
Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

1

GETTING STARTED

Embedded Software Design
熊博安

國立中正大學資訊工程研究所
pahsiung@cs.ccu.edu.tw

mailto:pahsiung@cs.ccu.edu.tw

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
2

Contents

Getting to Know the Hardware

Your First Embedded Program

Compiling, Linking, and Locating

Downloading and Debugging

Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

3

Getting to Know
the Hardware

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
4

Getting to Know the Hardware

How to familiarize with a new board?

How to create a header file with the board’s
important features?

How to write software code to initialize a new
board?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
5

Understanding the Big Picture

Understand the general operation of the
system first

Main function? Inputs? Outputs?

Read all documentations

User’s Guide, Programmer’s Manual, …

Before picking up the board should answer:

What is the overall purpose of the board?

How does data flow through it?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
6

Draw your own data-flow diagram

Block Diagram for Print Server using Arcom board

Control Program

Data-flow on the Board …

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
7

Hardware Basics

Schematic
A drawing showing hardware components,
interconnections, and oscilloscope probe
points
Standard symbols

Datasheets
Complete specification of hardware
components

Electrical, timing, and interface parameters

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
8

Schematic Fundamentals

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
9

Basic Schematic Symbols

Light
Emitting
Diode (LED)

Example Schematic

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
10

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
11

Examine the landscape

Put yourself in the processor’s SHOES!
What does the processor’s world look like?
The processor has a lot of compatriots!

Memories: Storage and retrieval of data / code
Peripherals: Coordinate interaction with
outside world (I/O), or specific hardware func

Examples: serial ports, timers

Address Spaces (Address Book of processor)
Memory Space
I/O Space

Timing Diagram

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
12

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
13

Memory Map for Arcom Board

Internal
Peripheral
Registers

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
14

Header File

Describes most important features of a board

Abstract interface to hardware

Refer to devices by name, instead of addresses
Makes software more portable

If the 64 MB RAM is moved,
just change header file only, and

recompile program
(no need to change program code)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
15

Header File: Memory Map
/***
*
* Memory Map
*
* Base Address Size Description
* ------------ ----- ---------------------------
* 0x00000000 64M SDRAM
* 0x08000300 N/A Ethernet controller
* 0x50000000 16M Flash
* **/
#define SDRAM_BASE (0x00000000)
#define ETHERNET_BASE (0x08000300)
#define FLASH_BASE (0x50000000)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
16

How to Communicate?

Two basic communication techniques:

polling

interrupts

Processor issues some commands to device

Processor waits for device to complete action

Timer: 1000 0 (countdown)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
17

Polling: “are we there yet?”

do
{

/* Play games, read, listen to music, etc. */
…
/* Poll to see if we’re there yet. */
status = areWeThereYet();

} while (status == NO);

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
18

Interrupts

Asynchronous signal from external/internal
peripheral or from software to CPU
Processor issues commands
Processor does other things
Device interrupts processor
Processor suspends its work
Processor executes interrupt service routine
(ISR) or interrupt handler
Processor returns to the interrupted work

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
19

Interrupts

Initially
Not all automatic! Programmer must:

write and install ISR
enable its execution when interrupt occurs

A significant challenge!!!
Advantages

Code is better structured!
More efficient than polling!

Overhead
save registers in memory, disable lower-priority
interrupts, transfer control, etc.

Interrupts vs. Polling

Both are used frequently in practice
When to used interrupts?

Efficiency if paramount
Multiple devices must be monitored
simultaneously

When to use polling?
When it is required to respond more quickly
than is possible using interrupts
Large amounts of data are expected to arrive
(real-time data acquisition)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
20

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
21

Getting to Know the Processor

Read databooks of processors!
What address does the processor jump to after a
reset?
What is the state of the processor’s registers and
peripherals at reset?
What is the proper sequence to program a
peripheral’s registers?
Where should the interrupt vector table be located?

Does it have to be located at a specific address in
memory? If not, how does the processor know where
to find it?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
22

Getting to Know the Processor

What is the format of interrupt vector table?
Is it just a table of pointers to ISR functions?

Are there any special interrupts – sometimes
called traps – that are generated within the
processor itself?

Must an ISR be written to handle each of these?

How are interrupts enabled and disabled?
Globally and individually?

How are interrupts acknowledged or cleared?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
23

Getting to Know the Processor

Three types of processors:
Microprocessors: powerful, general-purpose,
Eg: Freescale’s 68K, Intel’s 80x86
Microcontrollers: less powerful, embedded
system-specific,
Eg: 8051, Motorola’s 68HCxx, Intel’s 386EX
Digital Signal Processors (DSP): fast
calculations of discrete-time signals,
Eg Vendors: Analog Devices, Freescale, TI

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
24

The PXA255 XScale Processor

On-chip peripherals:
Interrupt control unit
Memory controller
Several general-purpose I/O
pins
4 timer/counters
I2C bus interface unit
4 serial ports
16 DMA channels

Memory controller for DRAM
USB client
LCD controller
2 PWM (pulse width
modulators)
A real-time clock
A watchdog timer unit
A power management unit

CPU controls them via internal buses

PXA255 uses the XScale core
ARM Version 5TE architecture

Header file for On-Chip
Peripherals

What is going on here?

If (bLedEnable == TRUE)
{
*((uint32_t *)0x40E00018 = 0x00400000;

}

Need more intuitive ways of writing code!
Create and use header files!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
25

PXA255 On-Chip Peripherals (1/4)
/**

• * PXA255 XScale ARM Processor On-Chip Peripherals
***/

• /* Timer Registers */
• #define TIMER_0_MATCH_REG (*((uint32_t volatile *)0x40A00000))
• #define TIMER_1_MATCH_REG (*((uint32_t volatile *)0x40A00004))
• #define TIMER_2_MATCH_REG (*((uint32_t volatile *)0x40A00008))
• #define TIMER_3_MATCH_REG (*((uint32_t volatile *)0x40A0000C))
• #define TIMER_COUNT_REG (*((uint32_t volatile *)0x40A00010))
• #define TIMER_STATUS_REG (*((uint32_t volatile *)0x40A00014))
• #define TIMER_INT_ENABLE_REG (*((uint32_t volatile *)0x40A0001C))

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
26

PXA255 On-Chip Peripherals (2/4)
• /* Timer Interrupt Enable Register Bit Descriptions */
• #define TIMER_0_INTEN (0x01)
• #define TIMER_1_INTEN (0x02)
• #define TIMER_2_INTEN (0x04)
• #define TIMER_3_INTEN (0x08)

• /* Timer Status Register Bit Descriptions */
• #define TIMER_0_MATCH (0x01)
• #define TIMER_1_MATCH (0x02)
• #define TIMER_2_MATCH (0x04)
• #define TIMER_3_MATCH (0x08)

• /* Interrupt Controller Registers */
• #define INTERRUPT_PENDING_REG (*((uint32_t volatile *)0x40D00000))
• #define INTERRUPT_ENABLE_REG (*((uint32_t volatile *)0x40D00004))
• #define INTERRUPT_TYPE_REG (*((uint32_t volatile *)0x40D00008))

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
27

PXA255 On-Chip Peripherals (3/4)
• /* Interrupt Enable Register Bit Descriptions */
• #define GPIO_0_ENABLE (0x00000100)
• #define UART_ENABLE (0x00400000)
• #define TIMER_0_ENABLE (0x04000000)
• #define TIMER_1_ENABLE (0x08000000)
• #define TIMER_2_ENABLE (0x10000000)
• #define TIMER_3_ENABLE (0x20000000)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
28

PXA255 On-Chip Peripherals (4/4)
• /* General Purpose I/O (GPIO) Registers */
• #define GPIO_0_LEVEL_REG (*((uint32_t volatile *)0x40E00000))
• #define GPIO_1_LEVEL_REG (*((uint32_t volatile *)0x40E00004))
• #define GPIO_2_LEVEL_REG (*((uint32_t volatile *)0x40E00008))
• #define GPIO_0_DIRECTION_REG (*((uint32_t volatile *)0x40E0000C))
• #define GPIO_1_DIRECTION_REG (*((uint32_t volatile *)0x40E00010))
• #define GPIO_2_DIRECTION_REG (*((uint32_t volatile *)0x40E00014))
• #define GPIO_0_SET_REG (*((uint32_t volatile *)0x40E00018))
• #define GPIO_1_SET_REG (*((uint32_t volatile *)0x40E0001C))
• #define GPIO_2_SET_REG (*((uint32_t volatile *)0x40E00020))
• #define GPIO_0_CLEAR_REG (*((uint32_t volatile *)0x40E00024))
• #define GPIO_1_CLEAR_REG (*((uint32_t volatile *)0x40E00028))
• #define GPIO_2_CLEAR_REG (*((uint32_t volatile *)0x40E0002C))
• #define GPIO_0_FUNC_LO_REG (*((uint32_t volatile *)0x40E00054))
• #define GPIO_0_FUNC_HI_REG (*((uint32_t volatile *)0x40E00058))

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
29

Code snippet easier to read

The earlier code snippet becomes much
easier to read …

which means: some bit of GPIO 0 is set!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
30

If (bLedEnable == TRUE)
{
*((uint32_t *)0x40E00018 = 0x00400000;

}

if (bLedEnable == TRUE)
{

GPIO_0_SET_REG = 0x00400000;
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
31

Study the External Peripherals

LCD, keyboard controllers, A/D converters, network
interface chips, or ASICs
Arcom VIPER-Lite Board:

SMSC Ethernet controller and
Parallel port

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
32

Study the External Peripherals
Need datasheet for each device to answer:

What does the device do?
What registers are used to issue commands and
receive results?
What do the bits and larger fields in registers mean?
Does the device generate interrupts?
How are interrupts acknowledged or cleared at device?

Good idea to write a device driver for each device
A collection of software routines:

To control the operation of a peripheral
To isolate application software from hardware device

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
33

Initialize the Hardware
at reset address,

2~3 assembly instr.

• Tell processor about its env,
• Initialize interrupt ctrl, …(peri)
• Initialize chip-select regs

Reset Address for PXA255 is
0x00000000.

• Setup stack, heap, …
• Initialize global vars

Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

34

Your First Embedded
Program

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
35

Your First Embedded Program

Hello World! … ???
A difficult and perhaps even impossible
program to implement in embedded systems
Printing of text:

More an end-point than a beginning
Need an output device, which may be lacking
Need a display driver (a challenging program!)

Need a no-brainer!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
36

Embedded Programmers

Must be self-reliant

Assume nothing works first

All you can rely on is programming language
syntax

Standard library routines might not be
available (printf(), memcpy(), etc.)

Every embedded system has at least one
LED controlled by software

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
37

First Program

Blink an LED at a rate of 1 Hz

1 Hz = 1 complete on-off cycle per second

A few lines of C or assembly

Little room for programming errors

Underlying concept extremely portable

Hardware-independent program
Some functions are hardware-dependent

How to control Green LED
(LED2)?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
38

• LEDs on add-on
module

• Look up Technical
and I/O Manuals

• Check the
schematics to trace
connection from LED
back to processor

• OUT2 signal
• Inverted!
• GPIO pin 22

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
39

Hardware-
Independent

Blinking LED Program Code

Hardware-
Dependent

int main(void) {
ledInit(); /* Configure green LED control pin */
while (1) {

/* Change green LED state */
ledToggle();
/* Pause for 500 ms */
delay_ms(500);

}
return 0;

}

The ledInit Function

LED2 connected to one of PXA255
processor’s 85 bidirectional GPIO pins

Multiple functions
User-controllable I/O, or
To support particular peripheral functionality

Configuration registers are used to select how
each pin is used by an application

Alternate-function 1, 2, 3, (system defined) or
General-purpose pin (used by user)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
40

PXA255 GPIO registers

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
41

Register
name

Type Address Name Purpose

GPLR0 Read‐only 0x40E00000 GPIO Pin‐Level
Register

Reflects the state of each GPIO pin.
0 = Pin state is low.
1 = Pin state is high.

GPDR0 Read/write 0x40E0000C GPIO Pin Direction
Register

Controls whether a pin is an input or output.
0 = Pin is configured as an input.
1 = Pin is configured as an output.

GPSR0 Write‐only 0x40E00018 GPIO Pin Output
Set Register

For pins configured as output, the pin is set high by
writing a 1 to the appropriate bit in this register.
0 = Pin is unaffected.
1 = If configured as output, pin level is set high.

GPCR0 Write‐only 0x40E00024 GPIO Pin Output
Clear Register

For pins configured as output, the pin is set low by
writing a 1 to the appropriate bit in this register.
0 = Pin is unaffected.
1 = If configured as output, pin level is set low.

GAFR0_U Read/write 0x40E00058 GPIO Alternate
Function Register
(High)

Configures GPIO pins for general I/O or alternate
functionality.
00 = GPIO pin is used as general‐purpose I/O.
01 = GPIO pin is used for alternate function 1.
10 = GPIO pin is used for alternate function 2.
11 = GPIO pin is used for alternate function 3.

PXA255 processor GPDR0
register (configuration)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
42

• Reserved bits should not be used!
• In PXA255, reserved bits should be written as

zeros, and ignored during read.
• Good practice: always initialized HW before use,

even if default behavior is fine
• Eg.: By default, all GPIO pins are configured as

INPUTS after RESET. How do you know if it is
still input before using a pin?

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
43

I/O Space Register Access

Use assembly language
80x86: in and out

No built-in support in the C language
80x86 std lib: inport(), outport()

Use assembly instead of C for accessing
80x86 I/O space registers

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
44

LED Initialization

Configure GPIO pin 22 as

Output: Set bit 22 of GPDR0 register

General-purpose I/O: Clear bit 22 of
GAFR0_U register

Blinking LED without library routines

Read contents of register

Modify the bit that controls the LED

Write value back to register

ledInit Function

Bitmask for GPIO pin 22 (controls green LED)
#define LED_GREEN (0x00400000)

Two read-modify-write operations (in order)
On GAFR0_U
On GPDR0 (clear LED_GREEN)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
45

ledInit Function
#define PIN22_FUNC_GENERAL (0xFFFFCFFF)
/* Function: ledInit
•Description: Initialize GPIO pin controlling LED. */

void ledInit(void) {
/* Turn the GPIO pin voltage off, which will light

the LED. This should be done before the pins are
configured. */
GPIO_0_CLEAR_REG = LED_GREEN;

/* Make sure the LED control pin is set to perform
general purpose functions. RedBoot may have
changed the pin's operation. */
GPIO_0_FUNC_HI_REG &= PIN22_FUNC_GENERAL;

/* Set the LED control pin to operate as output. */
GPIO_0_DIRECTION_REG |= LED_GREEN; }

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
46

ledToggle Function

Separate set and clear registers in PXA255
Cannot use read-modify-write method

Algorithm
Use LED_GREEN bitmask (bit 22)
Check current state

Read: GPIO_0_LEVEL_REG
Depending on current state, toggle state:

To turn on LED: GPIO_0_CLEAR_REG
To turn off LED: GPIO_0_SET_REG

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
47

ledToggle Function
/***
* Function: ledToggle
* Description: Toggle the state of one LED.
* Returns: None.
***/
void ledToggle(void) {

/* Check the current state of the LED control
pin. Then change the state accordingly. */
if (GPIO_0_LEVEL_REG & LED_GREEN)

GPIO_0_CLEAR_REG = LED_GREEN;
else

GPIO_0_SET_REG = LED_GREEN;
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
48

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
49

delay_ms Function

delay_ms(500) delay 500 ms = 0.5 sec
Delay can be implemented as busy-waiting
#while-loop iterations

= delay in ms × CYCLES_PER_MS
while-loop iteration = decrement-and-test cycle
CYCLES_PER_MS:

determined by trial and error
depends on processor type and speed
Can use a hardware timer for better accuracy

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
50

delay_ms Function
#define CYCLES_PER_MS (9000)
/**
* Function: delay_ms
* Description: Busy-wait for requested num of ms.
* Notes: The number of decrement-and-test cycles per ms

was determined through trial and error. This value
is dependent upon the processor type, speed,
compiler, optimization.

* Returns: None.
***/
void delay_ms(int milliseconds) {

long volatile cycles=(milliseconds*CYCLES_PER_MS);
while (cycles != 0)

cycles--;
}

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
51

Porting to Other Platforms

4 functions
main()

ledInit()

ledToggle()

delay_ms()

Read documentation
Rewrite ledInit(), ledToggle()
Change CYCLES_PER_MS

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
52

Role of Infinite Loop

Embedded programs almost always end with
an infinite loop
Infinite loop

Is a significant part of system functionality
Intended to run until

world ends or
board is reset

A very common behavior in embedded
programs

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
53

“Hello World” in ARM Assembly
AREA HelloW,CODE,READONLY ; declare code area

SWI_WriteC EQU &0 ; output r0[7:0]
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point

START ADR r1, TEXT ; r1 “Hello World”
LOOP LDRB r0,[r1],#1 ; get next byte

CMP r0, #0 ; check end
SWINE SWI_WriteC ; if not end print
BNE LOOP ; .. & loop back
SWI SWI_Exit ; end of execution

TEXT = “Hello World”,&0a,&0d,0
END ; end of source

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
54

“Hello World” in C for ARM
#include <stdio.h>

int main() {
printf(“Hello World\n”);
return (0);

}

Save in HelloW.c file
Create a new project using Project Manager
Add this file into the project
Click “Build” button
Click “Go” button to run on the ARMulator
Output can be seen in terminal window

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
55

“Hello World” in ARM & Thumb
AREA HelloW_T,CODE,READONLY ; declare code area

SWI_WriteC EQU &0 ; output r0[7:0]
SWI_Exit EQU &11 ; finish program

ENTRY ; code entry point
CODE32 ; enter in ARM state
ADR r0, START+1 ; get Thumb entry address
BX r0 ; enter Thumb area
CODE16

START ADR r1, TEXT ; r1 “Hello World”
LOOP LDRB r0,[r1] ; get next byte

ADD r1, r1, #1 ; increment point … **T
CMP r0, #0 ; check end
BEQ DONE ; finished? … **T
SWI SWI_WriteC ; if not end print
B LOOP ; .. & loop back

DONE SWI SWI_Exit ; end of execution
ALIGN ; to ensure ADR works

TEXT DATA
= “Hello World”,&0a,&0d,0
END ; end of source

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
56

ARM vs. Thumb Code Size

ARM
instructions = 6; size = 24 bytes
data = 14 bytes
Total = 38 bytes

Thumb (ignoring preamble to enter Thumb)
instructions = 8; size = 16 bytes
data = 14 bytes
Total = 30 bytes

Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

57

Compiling, Linking, and
Locating

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
58

Embedded Programming

Not substantially different from other
programming
Main difference:

Each target hardware platform is UNIQUE
Adds a lot of additional software complexity

Software

Hardware1

Hardware2

Hardware3

Software

Software

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
59

The Build Process

Not as automatic as conventional
programming

Cannot make assumptions about target
platform because it is different from the host
computer where development is done.

Need to define or provide knowledge about
the system to design tools

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
60

The Build Process

Source Code Embedded SW Executable
Program

Compilation: Compile or assemble each
Source File into Object File

Linking: Link all object files into a single object
file (relocatable program)

Relocation: relative offsets physical
memory addresses

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
61

The Build Process

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
62

The Build Process (Host vs Target)

Host Computer:
A general-purpose computer:

PC or workstation
Compiler, Assembler
Linker,
Locator

Target Embedded System
Run the executable binary image

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
63

Split between Host and Target

GNU Tools

Freely available
Open source
Includes

Compiler, assembler, linker, debugger
Supports

Many popular embedded processors
Manuals

http://www.gnu.org/manual

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
64

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
65

Compiling

Human-readable language processor
opcodes

Assembler = assembly language compiler

Each processor has its own unique machine
language

Compiler must produce programs for your
specific target processor (e.g. ARM7TDMI)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
66

Cross-Compilers

Compiler runs on host computer (NOT target
embedded system), called: Cross-Compiler

Can be configured as native compilers or
cross-compilers

GNU C/C++ Compiler (gcc)

GNU Assembler (as)

An impressive set of host-target combinations

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
67

Hosts/Targets supported by gcc

ARM family of processors
ELF, PE (COFF), AOUT formats

Additional information
http://gcc.gnu.org

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
68

Object Files
Not executable
A very large, flexible data structure
Standard structure Formats:

Common Object File Format (COFF)
Extended Linker Format (ELF)

If you use different compilers for different
source files

Ensure all object files are in SAME FORMAT!
Some vendors have proprietary formats:

Buy all development tools from same vendor!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
69

Object Files

Begins with a header
Describes sections in the file

Code blocks are regrouped by compiler into
related sections

Text: all code blocks
Data: all initialized global variables with initial

values
Bss: all uninitialized global variables
Symbol Table: Names & locations of all

variables and functions

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
70

Linking

Object files are incomplete
internal variables not resolved
functions not resolved

Job of linker:
combine all object files
resolve unresolved symbols in symbol table
merge text, data, and bss sections
output a new object file in the same format

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
71

Linking

GNU linker: ld (a command-line tool)

For embedded development, a special
compiled startup code must also be linked!!!

Examples
startup.asm (for assembly language)
crt0.s (short for C runtime)

Location of startup code is compiler-specific

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
72

Linking

Same symbol declared in more than one
object file

display error message
exit

Unresolved symbol after all object files linked
check in standard libraries
associate code and data sections within output
object file (static linking)
use stub codes (dynamic linking)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
73

Linking standard libraries

Some changes required before linking
standard library object files

Not possible with object files
Cygnus (part of Red Hat) provides freeware
version of standard C library for use in
embedded systems (NEWLIB)

Download newlib (http://sourceware.org/newlib)
Implement target-specific functions
Compile everything
Link it with your embedded software

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
74

Linking

After merging all code and data sections

linker produces a “relocatable” program

(no memory addresses assigned to code and
data)

Even OS is statically linked together with
embedded application

Executed as a single binary image

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
75

Startup Code
Disable all interrupts
Copy any initialized data from ROM to RAM
Zero the uninitialized data area
Allocate space for and initialize the stack
Initialize the processor’s stack pointer
Create and initialize the heap
Execute the constructors and initializers for all
global variables (C++ only)
Enable interrupts
Call main

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
76

Startup Code

Some instructions may follow main()
executed after main() returns
to halt the processor
reset entire system
transfer control to a debugging tool

Not inserted automatically
Programmer must:

assemble it and
link it with other object files

GNU startup codes in GNU package: libgloss

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
77

Locating

Job of Locator:
Relocatable program Executable binary
image

Programmer provides information about
memory on target board as input to locator
Locator assigns physical memory addresses
to each code and data sections
Locator produces an output file that can be
loaded into the target ROM

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
78

Locator

A separate development tool (sometimes)
Locator built into linker (GNU ld)
General-purpose computer: OS does
relocation at load time
Embedded systems: programmer performs
the relocation using a special tool
Memory information:

A linker script
Controls exact order of code/data sections
Establish locations of each section in memory

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
79

Linker Script:
64 MB RAM, 16 MB ROM
ENTRY (main)
MEMORY {

ram: ORIGIN=0x00400000, LENGTH=64M
rom: ORIGIN=0x60000000, LENGTH=16M }

SECTIONS {
data : { /* Initialized data */

_DataStart = .;
*(.data)
_DataEnd = .;

} >ram

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
80

Linker Script (contd)

bss: { /* Uninitialized data */
_BssStart = .;
*(.bss)
_BssEnd = .;

} >ram
text : {

*(.text)
} >ram

}
Further information at http://www.gnu.org

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
81

A basic ARM memory system

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
82

The standard ARM C program
address space model

Debug Monitors

In some cases, debug monitors are the first
code executed when board powers up
Example: RedBoot in the Arcom board

(RedHat’s Embedded Debug and Bootstrap)
Used to:

Download software
Perform basic memory operations
Manage nonvolatile memory

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
83

RedBoot

Does all the above things, but …
RedBoot also contains startup code
Programs downloaded to run in RAM via
RedBoot

do not need to be linked with startup code and
should be linked but not located

After hardware initialization
RedBoot prompts for user input

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
84

RedBoot

Supports
Commands to load software
Dump memory
Various other tasks

Check at http://ecos.sourceware.org/redboot

Reference book
Embedded Software Development with eCos,
Anthony Massa, Prentice Hall PTR

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
85

http://ecos.sourceware.org/redboot

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
86

Building Your First Program

Arcom Board:
GNU tools installation in Appendix B
Enter commands into a command shell

Two source modules: led.c and blink.c
Compiling

arm-elf-gcc [options] file …
-g: to generate debugging info in default format
-c: to compile and assemble but not link
-Wall: to enable most warning messages
-I../include: to look in the dir include for
header files

Compiling

Commands for compiling C source files
#arm-elf-gcc –g –c –Wall –I../include led.c
#arm-elf-gcc –g –c –Wall –I../include blink.c

Additional information
http://gcc.gnu.org

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
87

http://gcc.gnu.org/

Linking and Locating

GNU linker (ld) performs locating also
Linker script: viperlite.ld
arm-elf-ld [options] file …

-Map blink.map: to generate a map file
-T viperlite.ld: to read the linker script
-N: to set the text and data sections to be
readable and writable
-o blink.exe: to set output filename

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
88

Linking and Locating

arm-elf-ld –Map blink.map –T
viperlite.ld –N –o blink.exe led.o
blink.o

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
89

Complete listing
of code and data
addresses

Format the Output File

Stripping the binary image
arm-elf-strip [options] input-file … [-o output-file]
arm-elf-strip –remove-section=.comment blinkdbg.exe –o
blink.exe

Removes the .comment section from blinkdbg.exe (with
debug information)
Outputs the stripped binary image blink.exe

Transforming it into downloadable format
arm-elf-objcopy [options] input-file [output-file]
arm-elf-objcopy –O ihex blink.exe blink.hex

Intel Hex Format: an ASCII format devised by
Intel for storing and downloading binary images

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
90

No output
filename
overwrite
original files

Tools from
binutils

Other Tools from binutils

size
Lists section sizes and total size for object file

arm-elf-size blink.exe
text data bss dec hex filename
328 0 0 328 148 blink.exe

File size of blink.exe is 3 KB
Much larger! Why?

Includes debug information!

Additional information: http://www.gnu.org

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
91

http://www.gnu.org/

Textbook: Programming Embedded Systems with C and GNU Development Tools,
2nd Edition, Michael Barr and Anthony Massa, O’Reilly

92

Downloading and Debugging

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
93

Downloading and Debugging

Executable Binary Image (stored as a file on
host computer)

Must be downloaded into some memory on
target board

Executed from the memory

Tools needed to
Set breakpoints in program

Observe program execution

Debug Monitors

Debug Monitor, also called ROM Monitor
A small program in nonvolatile memory
Facilitates development tasks

Hardware initialization / configuration
Download and run software in RAM
Debug program
Command-Line Interface (CLI)
Peeking (reading) / Poking (writing) / Comparing /
Displaying memory and processor registers

Also, in production units
Upgrade firmware for new features
Fix bugs after deployment

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
94

RedBoot

In Arcom board, Redboot
Is in bootloader flash
Uses COM1 for command-line interface

Need terminal program (minicom in Linux or
HyperTerminal in Windows) on the host computer
Baud rate: 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
95

RedBoot
Ethernet eth0: MAC address 00:80:12:1c:89:b6
No IP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version W468 V3I7 - built 10:11:20, Mar 15
2006

Platform: VIPER (XScale PXA255)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Red Hat, Inc.

RAM: 0x00000000-0x04000000, [0x00400000-0x03fd1000] available

FLASH: base 0x60000000, size 0x02000000, 256 blocks of 0x00020000
bytes each.
== Executing boot script in 1.000 seconds - enter ^C to abort
^C
RedBoot>

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
96

CTRL-C: Stop boot script from loading Linux

Further information:
http://ecos.sourceware.org

Downloading with RedBoot

RedBoot can load and run ELF files
So, we can run blink.exe

To transfer files using xmodem protocol
RedBoot> load –m xmodem
RedBoot prompts C and waits for file transfer
From Windows HyperTerminal Menu

Select Transfer Send File
Select blink.exe for transfer

File will be transferred!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
97

Downloading with RedBoot

After transfer completes:
Entry point: 0x00400110, address range:
0x0x00000024-0x0040014c
xyzModem - CRC mode,
24(SOH)/0(STX)/0(CAN) packets, 2 retries

Compare with blink.map:
Name Origin Length
.text 0x004000b0 0x9c blink.o

0x00400110 main

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
98

File size of
blink.o

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
99

When in ROM …

Device programmer

A computer system
Several IC sockets on top of different shapes
and sizes
Capable of programming memory devices of
all sorts
Connected to the same network as host
computer

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
100

When in ROM …

Transfer binary image to device programmer
Place memory chip on an appropriately sized
and shaped socket on device programmer
Select device-type from on-screen menu
Start programming memory
Takes a few seconds ~ several minutes,
depending on

binary image size and
type of memory device

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
101

When in ROM …

After programming ROM
Insert into socket on board
(Power must be off!)

As soon as power is applied, processor
fetches and executes the code in ROM
Where is the code (first instruction)?

Each processor has its own rules
E.g., for ARM: 0x00000000
Called RESET ADDRESS, RESET CODE

In Arcom board, reset code is part of RedBoot

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
102

Program Not Working?

Check RESET CODE

Check target processor’s RESET RULES

All satisfied?

Hint:

Turn on LED just after reset code has
completed

Managing ROM in RedBoot

RedBoot can be used to manage flash
filesystems called Flash Image System (FIS)

Create, write, erase locations of flash based
on “filenames”
To check what is in FIS:

RedBoot> fis list

Name FLASH addr Mem addr Length Entry point
FIS directory 0x00000000 0x00000000 0x0001F000 0x00000000
RedBoot config 0x0001F000 0x00000000 0x00001000 0x00000000
filesystem 0x00020000 0x00000000 0x01FE0000 0x00000000

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
103

Running from flash

Since flash is ROM, a debugger cannot be
used if the program runs from flash

A debugger needs to insert software interrupts
when single-stepping or executing to a
breakpoint

Flash can be used if we are sure the software
works and debugger is not needed

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
104

Running from flash

Workarounds in some processors:
TRACE instruction: executes a single
instruction and then automatically vectors to
an interrupt
Breakpoint register: gets you back to the
debug monitor

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
105

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
106

Debugging Tip

Use LED as an indicator of SUCCESS or
FAILURE!
Slowly walk the LED enable code through the
larger program
Begin with LED enable code at RESET
ADDRESS
If LED turns on, edit program, move LED
enable code to another execution breakpoint,
rebuild, and test again

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
107

Remote Debugging

To download, execute, and debug embedded
software (cross-platform debugging)

Two pieces of software:
Frontend or Remote Debugger

run by host computer

GUI: source code, register contents, info, …

Backend or Debug Monitor
run by target processor from ROM

Low-level control of processor

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
108

A remote debugging session

Remote Debugger Debug Monitor

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
109

Debug Monitor

Automatically started when processor is reset
Monitors communication link to host
computer
Responds to requests from remote debugger
Examples:

read register x
modify register y
read n bytes of memory starting at address z
modify data at address a

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
110

Debug Monitor

Combines sequences of low-level commands

Accomplish high-level debugging tasks

Downloading a program

Single-stepping through a program

Setting breakpoints

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
111

GNU Debugger (gdb)

Originally, a native debugger
Later, cross-platform debugging added
Frontend: Build a version of gdb frontend to
run on a host PC for a target processor. Also
called remote debugger.
Backend: Source code for a compatible
debug monitor is included in gdb package,
must be ported to target platform (not an easy
task!) Also called gdb stub or debug monitor.
About gdb: http://sources.redhat.com/gdb

http://sources.redhat.com/gdb

GNU Debugger (gdb)

Advantages
Low cost
Easy to use

Disadvantages
Cannot debug startup code
Code must execute from RAM
Need a communication channel between host
and target

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
112

Debugging on the Arcom Board

gdb communication is byte-oriented and over
Serial port, or
TCP/IP port

RedBoot supports gdb debug sessions over
either of the two ports
Power on Arcom board
Halt RedBoot script by pressing Ctrl-C
Invoke gdb
arm-elf-gdb blink.exe

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
113

Debugging on the Arcom Board

Gdb outputs a message as follows:

GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public

License, and you are welcome to change it and/or
distribute copies of it under certain conditions.

Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show

warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin --

target=arm-elf"...
(gdb)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
114

GDB Prompt

Debugging on the Arcom Board

Connect to the Arcom board
(gdb) target remote /dev/ttyS0

-- Assuming target board is connected to COM1

Message:
Remote debugging using /dev/ttyS0

Now gdb CLI is connected to gdb stub

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
115

Debugging on the Arcom Board

Download blink.exe program onto target
(gdb) load blink.exe

Message:
Loading section data, size 0x4 lma 0x400000
Loading section text, size 0x148 lma 0x400004
Start address 0x400110, load size 332
Transfer rate: 2656 bits in <1 sec, 166 bytes/write.

Ready to start debugging!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
116

Debugging on the Arcom Board

Setting a breakpoint
(gdb) b ledToggle
Breakpoint 1 at 0x400070: file led.c, line 66

Getting breakpoint information
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x400070 in ledToggle at led.c:66

Continue
(gdb) c

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
117

(gdb) breakpoint ledToggle
(gdb) break ledToggle
(gdb) br ledToggle
(gdb) b ledToggle

Debugging on the Arcom Board

At breakpoint
Breakpoint 1, ledToggle() at led.c:66
66 if(GPIO_0_LEVEL_REG & LED_GREEN)

List command
(gdb) l

Repeat command
(gbd)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
118

Debugging on the Arcom Board

Check symbol values
(gdb) print /x gChapter
$1 = 0x5

Change symbol values
(gdb) p/x gChapter=12
$2 = 0xc

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
119

Debugging Tip

A binary image might not have debug symbols
(var/func addresses)

For example: vendor given library object files
Problem: How to trace the value of symbols?
Solution: Use blink.map
Example: to lookup the value of gChapter

Search in blink.map for gChapter address
.data 0x00400000 0x4 blink.o

0x00400000 gChapter

(gdb) x/d 0x400000 (x = examine, /d = decimal)
0x400000 <gChapter>: 12

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
120

Debugging on the Arcom Board

Single-stepping
(gdb) n
69 GPIO_SET_REG = LED_GREEN;

Backtracing
(gdb) bt
#0 ledToggle() at led.c:66
#1 0x00400140 in main() at blink.c:75

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
121

Debugging on the Arcom Board

View processor registers
(gdb) info registers

Print value of a specific register (PC here)
(gdb) p/x $pc

Delete breakpoint
(gdb) d

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
122

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
123

Emulators

ICE (In-Circuit Emulator)
Examines processor state
Emulates the processor
Has its own copy of processor, RAM, ROM,
and embedded software
More expensive than target hardware
Powerful debugging tool

Hardware breakpoints
Real-time tracing

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
124

ICE debugging

Hardware Breakpoints

Example
“address bus = 0x2034FF00 and data
bus = 0x20310000”

Not only instruction fetches (as in remote
debugging)

Memory and I/O reads and writes

Interrupts

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
125

ICE debugging

Real-Time Tracing

Large block of special-purpose RAM
Stores information about each processor cycle
executed

To see what happened in what order
“Did the timer interrupt occur before or after
the variable bar became 12?”

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
126

Simulators

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
127

Debugging Tip

Processor behaving differently?

Run the same software in simulator!
OK HW problem

Behaves differently You are wrong!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
128

Logical Analyzer

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
129

Logical Analyzer

Views signals external to processor
Cannot control software execution flow
Useful only with debuggers
Troubleshoots digital hardware
Dozens or hundreds of inputs

Detect each signal is high or low
“Display the values of input signals 1 through
10, but don’t start recording what happens until
inputs 2 and 5 are both zero at the same time.”

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
130

Logical Analyzer Display

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
131

Debugging Tip

Coordinate signal observation with software
execution

Example: processor / peripheral interaction

Before interaction
Add an output statement in software:
cause a unique logic pattern on processor pins
(e.g. spare I/O pin: zero one)

Set logic analyzer to trigger on that pattern

LA records everything after that!

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
132

Oscilloscope

Examine any hardware signal
(analog or digital)

Quick observation of voltages on pins

inputs ≈ 4

Not useful as a software debugging tool

Using Oscilloscope

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
133

Finding Pin 1

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
134

Lint

Static checking of source code for
Portability problems
Common coding syntax errors

Ignored return values
Type inconsistencies

More careful checking than compilers
Can trim the output of lint tool using options
Reference

“Introduction to Lint” from Embedded Systems
Programming (http://www.embedded.com)

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
135

Lint

Open source lint
Splint

http://www.splint.org

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
136

Version Control

Required when software is large or there are
multiple developers
Storage of source code in a repository
Updated as the project progresses
Logging, file comparisons, tagging releases,
tracking bug fixes, codes updates for new
features
All files associated with a project

Programs, tools, documentation

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
137

Version Control
Concurrent Versions System (CVS)
(http://ximbiot.com/cvs/cvshome)

Combine changes by different people to a single
file
Ref. Book: Essential CVS by Jennifer Vesperman
(O’Reilly)

Subversion (http://subversion.tigris.org)
Ref. Book: Version Control with Subversion by B.
Collins-Sussman, B.W. Fitzpatrick, C. M. Pilato
(O’Reilly)

Revision Control System
(http://www.gnu.org/software/rcs)

Free GNU project

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
138

http://ximbiot.com/cvs/cvshome
http://subversion.tigris.org/
http://www.gnu.org/software/rcs

Which tools to use?

Oscilloscopes, Logic Analyzers
To debug hardware problems

Simulators
To test software before hardware is available

Lint and version control software
Throughout entire project

Embedded Software Design, ©2007, Pao-Ann Hsiung, National Chung Cheng University
139

	GETTING STARTED
	Contents
	Slide Number 3
	Getting to Know the Hardware
	Understanding the Big Picture
	Draw your own data-flow diagram
	Data-flow on the Board …
	Hardware Basics
	Schematic Fundamentals
	Example Schematic
	Examine the landscape
	Timing Diagram
	Memory Map for Arcom Board
	Header File
	Header File: Memory Map
	How to Communicate?
	Polling: “are we there yet?”
	Interrupts
	Interrupts
	Interrupts vs. Polling
	Getting to Know the Processor
	Getting to Know the Processor
	Getting to Know the Processor
	The PXA255 XScale Processor
	Header file for On-Chip Peripherals
	PXA255 On-Chip Peripherals (1/4)
	PXA255 On-Chip Peripherals (2/4)
	PXA255 On-Chip Peripherals (3/4)
	PXA255 On-Chip Peripherals (4/4)
	Code snippet easier to read
	Study the External Peripherals
	Study the External Peripherals
	Initialize the Hardware
	Slide Number 34
	Your First Embedded Program
	Embedded Programmers
	First Program
	How to control Green LED (LED2)?
	Blinking LED Program Code
	The ledInit Function
	PXA255 GPIO registers
	PXA255 processor GPDR0 register (configuration)
	I/O Space Register Access
	LED Initialization
	ledInit Function
	ledInit Function
	ledToggle Function
	ledToggle Function
	delay_ms Function
	delay_ms Function
	Porting to Other Platforms
	Role of Infinite Loop
	“Hello World” in ARM Assembly
	“Hello World” in C for ARM
	“Hello World” in ARM & Thumb
	ARM vs. Thumb Code Size
	Slide Number 57
	Embedded Programming
	The Build Process
	The Build Process
	The Build Process
	The Build Process (Host vs Target)
	Split between Host and Target
	GNU Tools
	Compiling
	Cross-Compilers
	Hosts/Targets supported by gcc
	Object Files
	Object Files
	Linking
	Linking
	Linking
	Linking standard libraries
	Linking
	Startup Code
	Startup Code
	Locating
	Locator
	Linker Script: �64 MB RAM, 16 MB ROM
	Linker Script (contd)
	A basic ARM memory system
	The standard ARM C program address space model
	Debug Monitors
	RedBoot
	RedBoot
	Building Your First Program
	Compiling
	Linking and Locating
	Linking and Locating
	Format the Output File
	Other Tools from binutils
	Slide Number 92
	Downloading and Debugging
	Debug Monitors
	RedBoot
	RedBoot
	Downloading with RedBoot
	Downloading with RedBoot
	When in ROM …
	When in ROM …
	When in ROM …
	Program Not Working?
	Managing ROM in RedBoot
	Running from flash
	Running from flash
	Debugging Tip
	Remote Debugging
	A remote debugging session
	Debug Monitor
	Debug Monitor
	GNU Debugger (gdb)
	GNU Debugger (gdb)
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Debugging Tip
	Debugging on the Arcom Board
	Debugging on the Arcom Board
	Emulators
	ICE debugging
	ICE debugging
	Simulators
	Debugging Tip
	Logical Analyzer
	Logical Analyzer
	Logical Analyzer Display
	Debugging Tip
	Oscilloscope
	Using Oscilloscope
	Finding Pin 1
	Lint
	Lint
	Version Control
	Version Control
	Which tools to use?

