt: synchronous event
Eg: divide by zero

Interrupt
Hardware interrupt: asynchronous event
Eg: Timer

Trap
Internal interrupt: synchronous event
Eg: undefined instruction

12
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Basics

Microprocessor detects interrupt request (IRQ)
signal is asserted

Stops executing instructions

Saves on stack the address of next
Instruction

Jumps to interrupt service routine (ISR) and
executes it

Returns from ISR
Pops address from stack
Continues execution of next instruction

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

13

Interrupt Service Routine (ISR)

Do whatever needs to be done when the
Interrupt signal occurs

E.g.: character received at serial port chip 2
read character from chip
put it into memory

Miscellaneous housekeeping:
save/restore processor context
reset interrupt-detecting hardware in CPU
enable processing interrupts of lower priorities

Last instruction: RETURN or return from ISR

14
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

ISR vs. Procedure Calls

To execute ISRs, there is NO CALL
Instruction.

The microprocessor does the call
automatically.

An array, interrupt vector, of addresses is
used to point to appropriate ISRs.

ISRs must be loaded when the computer is
turned on.

Interrupts can be masked.
The context need to be saved.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

15

Interrupt Routines

Task Code Interrupt Routine

MOVE R1, (iCentigrade)
MULTIPLY R1,

9
DIVIDE R1, 5 \‘
ADD R1, 32 PUSH R1

MOVE (iFarnht), PUSH R2
JCOND ZERO, 109A1 . e
JUMP 14403 I! Read char from hw into Rl
MOVE R5, 23 !l Store R1 value into memory
PUSH R5 A
CALL Skiddo I! Reset serfal port hw
POP R9 !! Reset interrupt hardware
MOVE (Answer), R1 . e
RETURN POP RZ2
. e . POP R1
RETURN

16
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Disabling Interrupts

Two ways:
At Source: tell I/O chip to stop interrupting
At Destination: inform CPU to ignore IRQs
Selective disabling can be performed
Write a value in a special register
Two types of interrupts
Maskable: can be disabled, normal I/O

Nonmaskable: cannot be disabled, power
failure, catastrophic event, etc.
(ISR must not share data with task code!)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

17

PXA255 Interrupt Controller Mask
Register

ICMR: at 0x40D00004, for individual interrupt
enabling and disabling

= 1: interrupt allowed
= O: interrupt masked

GPIO Pin 0 Interrupt

18
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Current Program Status Register

CPSR: for global interrupt enabling and
disabling
FIQ bit and IRQ bit
Cannot use C to change CPSR
Must use assembly instructions

e MRS{<cond>} Rd,<psr> ; Rd = <psr>

e MSR{<cond>} <psr>,Rm ; <psSr> = Rm

e MSR{<cond>} <psrf>,Rm ; <psrf> = Rm
where

e <psr> = CPSR, CPSR _all, SPSR or SPSR all
e <psrf> = CPSR_flg or SPSR_flig

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

19

Disabling Interrupts

Priority-based interrupt disabling/enabling
Assign a priority to each IRQ

Program specifies lowest acceptable priority
= All IRQ with lower priorities will be disabled

= All IRQ with higher priorities will be enabled

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

20

ARM v5TE Processor
Exception/Interrupt Priorities

Priority Exception/Interrupt Source
1 (highest) Reset

2 Data abort

3 ~ast Interrupt Request (FIQ)
4 nterrupt Request (IRQ)

5 Prefetch Abort

— 6 (lowest) Undefined instruction or software
Interrupt

ARM v6: an imprecise abort between IRQ

and prefetch abort

21
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Some Common Questions

How do CPUs know where to find ISR?
At fixed location: e.g.: 8051 IRQ1: 0x0003

In IVT (Interrupt Vector Table): addresses of
each ISR

How does CPU know where IV T 1S?
At fixed location: e.g.: 80186: 0x00000
Depends on CPU

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

22

ARM Interrupt Vector Table

Addresses In IVT are at fixed locations
Exception/Interrupt source Address

Reset 0x00000000
Undefined instruction 0x00000004
Software interrupt 0x00000008
Prefetch abort 0x0000000C
Data abort 0x00000010
RQ 0x00000018
-1Q 0x0000001C

23
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Partial Interrupt Map for the
Arcom Board

Interrupt number Interrupt source

8 Ethernet

11 USB

21 Serial Port 2
22 Serial Port 1
26 Timer O

27 Timer 1

28 Timer 2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

24

Interrupt Map

/**

* Interrupt Map

**/

#define ETHERNET INT (8)

#define USB_INT (11)

#define SERIAL2_INT (21)

#define SERIALL_INT (22) Should install
#define TIMERO_INT (26) a default ISR
#define TIMERI_INT @7 for any unused

#define TIMER2 INT (28) IRQ In IVT!!

25
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Some Common Questions (contd)

Can CPU be interrupted within an instruction?
Usually not
Except: inst with large data movements

2 IRQ at same time, which one to service?
According to priorities

Can an IRQ interrupt an ISR?
Yes: default behavior on some CPUs

26
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Some Common Questions (contd)

Interrupt nesting:

80x86: all IRQs disabled automatically, ISR

must reenable interrupts

Others: automatic, high-priority IRQ
Interrupt low-priority ISR

can

Interrupts signaled, while IRQs are disabled?

Interrupts are remembered by micro

Serviced after IRQs are enabled, In
order (actually only deferred)

PDrocessor

oriority-

27

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Some Common Questions (contd)

IRQs disabled, forgot to enable?

= System halted

CPU start up: interrupts enabled or disabled?
= Disabled

ISR Iin C? Yes!

28
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

ISR In C?

3 methods
Compiler-specific keyword: interrupt

void interrupt vHandleTimerlRQ (void) { .. }
Compiler-specific #pragma to declare ISR

GNU gcc keyword: attribute
void vHandleTimerlRQ() _ attribute ((interrupt(*IRQ)));

Compiler will automatically add code to save and
restore the context
Compiler will add RETURN at end

C is a little slower than assembly, if speed is not of
concern, C can be used to write ISR!

29
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Software Flow During Interupt

Ethernet network Main Program
interface controller while (1)
interrupt occurs
if {foo == TRUE}
/* Do something */
Interrupt Vector Processor Stack
Table
Ethernet ISR Address Push =
' interruptEthernetISR
1
|
Processor Context
Timer 2 ISR Address
}
else
/* Do something else */
30

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Shared-Data Problem

Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

A Powerful ISR Design

Can the ISR do everything you want?
= Yes, but this is very impractical.

main() SamplelSRQ
L {
int 1; P

// do nothing but an empty ‘{OOIO call StartNewConversion()
While(l)._ — = =
1=1+0;

+ ‘\

32

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Practical Approach

The ISR should do the necessary tasks

= moving data from I/O devices to the memory buffer or
vice versa

= handling emergent signals
= signaling the task subroutine code or the kernel

The ISR needs to notify some other procedure to do
follow-up processing.

o L -

Shared Variables

33
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Accessing the Shared Data

However, this may cause the shared data problem.

static int iTemperatures[2]; ISR

void interrupt vReadTemperatures (void)

{
iTemperatures[0] = !! read in value from hardware
iTemperatures[1] = !! read in value from hardware
}
void main (void) TaSk COde
{

int iTempO, iTempl;

while (TRUE)

{
iTemp0 = iTemperatures[0]; - °? . Interru t
iTempl = iTemperatures[1]; .°°"°‘0....o‘.. ‘® p
if (iTempQ != iTempl)
I'l Set off howling alarm;
}

34
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The Shared Data Problem

The unexpected interrupt
may cause two readings to be different,

even though the two measured temperatures
were always the same.

How can we improve on this?

Compare these temperature measurements
directly!

35
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Directly Testing

The new code

static int iTemperatures[2]; ISR

void interrupt vReadTemperatures (void)

{
iTemperatures[0] = /! read in value from hardware
iTemperatures[1] = !! read in value from hardware
:
void main (void) Task Code
{
while (TRUE)
{ -
if (iTemperatures[0] != iTemperatures[1l]) °q ;
/1 Ses,i off howlir]vg'alarm;p - ‘eee @ Testlng
} f
}

36
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Bug Harder to Be Detected

The compiler translation
if (iTemperatures[0] != iTemperatures[1])
Il Set off howling alarm;

MOVE R1, (iTemperatures[0])
*s

“MOVE R2, (iTemperatures[1])

SUBTRACT R1, R2 |

JCOND ZERO, TEMPERATURES_OK

; Code goes here to set off the alarm

TEMPERATURES_OK:

\
[
I

)

“e Interruptible

37

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Characteristics of Shared-Data Bug

A bug that is very hard to find.
It does not happen every time the code runs.

The program may run correctly most of the
time.
However, a false alarm may be set off
sometimes.
How can you trace back if the embedded
system has already exploded?

Remember the Therac-25 accidents?
There were many shared variables!!!

38
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Characteristics of Shared-Data Bug

Whenever ISR and task code share data
= Be suspicious!!!

= Analyze the situation to locate any such bugs!!!

39
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Solving the Shared-Data
Problem

Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

Solving Shared-Data Problem

Solution: Disable interrupts before using
shared data in task code, enable them after!

C compilers have functions to disable and
enable interrupts

Processors have instructions to disable and
enable interrupts

Problem: Compilers not smart enough to
automatically add disable/enable instructions
around shared code. Users must DO IT!

41
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Solving Shared-Data Problem:
Disabling Interrupts in C

static int iTemperatures[2];

void interrupt vReadTemperatures (void)

{

iTemperatures[0] = /! read in value from hardware
iTemperatures[1] = !! read in value from hardware

}

void main (void)

{

int iTempO, iTempl;

while (TRUE)

{

|disab1e ();|/* Disable interrupts while we use the array */

iTemp0 = iTemperatures[0];
iTempl = iTemperatures[1];

enable ();

if (iTempO != iTempl)
Il Set off howling alarm;

42

Solving Shared-Data Problem:
Disabling Interrupts in Assembly

DI

; disable interrupts while we use the array

MOVE
MOVE

R1, (iTemperature[0])
R2, (iTemperature[l])

El

: enable interrupts again

SUBTRACT R1, RZ2

JCOND

ZERO, TEMPERATURES_OK

; Code goes here to set off the alarm

TEMPERATURES_OK:

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

43

Atomic Instructions/Sections

A More Convenient Way

Use some atomic instructions supported by
the hardware.

An Instruction i1s atomic If it cannot be
Interrupted.

The collection of lines can be atomic by
adding an interrupt-disable instruction.

A set of instruction that must be atomic for the
system to work properly is often called a
critical section.

44
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Another Example

static int iSeconds, iMinutes, iHours;

A buggy program void interrupt vUpdateTime (void)

{
= Imprecise answer | fiieconds:

if (iSeconds >= 60)

{
iSeconds = 0;
++iMinutes;
if (iMinutes >= 60)
{
iMinutes = 0;
++iHours;
if (iHours >= 24)
iHours = 0;
}
}

.!! Do whatever needs to be done to the hardware

Interrupt @< __ :

— ﬂngﬁcoﬂhﬁwdnight (void)
{
return ((((iHours * 60) + iMinutes) * 60) + iSeconds);

}

45
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupts with a Timer

Bug:
|ISecondsSinceMidnight() interrupted!

ISeconds, IMinutes, iIHours changed by
vUpdateTime()

Wrong answer by |ISecondsSinceMidnight()

46
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Several Possible Solutions

Disable the interrupt

long 1SecondsSinceMidnight (void)
¢
disable ();

enable (); /* WRONG: This never gets executed! */
} | |

return ((((iHours * 60) + iMinutes) * 60) + iSeconds);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

47

A Better Code

Changing the timing of return()

long 1SecondsSinceMidnight (void)
{

Tong TReturnVal;

disable ();

1ReturnVal =
(((iHours * 60) + iMinutes) * 60) + iSeconds:

enable ();

return (1ReturnVal):

Embedded Software Design, ©2007. Pao-Ann Hsiung, National Chung Cheng University

48

The Best Way

The nested interrupts

long 1SecondsSinceMidnight (void)
{ |
long TReturnVal;
BOOL fInterruptStateOld; /* Interrupts already disabled? */
fInterruptState0ld = disable ();
1ReturnVal =
(((iHours * 60) + iMinutes) * 60) + iSeconds;
/* Restore interrupts to previous state */
if (fInterruptState0ld)
enable (); |
return (1Returnval);
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Another Potential Solution

Doing things in the ISR

static long int 1SecondsToday;

void interrupt vUpdateTime (void)

{
++1SecondsToday;
if (1SecondsToday == 60 * 60 * 24)
1SecondsToday = 0OL;
}
long 1SecondsSinceMidnight (void)
{
return (1SecondsToday);
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

50

Is the solution correct?

Depends on if the microprocessor’s registers
are large enough to hold a long integer

fISecondsSinceMidnight() In assembly

MOVE R1, (ISecondsToday)

YES!

NOI!

NOT
ATOMIC

51
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Solution without disabling interrupts

static Tong int 1SecondsToday:

void interrupt vUpdateTime (void)
{

++1SecondsToday;
if (1SecondsToday == 60L * 60L * 24L)
1SecondsToday = OL;

(needs
volatile 1

long 1SecondsSinceMidnight (void)
keyword) | .

lTong TReturn;

/* When we read the same value twice, it must be good. */
1Return = 1SecondsToday;
while (1Return != 1SecondsToday)

1Return = 1SecondsToday;

return (1Return):

52
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Compiler optimizations defeat the
purpose of the solution

Solution:
read twice ISecondsToday, if not changed
then no interrupt occurred between the reads

Problems:

After “IReturn = ISecondsToday;”, compiler
saves |ISecondsToday and assumes that it has
not changed since the last read, thus using the
saved value instead of newly reading it

while loop is optimized out of existence!

53
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

The volatile Keyword

Need to declare:
static volatile long Int ISecondsToday;

Compiler will know that the variable is volatile
and each reference is read from memory

If this keyword is not supported, you can still
get the similar result by turning off the
compiler optimizations.

54
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Interrupt Latency

Textbook: An Embedded Software Primer,

. ; . 55
David E. Simon, Addison Wesley

Interrupt Latency

How fast does my system respond to each
Interrupt?

Longest period of interrupt disabled time

Total execution time of higher priority
Interrupts

Time for microprocessor to stop execution,
switch context, start ISR execution

> Execute ISR till an initial response

ﬁ 56

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

To Reduce Interrupt Latencies

Factor 4: Initial response of ISR -
Write efficient code

Factor 3. Context switch -
Hardware dependent

Factor 2: Exec of higher-priority ISRs -
Write short ISRS!

Factor 1: Disable interrupts -
To solve shared-data problem,
Shorten period

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

57

Make your ISRs short

Factory Control System

A task to monitor a gas leak detector
High priority
Call fire dept
Shut down affected factory part

Call fire dept
Needs several seconds
Delays all other lower priority interrupts
Therefore, remove telephone call from ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

58

Disabling Interrupts

System requirements:

Disable interrupts for 125 microseconds to
read 2 shared temperature variables

Disable interrupts for 250 microseconds to
get time from shared variables

Respond within 625 microseconds to special
signals, ISR takes 300 microseconds to
execute

59
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Worst Case Interrupt Latency

Processor gets to ISR does
interprocessor ISR. critical work.

Task code \ - \

disables interrupts. |

N\

IRQ —

/ < 250 Hsec —
< 300 psec ——|

Interprocessor

interrupt
occurs. }< Time to deadline: 625 psec -

60
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Worst Case Interrupt Latency

Processor gets to
interprocessor ISR. ISR. does
critical work.
Processor gets to

Task code network ISR. \

disables interrupts. l

O

Network
interrupt \

occurs. JE—

IRQ ———— —

Interprocessor /

interrupt T 20 kee] - 100 psec
occurs.
[—— 300 psec ——

{ Time to deadline: 625 Msec ’%

61
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Alternatives to Disabling Interrupts

Two variable sets

static int iTemperaturesA[2];
static int iTemperaturesB[2]:
static BOOL fTaskCodeUsingTempsB = FALSE;

void interrupt vReadTemperatures (void)
{

if (fTaskCodeUsingTempsB)

{

iTemperaturesA[0] = /! read in value from hardware;

iTemperaturesA[1] = !/ read in value from hardware:

}
else
{
iTemperaturesB[0] = !! read in value from hardware;
iTemperaturesB[1] = !! read in value from hardware;
}

void main (void)

{
while (TRUE)
{
if (fTaskCodeUsingTempsB)
if (iTemperaturesB[0] != iTemperaturesB[1])
11 Set off howling alarm;
else
if (iTemperaturesA[0] != iTemperaturesA[1])
Il Set off howling alarm;
fTaskCodeUsingTempsB = !fTaskCodeUsingTempsB;
}
}

62

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Two Variable Sets

This simple mechanism solves the shared-
data problem, because the ISR will never
write into the set of temperatures that the task
code iIs reading.

However, the while-loop may be executed
twice before it sets off the alarm.

63
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Queue Approach

The shared-data problem is also eliminated.

ffdefine QUEUE_SIZE 100
int iTemperatureQueue[QUEUE_SIZE];
int iHead = 0; /* Place to add next item */
int iTail = 0; /* Place to read next item */
void interrupt vReadTemperatures (void)
{
/* If the queue is not full . . . */
if (1((iHead+2==1Tail) || (iHead==QUEUE_SIZE-2 && iTail==0)))
{ .
iTemperatureQueue[iHead] = !!read one temperature;
iTemperatureQueue[iHead + 1] = !!read other temperature;
iHead += 2;
if (iHead == QUEUE_SIZE)
iHead = 0;
}
else
I'l'throw away next value
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Queue Approach

main()

void main (void)
{
int iTemperaturel, iTemperature?2;
while (TRUE)
{
/* If there is any data. . . */
if (iTail != iHead)
{
iTemperaturel= iTemperatureQueue[iTail];
iTemperature2= iTemperatureOuede[iTai] + 11;
iTail += 2;
if (iTail == QUEUE_SIZE)
iTail = 0;
!l Do something with iValue;
}
}
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

A Queue Approach

However, this code is very fragile.

Either of these seemingly minor changes can
cause bugs

In task code (main):

Reversing the following order could cause shared
data bug

Read data first

Update iTail pointer second
If the following statement is non-atomic, shared
data bug could occur

ITail += 2;

66
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Shared Data In Therac-25 Software

When Tphase is 1" [Datent]:
If data entry complete, set Tph.-ase ko M3

¥
et upper
gollim atar

[“Ebset parameters | I'-'Iu:ulefEner:g'!.r J

Dlodelenergy offzet wariable

Callibration.,
~ Tables -

Tasks and subrontines in the code blamed for the Tyler accidents

67
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Improved Blinking LED Program

Use a timer to re-write the blinking LED
program
More accurate than trial-and-error approach
Delay routine eliminated

Timer device driver is used for delay
Interrupts processor after 500 ms

68
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

How Timers Work?

Timer

A peripheral that measures elapsed time
Counts down processor cycles or clocks

How does a timer work?
Setup an interval register in peripheral

Uses a clock to keep count of number of ticks
elapsed since timer started

Number of clock ticks compared to the value
In timer interval register

Equal = a timer interrupt is generated (if enabled)

69
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer clocks

Timer counts cycles from
Processor’s main clock signal, or

A separate clock signal fed into timer
peripheral

Can be configured by programming timer’s
configuration registers

Modern processor has multiple internal clock
sources to drive timer

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

70

PXA255 Timer

~“4tmers: 0,1, 2,3

~ Counts up
Bit 3130292272625 48322012019 181716151413121109 87 6543210
0SMRO Register
(0x40A00000) Timer Match Value

Bit 3130292827 2625423222019181716151413121109 87 6543210

0SCR Register
(0x40A00010)

Timer Count Value

Bit 31302028 272625483220 2019181716151413121109 8 7 6 5 4 3

0SSR Register
(0x40A00014)

Bit 3130202827 2625242322220191817 1615141312110 9 8 7 65 43 210

OIER Register
(0x40A0001C)

71
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

PXA255 Timer

Timer Count Register (OSCR)

Contains a count incremented on rising edge of
timer clock (3.6864 MHz)

Timer Match Register (OSMRN)
Timer values for 4 different timers

Compares value of OSMRn to the OSCR
Equal = interrupt generated

Timer Interrupt Enable Register (OIER)

To enable interrupts for the 4 different timers
Timer Interrupt Status Register (OSSR)

To check If interrupts are enabled

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

72

Watchdog Timers

Kicking the dog!

A special hardware fail-safe mechanism
Intervenes when software stops functioning
Periodically reset by software

If software crashes or hangs, the watchdog
timer soon expires, causing system to be reset
automatically

Must implement resetting in main
processing loop and not in ISR

Main loop might hang, while all IRQ/ISRs work!

73
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Blinking LED: main()

#include “led.h”

#include “timer.h”

int main(void) {
/* Configure the green LED control pin. */
ledlnit();

/* Configure and start the timer */
timerinit();

while (1) ;

return O;

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

74

Timer Initialization

Use binitial1zed variable to ensure timer
registers are configured only once!

Clear any pending interrupt

Write bit 0 (TIMER_O_MATCH) to OSSR
(TIMER_STATUS_REG)

Calculate interrupt interval
PXA255 clock is 3.6864 MHz

Timer Match Register Value = Timer clock x Timer interval

=3,686,400 Hz x 0.5 seconds
= 1,843,200 = 0x001C2000 = TIMER_INTERVAL_500MS

75
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer Initialization

Algorithm to setup timer in PXA255

Read current count value in timer count
register OSCR

Add interval offset to current count value. This
IS the amount of time before next time-out.

Program new interval value into timer match
register 0, OSMRO.
— TIMER_O MATCH REG =
(TIMER_COUNT_REG +
TIMER INTERVAL_ 500MS) ;

76
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer Initialization

Timer Enabling is done in two places

Timer peripheral

Bit 0 (TIMER_O_INTEN) in the 32-bit OIER
(TIMER_INT_ENABLE_REG)

Interrupt controller

Timer O is mapped to interrupt number 26

Set bit number 26 (TIMER_O_ENABLE) in ICMR
(INTERRUP_ENABLE_REG)

Finally, binitialized is setto TRUE.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

77

Timer Initialization

#define TIMER _INTERVAL 500MS (0x001C2000)
void timerlnit(void) {
static 1nt bInittialized = FALSE;
/* Initialize the timer only once */
iT(bInitialized == FALSE) {
/* Ack outstanding timer interrupts */
TIMER_STATUS REG = TIMER_O MATCH;
/* Initialized timer interval */

TIMER_O MATCH REG = (TIMER_COUNT_REG + TIMER INTERVAL_500MS);
/* Enable timer interrupt iIn timer peripheral */
TIMER_INT_ENABLE REG |= TIMER_O INTEN;

/* Enable timer interrupt iIn interrupt controller */
INTERRUPT_ENABLE REG = TIMER_O ENABLE;
bInitialized = TRUE;

}

78
Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

Timer ISR

#include “led.h”

void timerinterrupt(void) {
/* Ack timer O interrupt */
TIMER_STATUS = TIMER O MATCH;
/* Change state of green LED */
ledToggle();
/* Set new timer interval */

TIMER O MATCH REG = (TIMER _COUNT REG +
TIMER_INTERVAL 500MS;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University

79

	INTERRUPTS
	Contents
	Microprocessor Architecture
	Assembly-Language Instructions
	Assembly-Language Instructions
	C and Assembly Language
	Context Awareness
	I/O Interrupts
	Interrupt Hardware
	Interrupt Wiring
	Partial interrupt list (PXA255)
	Exception vs. Interrupt vs. Trap
	Interrupt Basics
	Interrupt Service Routine (ISR)
	ISR vs. Procedure Calls
	Interrupt Routines
	Disabling Interrupts
	PXA255 Interrupt Controller Mask Register
	Current Program Status Register
	Disabling Interrupts
	ARM v5TE Processor Exception/Interrupt Priorities
	Some Common Questions
	ARM Interrupt Vector Table
	Partial Interrupt Map for the Arcom Board
	Interrupt Map
	Some Common Questions (contd)
	Some Common Questions (contd)
	Some Common Questions (contd)
	ISR in C?
	Software Flow During Interupt
	The Shared-Data Problem
	A Powerful ISR Design
	A Practical Approach
	Accessing the Shared Data
	The Shared Data Problem
	Directly Testing
	A Bug Harder to Be Detected
	Characteristics of Shared-Data Bug
	Characteristics of Shared-Data Bug
	Solving the Shared-Data Problem
	Solving Shared-Data Problem
	Solving Shared-Data Problem: Disabling Interrupts in C
	Solving Shared-Data Problem: Disabling Interrupts in Assembly
	Atomic Instructions/Sections
	Another Example
	Interrupts with a Timer
	Several Possible Solutions
	A Better Code
	The Best Way
	Another Potential Solution
	Is the solution correct?
	Solution without disabling interrupts
	Compiler optimizations defeat the purpose of the solution
	The volatile Keyword
	Interrupt Latency
	Interrupt Latency
	To Reduce Interrupt Latencies
	Make your ISRs short
	Disabling Interrupts
	Worst Case Interrupt Latency
	Worst Case Interrupt Latency
	Alternatives to Disabling Interrupts
	Two Variable Sets
	A Queue Approach
	A Queue Approach
	A Queue Approach
	Shared Data in Therac-25 Software
	Improved Blinking LED Program
	How Timers Work?
	Timer clocks
	PXA255 Timer
	PXA255 Timer
	Watchdog Timers
	Blinking LED: main()
	Timer Initialization
	Timer Initialization
	Timer Initialization
	Timer Initialization
	Timer ISR

