1. INTRODUCTION

Embedded Software Design 熊博安 國立中正大學資訊工程研究所 pahsiung@cs.ccu.edu.tw

Textbooks: Embedded Software Primer, David E. Simon, Addison Wesley Programming Embedded Systems with C and GNU Development Tools, Barr, Massa, O'Reilly

What is an embedded system?

- Combination of computer hardware, software, and some mechanical parts,
 - Designed to perform a specific function.
- Every household has one!
- Very few people realize that a processor and software are involved in the preparation of their lunch or dinner!!!
 - General-purpose computer is **not** designed to perform a specific function. It is a blank slate!

What is an embedded system?

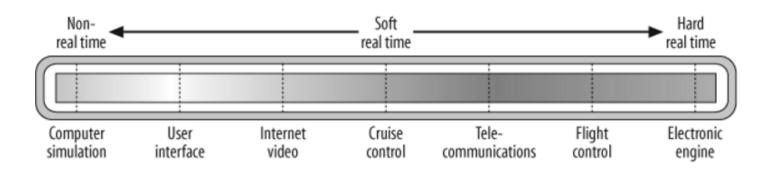
- Installed in a larger system
- Eg: cars and trucks contain many embedded systems
 - anti-lock brake controller
 - vehicle emission monitor and controller
 - dashboard information display
- Existence of processor & software should be completely unnoticed by a device user
- Eg: microwave oven, VCR, alarm clock

- When did embedded systems first appear?
- Not before 1971! Why?
- Intel designed the world's first microprocessor, the 4004, in 1971!
- 4004 was designed for use in a line of business calculators produced by a Japanese company Busicom.
- In 1969, Busicom asked Intel to design a set of IC --- one for each of their new calculator models
- The 4004 was Intel's response.

- The microprocessor was an overnight success!
- Increased use in the next decade:
 - unmanned space probes
 - computerized traffic lights
 - aircraft flight control systems
 - In 1980's, embedded systems quietly rode the waves of microcomputer age.

Electronic devices in

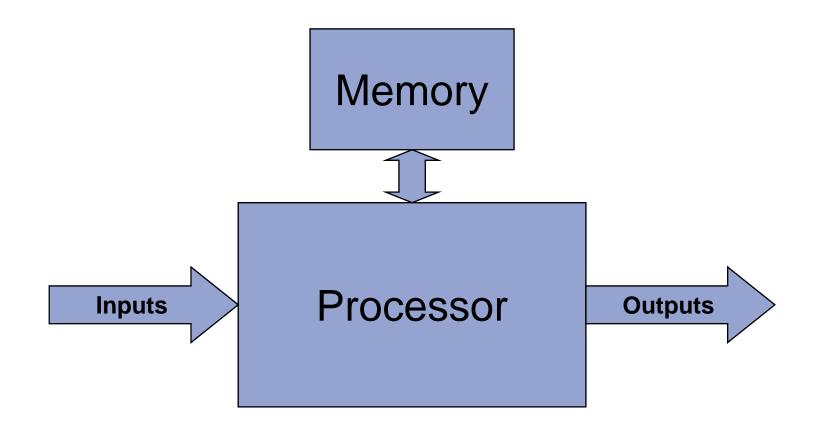
- kitchen bread machines food processors microwave ovens living rooms ΤV stereos remote controls offices fax machines pagers laser printers cash registers
 - credit card readers


Embedded systems will continue to increase

- light switches and thermostats controlled by a central computer
- intelligent air-bag systems that don't inflate when children or small adults are present
- Personal Digital Assistants (PDA)
 - digital cameras
 - dashboard navigation systems

Real-Time Systems

- Most embedded systems are real-time
- Has timing constraints
- Make certain calculations or decisions in a timely manner
- A missed deadline is as bad as a wrong answer
 - Consequences of a missed deadline:
 - severe \rightarrow hard real-time
 - acceptable \rightarrow soft real-time


Real-Time Systems

Embedded System Variation

- Besides CPU and software, what else is common among embedded systems?
- Memory storage: ROM, RAM, …
- Input: knobs, buttons, probes, sensors, communication signals, …
- Output: human-readable display, microwave radiation, communication signals, changes to physical world
- Outputs = functions (inputs, elapsed time, current temperature, etc.)

Generic Embedded System

Common design requirements

- Production Cost
- Processing power
- Memory
- Development cost
- Number of units
- Expected lifetime
- Reliability

Common Design Requirements

- Criterion	Low	Medium	High
Processor	4 or 8-bit	16-bit	32 or 64-bit
Memory	< 16 KB	64 KB~1 MB	> 1 MB
Development Cost	<\$100,000	\$100,000 ~ \$1,000,000	> \$1,000,000
Production Cost	<\$10	\$10 ~ \$1,000	> \$1,000
# Units	< 100	100~10,000	> 10,000
Power Consumption	> 10 mW/MIPS	1~10 mW/MIPS	< 1 mW/MIPS
Expected Lifetime	Days, weeks, months	Years	Decades
Reliability	May fail	Reliable	Fail-proof

Examples of Embedded Systems

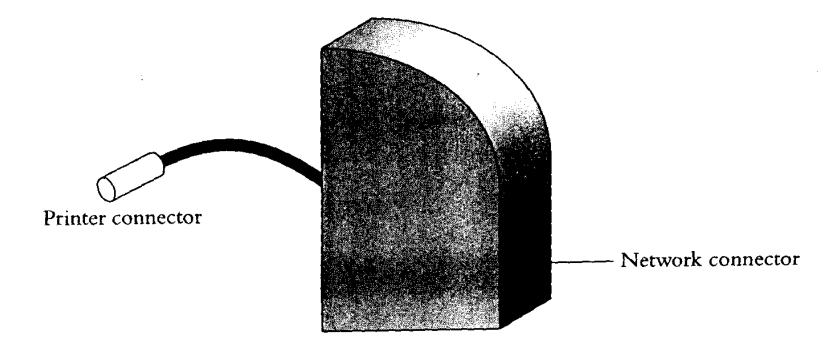
- Digital Watch
- Telegraph
- Cordless Bar-Code Scanner
- Laser Printer
- Video Game Player
- Underground Tank Monitor
- Mars Explorer
- Nuclear Reactor Monitor

Digital Watch

Function:

- display date/time
- measure event length to the nearest 1/100 s
- Simple tasks
- Small processing power or memory
- Then, why use a processor?
- Ans: to support a range of models & features from a single hardware

Digital Watch (contd)


- Simple, inexpensive 8-bit processor
- On-chip ROM
- Only registers, no RAM
- Inputs: buttons
- Outputs: LCD and speaker
- Requirements:
 - High reliability
 - Low production cost

Telegraph

- Connects a printer to a network
- Printer has a high-speed serial port
- Telegraph description:
 - Little plastic box
 - 2 to 3 inches on a side
 - 1/2 inch thick
 - pigtail cable connects to printer serial port
 - network connector

Telegraph (sketch)

Figure 1.1 Telegraph

Telegraph (functions)

- Receive data from network
- Copy data to serial port of printer
- Sort unordered data packets and provide a clean data stream to printer
- Feed printer one print job at a time and hold off all other computers
- Network printer must provide status information to any requesting computer on network, even if it is busy printing

Telegraph (functions)

- Work with several types of printers without user configuration
- Respond rapidly to certain events: various kinds of network frames to which Telegraph must send response within 200 microseconds
- Must keep trace of time. If a computer crashes, must give up on that print job after 2 minutes and print from another computer. Otherwise, printer will be unavailable.

Telegraph Development Challenges

- Throughput
- Response
- Testability
- Debugability
- Reliability
- Memory Space
- Program Installation

Telegraph: Throughput

- Printer can print only as fast as Telegraph provides data to it
- Must not be a bottleneck between computer and printer
- throughput = run faster
- solution: clever programming
 - better searching and sorting
 - better numerical algorithms
 - data structures faster to parse

Telegraph: Response

- Response to frames within 200 microseconds
- Response is a common problem in embedded systems
- Tradeoff between
 - Throughput, and
 - Response

Telegraph: Testability

- Not easy to determine if it works
- Lot of software deals with uncommon events
- Embedded systems must deal with ANYTHING without human intervention
- Eg: lots of code deals with the problem of network data loss
- However, data does not get lost often, especially in a perfect, new lab
- Hard to test those lines of code

Telegraph: Debugability

- What if testing uncovers a bug?
- Telegraph has no screen, no keyboard, no speaker, not even little lights!
- No cute icons or message boxes!
- It just stops working!
- A bug in network software?
- A bug in software for tracking printing job?
- A bug in software for printer status reporting?

Telegraph: Reliability

- It is not allowed to crash!
- Customers may have tolerance for crash/reboot of PC, but nobody has patience for little plastic boxes that CRASH!
- Must function without human intervention

Telegraph: Memory Space

- 32 KB memory for program
- 32 KB memory for data
- How to make software fit into the available space?
- A necessary skill for embedded-system software engineers!

Telegraph: Program Installation

- The software in Telegraph did not get there because someone clicked a mouse on an icon!
- How to install software into embedded systems?
 - What tools are necessary?

Cordless Bar-Code Scanner

- User pulls trigger
- Cordless Bar-Code Scanner activates laser to read bar code
- Sends bar code across a radio link to cash register

Cordless Bar-Code Scanner

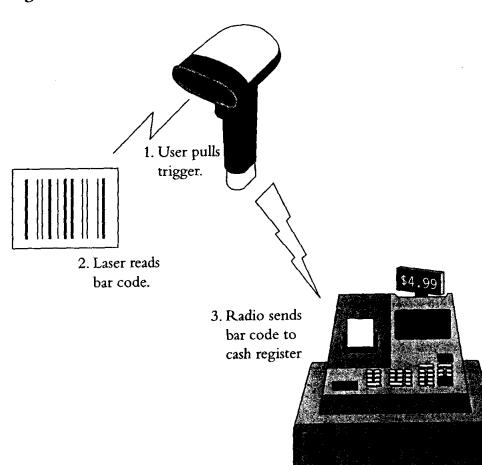


Figure 1.2 Cordless Bar-Code Scanner

Cordless Bar-Code Scanner

- How different is its design from telegraph?
- Mostly same problems as telegraph
- No problem of throughput:
 - little data in a bar code
 - user can't pull the trigger that fast
- One problem the telegraph does not have: Power Consumption

Cordless Bar-Code Scanner: Power Consumption

- Cordless \rightarrow power source = battery
- Handheld → limited weight of battery (for comfortable use)
- How long must battery last?
- Forever!!! (Infeasible)
- Next best answer:
 - Last for an 8-hour shift
 - Recharge in holster at night

Cordless Bar-Code Scanner: Power Consumption

- 8-hours also not feasible!
- How to run laser, microprocessor, memory, and radio for 8 hours on battery?
- Solution: Use software to turn off hardware that are not needed at any given time, including processor!

Laser Printer

- High processing power
- Microprocessor responsible for
 - getting data from printer ports
 - sensing user button press on control panel
 - presenting messages to user on control panel
 - sensing paper jams
 - recovering from paper jams
 - noticing printer is out of paper
 - etc.

Laser Printer: Processor Hogs

Print job:

- text on a slanted line
- unusual font
- screwball size
- Figure out where the black dots go on a page!
- Users expect quick response when they push buttons, no concern of
 - trigonometric function value computations
 - where serifs of a rotated letter should go?

Video Game Player

- Some features are more powerful than PC
- High processing power
- Low production cost
- Companies don't care how much it costs to develop the system
- but, production cost must be low (~US\$100)!
- Even encourage engineers to design custom processors at hundreds of thousands dollars
- Highly specialized processor!

Video Game Player (contd)

- Production cost is crucial
- Tricks to shift costs around
- Move as much memory and other peripheral electronics as possible
 - off of the main circuit board and
 - onto the game cartridges!
 - Powerful 64-bit CPU + few MB memory
- Enough to bootstrap the machine to a state from which additional memory on the game cartridges can be accessed

Underground Tank Monitor

- Watches gasoline levels in the underground tanks at a gas station
- Detect leaks before gas station turns into a toxic waste dump by mistake
- Set off a loud alarm if a leak is discovered
- System description
 - 16 buttons
 - 20-character Liquid Crystal Display (LCD)
 - Thermal printer

Underground Tank Monitor (contd)

- How much gasoline is in a tank?
- Read the level of two floats in the tank
 - level of gasoline
 - level of water at the bottom of tank
- Read temperature at various levels in tank (gasoline expands & contracts considerably with temperature changes)
- No false alarms (gasoline cooled off, contracted, float lowered → alarm?)

Underground Tank Monitor: Cost

- buys one only because government agency tells the gas station owner he has to!
- thus, as inexpensive as possible!
- Extremely inexpensive microcontroller: add 8bit numbers
- Microprocessor will be very busy just calculating how much gasoline there is really down there → processor hog

Mars Explorer

- In 1976, two unmanned spacecraft arrived on the planet Mars.
- to collect samples of Martian surface, analyze chemical makeup, transmit results back to earth
- PC rebooted everyday
 - BUT, 2 computers survived a journey of 34 million miles and functioned correctly for 5 years!!! RELIABILITY!!!

Mars Explorer

- NASA launched the Pathfinder
- Primary goal: getting to Mars on a budget
- Two embedded systems
 - a landing craft: 32-bit CPU, 128 MB RAM
 - a rover: 8-bit CPU, 512 KB RAM
 - Low production cost

Mars Explorer

- What if a memory chip failed?
- Or, software bugs caused a crash?
- Fault tolerance:
 - Redundant circuitry
 - Extra functionality
 - Extra processor
 - Special memory diagnostics
 - Hardware timer to reset system if software got stuck

Nuclear Reactor Monitor

- Must do many things
- Only thing of interest to us:
 - two temperatures must be always equal
- If not, a malfunction!
- Consequence: disastrous!!!

Why C for embedded software?

- a "very-level" high-level language
- compact, efficient code for almost all processors
- direct hardware control, without losing the benefits of a high-level language
- appropriate for both 8-bit and 64-bit processors
- for systems with bytes, KB, MB of memory
- for design teams of 1, 12, or more people

Other embedded languages

- assembly language
- C++
- Ada

Assembly Language

- complete control of CPU and hardware
- high software development costs
- lack of code portability
- lack of skilled assembly programmers
- used as an adjunct to high-level languages, for small pieces of code that must be
 - extremely efficient or
 - ultra-compact, or
 - cannot be written in any other way.

C++

better data abstraction

- reduce efficiency of executable programs
- more popular with large development teams, where the benefits to developers outweighs the loss of program efficiency

Ada

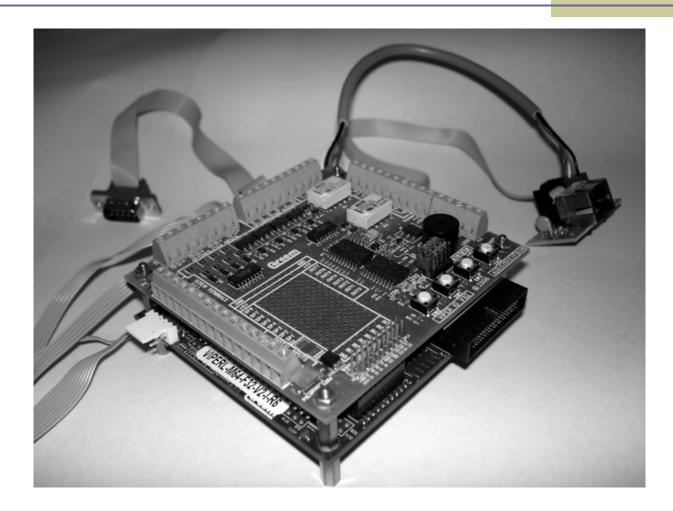
- Object-Oriented
- substantially different from C++
- designed by US Department of Defense
- for mission-critical military software development
- twice accepted as international standard (Ada83, Ada95)
- Not popular outside of defense and aerospace industries

Typical Hardware

- Microprocessor: execute code
- Memory: different memories for program & data
- Embedded systems do not have the following:
 - a keyboard
 - a screen
 - a disk drive
 - CD, speakers, microphones, diskettes, modems
 - Embedded systems have: serial port, network interface, sensors, actuators, etc.

Microprocessors in embedded systems

Processor	Bus Width	Largest External Memory	Internal Peripherals	Speed (MIPS)
Zilog Z8 family	8	None on some models; 64 KB on others	2 timers	1
Intel 8051 family	8	64 KB program + 64 KB data	3 timers + 1 serial port	1
Zilog Z80 family	8	64 KB; 1 MB, sort of	Various	2
Intel 80188	8	1 MB	3 timers + 2 DMA channels	2
Intel 80386 family	16	64 MB	3 timers + 2 DMA channels + various others	5
Motorola 68000 family	32	4 GB	Varying	10
Motorola PowerPC family	32	64 MB	Many	75


Table 1.1 Microprocessors Used in Embedded Systems

Embedded Software Design, ©2005, Pao-Ann Hsiung, National Chung Cheng University

Programming Embedded Systems in C and C++ 2nd Ed. (Design Platform)

- Arcom VIPER-Lite board
- Intel's 32-bit XScale ARM PXA255 processor
- 64MB RAM
- 16 MB ROM
- inputs
- outputs
- peripheral components

Arcom VIPER-Lite Board

