
Textbooks: An Embedded Software Primer, David E. Simon, Addison Wesley
Programming Embedded Systems with C and GNU Development Tools, 2nd Edition,

Michael Barr and Anthony Massa, O’Reilly

1

INTERRUPTS

Embedded Software Design
熊博安

國立中正大學資訊工程研究所
pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
2

Contents

Microprocessor Architecture

Interrupt Basics

Shared-Data Problem

Interrupt Latency

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
3

Microprocessor Architecture

Assembly language = human-readable
microprocessor instructions
1 assembly instruction = 1 CPU instruction
1 C statement = 1 or more CPU instructions
Every family of microprocessors has a
different assembly language
Microprocessor registers:

general-purpose: R1, R2, R3, …
special: program counter, stack pointer, …

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
4

Assembly-Language Instructions

MOVE R3, R2
MOVE R5, (iTemperature)
MOVE R5, iTemperature
ADD R7, R3
NOT R4
JUMP NO_ADD
NO_ADD: MOVE (xyz), R1
SUBTRACT R1, R5
JCOND ZERO, NO_MORE

Value of variable
iTemperature from

memory

Address of variable
iTemperature in

memory

Unconditional Jump

Conditional Jump

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
5

Assembly-Language Instructions

CALL ADD_EM_UP
MOVE (xyz), R1

…
ADD_EM_UP:

ADD R1, R3
ADD R1, R4
ADD R1, R5
RETURN

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
6

C and Assembly Language

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
7

Context Awareness

Since embedded systems are closely
relevant to the contexts, how can these
external events be noticed?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
8

I/O Interrupts

The most common approach is to use
interrupts.

Interrupts cause the microprocessor in the
embedded system

to suspend doing whatever it is doing, and
to execute some different code instead.

Interrupts can solve the response problem,
but not without some difficult programming,
and without introducing some new problems
of their own.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
9

Interrupt Hardware

Interrupt Wiring

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
10

PXA255
has an
internal
interrupt
controller

Functions: disabling, prioritizing,
showing active interrupts

Partial interrupt list (PXA255)

Interrupt number Interrupt source
8 GPIO Pin 0
9 GPIO Pin 1
11 USB
26 Timer 0
27 Timer 1
28 Timer 2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
11

Exception vs. Interrupt vs. Trap

Exception
Software interrupt: synchronous event
Eg: divide by zero

Interrupt
Hardware interrupt: asynchronous event
Eg: Timer

Trap
Internal interrupt: synchronous event
Eg: undefined instruction

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
12

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
13

Interrupt Basics

Microprocessor detects interrupt request (IRQ)
signal is asserted
Stops executing instructions
Saves on stack the address of next
instruction
Jumps to interrupt service routine (ISR) and
executes it
Returns from ISR
Pops address from stack
Continues execution of next instruction

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
14

Interrupt Service Routine (ISR)

Do whatever needs to be done when the
interrupt signal occurs
E.g.: character received at serial port chip

read character from chip
put it into memory

Miscellaneous housekeeping:
save/restore processor context
reset interrupt-detecting hardware in CPU
enable processing interrupts of lower priorities

Last instruction: RETURN or return from ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
15

ISR vs. Procedure Calls

To execute ISRs, there is NO CALL
instruction.

The microprocessor does the call
automatically.

An array, interrupt vector, of addresses is
used to point to appropriate ISRs.

ISRs must be loaded when the computer is
turned on.

Interrupts can be masked.
The context need to be saved.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
16

Interrupt Routines

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
17

Disabling Interrupts

Two ways:
At Source: tell I/O chip to stop interrupting
At Destination: inform CPU to ignore IRQs

Selective disabling can be performed
Write a value in a special register

Two types of interrupts
Maskable: can be disabled, normal I/O
Nonmaskable: cannot be disabled, power
failure, catastrophic event, etc.
(ISR must not share data with task code!)

PXA255 Interrupt Controller Mask
Register

ICMR: at 0x40D00004, for individual interrupt
enabling and disabling

1: interrupt allowed
0: interrupt masked

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
18

Current Program Status Register

CPSR: for global interrupt enabling and
disabling

FIQ bit and IRQ bit
Cannot use C to change CPSR
Must use assembly instructions
• MRS{<cond>} Rd,<psr> ; Rd = <psr>
• MSR{<cond>} <psr>,Rm ; <psr> = Rm

• MSR{<cond>} <psrf>,Rm ; <psrf> = Rm

where
• <psr> = CPSR, CPSR_all, SPSR or SPSR_all
• <psrf> = CPSR_flg or SPSR_flg

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
19

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
20

Disabling Interrupts

Priority-based interrupt disabling/enabling

Assign a priority to each IRQ

Program specifies lowest acceptable priority
All IRQ with lower priorities will be disabled

All IRQ with higher priorities will be enabled

ARM v5TE Processor
Exception/Interrupt Priorities
Priority Exception/Interrupt Source
1 (highest) Reset
2 Data abort
3 Fast Interrupt Request (FIQ)
4 Interrupt Request (IRQ)
5 Prefetch Abort
6 (lowest) Undefined instruction or software

interrupt

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
21

ARM v6: an imprecise abort between IRQ
and prefetch abort

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
22

Some Common Questions

How do CPUs know where to find ISR?
At fixed location: e.g.: 8051 IRQ1: 0x0003
In IVT (Interrupt Vector Table): addresses of
each ISR

How does CPU know where IVT is?
At fixed location: e.g.: 80186: 0x00000
Depends on CPU

ARM Interrupt Vector Table

Addresses in IVT are at fixed locations
Exception/Interrupt source Address
Reset 0x00000000
Undefined instruction 0x00000004
Software interrupt 0x00000008
Prefetch abort 0x0000000C
Data abort 0x00000010
IRQ 0x00000018
FIQ 0x0000001C

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
23

Partial Interrupt Map for the
Arcom Board
Interrupt number Interrupt source
8 Ethernet
11 USB
21 Serial Port 2
22 Serial Port 1
26 Timer 0
27 Timer 1
28 Timer 2

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
24

Interrupt Map
/**
* Interrupt Map
**/
#define ETHERNET_INT (8)
#define USB_INT (11)
#define SERIAL2_INT (21)
#define SERIAL1_INT (22)
#define TIMER0_INT (26)
#define TIMER1_INT (27)
#define TIMER2_INT (28)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
25

Should install
a default ISR
for any unused
IRQ in IVT!!!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
26

Some Common Questions (contd)

Can CPU be interrupted within an instruction?
Usually not
Except: inst with large data movements

2 IRQ at same time, which one to service?
According to priorities

Can an IRQ interrupt an ISR?
Yes: default behavior on some CPUs

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
27

Some Common Questions (contd)

Interrupt nesting:
80x86: all IRQs disabled automatically, ISR
must reenable interrupts
Others: automatic, high-priority IRQ can
interrupt low-priority ISR

Interrupts signaled, while IRQs are disabled?
Interrupts are remembered by microprocessor
Serviced after IRQs are enabled, in priority-
order (actually only deferred)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
28

Some Common Questions (contd)

IRQs disabled, forgot to enable?
System halted

CPU start up: interrupts enabled or disabled?
Disabled

ISR in C? Yes!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
29

ISR in C?

3 methods
Compiler-specific keyword: interrupt

void interrupt vHandleTimerIRQ (void) { … }

Compiler-specific #pragma to declare ISR
GNU gcc keyword: __attribute__

void vHandleTimerIRQ() __attribute__((interrupt(*IRQ)));

Compiler will automatically add code to save and
restore the context
Compiler will add RETURN at end
C is a little slower than assembly, if speed is not of
concern, C can be used to write ISR!

Software Flow During Interupt

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
30

Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

31

The Shared-Data Problem

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
32

A Powerful ISR Design

Can the ISR do everything you want?
Yes, but this is very impractical.

main()
{
int i;
// setting up ISRs
// do nothing but an empty loop
while(1)

i=i+0;
}

SampleISR()

{

newVal:= ReadADConverter()

call StartNewConversion()

…

…

…

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
33

A Practical Approach

The ISR should do the necessary tasks
moving data from I/O devices to the memory buffer or
vice versa
handling emergent signals
signaling the task subroutine code or the kernel

The ISR needs to notify some other procedure to do
follow-up processing.

Task Code ISR

Shared Variables

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
34

Accessing the Shared Data

However, this may cause the shared data problem.

ISR

Task Code

Interrupt

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
35

The Shared Data Problem

The unexpected interrupt
may cause two readings to be different,
even though the two measured temperatures
were always the same.

How can we improve on this?
Compare these temperature measurements
directly!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
36

Directly Testing

The new code
ISR

Task Code

Testing

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
37

A Bug Harder to Be Detected
The compiler translation

Interruptible

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
38

Characteristics of Shared-Data Bug

A bug that is very hard to find.
It does not happen every time the code runs.
The program may run correctly most of the
time.
However, a false alarm may be set off
sometimes.

How can you trace back if the embedded
system has already exploded?
Remember the Therac-25 accidents?

There were many shared variables!!!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
39

Characteristics of Shared-Data Bug

Whenever ISR and task code share data
Be suspicious!!!

Analyze the situation to locate any such bugs!!!

Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

40

Solving the Shared-Data
Problem

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
41

Solving Shared-Data Problem

Solution: Disable interrupts before using
shared data in task code, enable them after!
C compilers have functions to disable and
enable interrupts
Processors have instructions to disable and
enable interrupts
Problem: Compilers not smart enough to
automatically add disable/enable instructions
around shared code. Users must DO IT!

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University
42

Solving Shared-Data Problem:
Disabling Interrupts in C

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
43

Solving Shared-Data Problem:
Disabling Interrupts in Assembly

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
44

Atomic Instructions/Sections

A More Convenient Way
Use some atomic instructions supported by
the hardware.

An instruction is atomic if it cannot be
interrupted.
The collection of lines can be atomic by
adding an interrupt-disable instruction.
A set of instruction that must be atomic for the
system to work properly is often called a
critical section.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
45

Another Example

A buggy program
imprecise answer

Interrupt

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
46

Interrupts with a Timer

Bug:
lSecondsSinceMidnight() interrupted!
iSeconds, iMinutes, iHours changed by
vUpdateTime()
Wrong answer by lSecondsSinceMidnight()

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
47

Several Possible Solutions

Disable the interrupt

A buggy solution
- Interrupts will not be appropriately enabled.

Embedded Software Design, ©2007. Pao-Ann Hsiung, National Chung Cheng University
48

A Better Code
Changing the timing of return()

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
49

The Best Way
The nested interrupts

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
50

Another Potential Solution
Doing things in the ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
51

Is the solution correct?
Depends on if the microprocessor’s registers
are large enough to hold a long integer
lSecondsSinceMidnight() in assembly

MOVE R1, (lSecondsToday)
RETURN

MOVE R1, (lSecondsToday)
MOVE R2, (lSecondsToday+1)
…
RETURN

YES!
ATOMIC

NO! NOT
ATOMIC

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
52

Solution without disabling interrupts

(needs
volatile
keyword)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
53

Compiler optimizations defeat the
purpose of the solution

Solution:
read twice lSecondsToday, if not changed
then no interrupt occurred between the reads

Problems:
After “lReturn = lSecondsToday;”, compiler
saves lSecondsToday and assumes that it has
not changed since the last read, thus using the
saved value instead of newly reading it

while loop is optimized out of existence!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
54

The volatile Keyword

Need to declare:
static volatile long int lSecondsToday;

Compiler will know that the variable is volatile
and each reference is read from memory

If this keyword is not supported, you can still
get the similar result by turning off the
compiler optimizations.

Textbook: An Embedded Software Primer,
David E. Simon, Addison Wesley

55

Interrupt Latency

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
56

Interrupt Latency

How fast does my system respond to each
interrupt?

Longest period of interrupt disabled time

Total execution time of higher priority
interrupts

Time for microprocessor to stop execution,
switch context, start ISR execution

Execute ISR till an initial response

CPU
docs

Simulation, Estimation

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
57

To Reduce Interrupt Latencies

Factor 4: Initial response of ISR
Write efficient code

Factor 3: Context switch
Hardware dependent

Factor 2: Exec of higher-priority ISRs
Write short ISRs!

Factor 1: Disable interrupts
To solve shared-data problem,
Shorten period

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
58

Make your ISRs short

Factory Control System
A task to monitor a gas leak detector

High priority
Call fire dept
Shut down affected factory part

Call fire dept
Needs several seconds
Delays all other lower priority interrupts
Therefore, remove telephone call from ISR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
59

Disabling Interrupts

System requirements:

Disable interrupts for 125 microseconds to
read 2 shared temperature variables

Disable interrupts for 250 microseconds to
get time from shared variables

Respond within 625 microseconds to special
signals, ISR takes 300 microseconds to
execute

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
60

Worst Case Interrupt Latency

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
61

Worst Case Interrupt Latency
Design Change:
Network
Enhancement

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
62

Alternatives to Disabling Interrupts

Two variable sets

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
63

Two Variable Sets

This simple mechanism solves the shared-
data problem, because the ISR will never
write into the set of temperatures that the task
code is reading.
However, the while-loop may be executed
twice before it sets off the alarm.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
64

A Queue Approach
The shared-data problem is also eliminated.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
65

A Queue Approach
main()

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
66

A Queue Approach

However, this code is very fragile.
Either of these seemingly minor changes can
cause bugs

In task code (main):
Reversing the following order could cause shared
data bug

Read data first
Update iTail pointer second

If the following statement is non-atomic, shared
data bug could occur

iTail += 2;

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
67

Shared Data in Therac-25 Software

Improved Blinking LED Program

Use a timer to re-write the blinking LED
program

More accurate than trial-and-error approach
Delay routine eliminated
Timer device driver is used for delay

Interrupts processor after 500 ms

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
68

How Timers Work?

Timer
A peripheral that measures elapsed time
Counts down processor cycles or clocks

How does a timer work?
Setup an interval register in peripheral
Uses a clock to keep count of number of ticks
elapsed since timer started
Number of clock ticks compared to the value
in timer interval register

Equal a timer interrupt is generated (if enabled)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
69

Timer clocks

Timer counts cycles from
Processor’s main clock signal, or
A separate clock signal fed into timer
peripheral

Can be configured by programming timer’s
configuration registers

Modern processor has multiple internal clock
sources to drive timer

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
70

PXA255 Timer

4 timers: 0, 1, 2, 3
Counts up

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
71

PXA255 Processor
Timer 0 registers

PXA255 Timer

Timer Count Register (OSCR)
Contains a count incremented on rising edge of
timer clock (3.6864 MHz)

Timer Match Register (OSMRn)
Timer values for 4 different timers
Compares value of OSMRn to the OSCR

Equal interrupt generated
Timer Interrupt Enable Register (OIER)

To enable interrupts for the 4 different timers
Timer Interrupt Status Register (OSSR)

To check if interrupts are enabled

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
72

Watchdog Timers

Kicking the dog!
A special hardware fail-safe mechanism

Intervenes when software stops functioning
Periodically reset by software
If software crashes or hangs, the watchdog
timer soon expires, causing system to be reset
automatically

Must implement resetting in main
processing loop and not in ISR

Main loop might hang, while all IRQ/ISRs work!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
73

Blinking LED: main()
#include “led.h”
#include “timer.h”
int main(void) {

/* Configure the green LED control pin. */
ledInit();

/* Configure and start the timer */
timerInit();

while (1) ;

return 0;
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
74

Timer Initialization

Use bInitialized variable to ensure timer
registers are configured only once!
Clear any pending interrupt

Write bit 0 (TIMER_0_MATCH) to OSSR
(TIMER_STATUS_REG)

Calculate interrupt interval
PXA255 clock is 3.6864 MHz

Timer Match Register Value = Timer clock x Timer interval
=3,686,400 Hz x 0.5 seconds
= 1,843,200 = 0x001C2000 = TIMER_INTERVAL_500MS

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
75

Timer Initialization

Algorithm to setup timer in PXA255
Read current count value in timer count
register OSCR
Add interval offset to current count value. This
is the amount of time before next time-out.
Program new interval value into timer match
register 0, OSMR0.

TIMER_0_MATCH_REG =
(TIMER_COUNT_REG +
TIMER_INTERVAL_500MS);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
76

Timer Initialization

Timer Enabling is done in two places
Timer peripheral

Bit 0 (TIMER_0_INTEN) in the 32-bit OIER
(TIMER_INT_ENABLE_REG)

Interrupt controller
Timer 0 is mapped to interrupt number 26
Set bit number 26 (TIMER_0_ENABLE) in ICMR
(INTERRUP_ENABLE_REG)

Finally, bInitialized is set to TRUE.

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
77

Timer Initialization
#define TIMER_INTERVAL_500MS (0x001C2000)
void timerInit(void) {
static int bInitialized = FALSE;
/* Initialize the timer only once */
if(bInitialized == FALSE) {

/* Ack outstanding timer interrupts */
TIMER_STATUS_REG = TIMER_0_MATCH;
/* Initialized timer interval */
TIMER_0_MATCH_REG = (TIMER_COUNT_REG + TIMER_INTERVAL_500MS);
/* Enable timer interrupt in timer peripheral */
TIMER_INT_ENABLE_REG |= TIMER_0_INTEN;
/* Enable timer interrupt in interrupt controller */
INTERRUPT_ENABLE_REG = TIMER_0_ENABLE;
bInitialized = TRUE;
}

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
78

Timer ISR
#include “led.h”
void timerInterrupt(void) {
/* Ack timer 0 interrupt */
TIMER_STATUS = TIMER_0_MATCH;
/* Change state of green LED */
ledToggle();
/* Set new timer interval */
TIMER_0_MATCH_REG = (TIMER_COUNT_REG +
TIMER_INTERVAL_500MS;

}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
79

	INTERRUPTS
	Contents
	Microprocessor Architecture
	Assembly-Language Instructions
	Assembly-Language Instructions
	C and Assembly Language
	Context Awareness
	I/O Interrupts
	Interrupt Hardware
	Interrupt Wiring
	Partial interrupt list (PXA255)
	Exception vs. Interrupt vs. Trap
	Interrupt Basics
	Interrupt Service Routine (ISR)
	ISR vs. Procedure Calls
	Interrupt Routines
	Disabling Interrupts
	PXA255 Interrupt Controller Mask Register
	Current Program Status Register
	Disabling Interrupts
	ARM v5TE Processor Exception/Interrupt Priorities
	Some Common Questions
	ARM Interrupt Vector Table
	Partial Interrupt Map for the Arcom Board
	Interrupt Map
	Some Common Questions (contd)
	Some Common Questions (contd)
	Some Common Questions (contd)
	ISR in C?
	Software Flow During Interupt
	The Shared-Data Problem
	A Powerful ISR Design
	A Practical Approach
	Accessing the Shared Data
	The Shared Data Problem
	Directly Testing
	A Bug Harder to Be Detected
	Characteristics of Shared-Data Bug
	Characteristics of Shared-Data Bug
	Solving the Shared-Data Problem
	Solving Shared-Data Problem
	Solving Shared-Data Problem: Disabling Interrupts in C
	Solving Shared-Data Problem: Disabling Interrupts in Assembly
	Atomic Instructions/Sections
	Another Example
	Interrupts with a Timer
	Several Possible Solutions
	A Better Code
	The Best Way
	Another Potential Solution
	Is the solution correct?
	Solution without disabling interrupts
	Compiler optimizations defeat the purpose of the solution
	The volatile Keyword
	Interrupt Latency
	Interrupt Latency
	To Reduce Interrupt Latencies
	Make your ISRs short
	Disabling Interrupts
	Worst Case Interrupt Latency
	Worst Case Interrupt Latency
	Alternatives to Disabling Interrupts
	Two Variable Sets
	A Queue Approach
	A Queue Approach
	A Queue Approach
	Shared Data in Therac-25 Software
	Improved Blinking LED Program
	How Timers Work?
	Timer clocks
	PXA255 Timer
	PXA255 Timer
	Watchdog Timers
	Blinking LED: main()
	Timer Initialization
	Timer Initialization
	Timer Initialization
	Timer Initialization
	Timer ISR

