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Abstract

This paper details a case study of trade-off design
m software synthesis. Domain-oriented software syn-
thesis technology enables software designers to encode
their own specific knowledge of software design into
transformation rules. Thus, generated software is op-
timal and actually usable for the domain. However,
optimal tmplementation cannot be decided in advance
if performance specifications, e.q., memory size limits
and execution tyme limats, are unclear. That is, o s
difficult to develop transformation rules which gener-
ate optimal software for their domain or situation if
performance requirements are unclear beforehand.

This paper proposes a method of trade-off design in
software synthesis, and applies this method to develop
a file access program generator called POT-DB. The
proposed method includes procedures for (1) extract-
ing trade-off parameters as input specifications, (2)
designing transformation rules for trade-off parame-
ters to generate programs, and (8) designing perfor-
mance measurement rules to allow designers to notice
the effects of trade-off parameters. Based on the re-
sults of applying POT-DB in developing a sales analy-
sis and ordering system, all performance requirements
have been satisfied, and application productivity has
been smproved 1.9 times. Moreover, 1t s shown that
total productwity including the development cost for
the POT-DB itself can be improved if POT-DB is ap-
plied to at least four application systems. The devel-
oped sales analysis and ordering system has been in
daily operation with over 10,000 portable terminals at
more than one hundred branch stores.

1 Introduction

Many domain-oriented software synthesis systems,
or generators, can successfully be applied to improve
software productivity [1] [2] [3] [4]. The authors
have developed domain-oriented software synthesis
systems, e.g., a GUI software generator [7], a switch-
ing software generator [10], etc., using the software
synthesis shell SOFTEXSHELL [9], which have actu-
ally improved software productivity. Domain-oriented
software synthesis technology enables software design-
ers to encode their own specific knowledge for software
design into transformation rules. Thus, the generated
software is optimal and actually usable for the domain.
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However, optimal implementation cannot be de-
cided in advance, if performance specifications, e.g.,
memory size limits and execution time limits, are un-
clear. That is, it is difficult to develop transformation
rules which generate optimal software for their domain
or situation if performance requirements are unclear

. beforehand. Consequently, it is important that an im-
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plementation method be controllable from the input
specifications for a generator. In the case of a trade-off
design between memory size and execution time, for
example, a size of read buffer and sorting algorithm
need to be defined as input specifications for gener-
ators. Moreover, to modify the input specifications
in satisfying performance requirements, software de-
signers need to know the effects of these performance
specifications on memory size and execution time.

This paper proposes a method of trade-off de-
sign in software synthesis. The proposed method in-
cludes procedures for (1) extracting trade-off param-
eters as input specifications, (2) designing transfor-
mation rules for trade-off parameters to generate pro-
grams, and (3) designing performance measurement
rules to allow designers to notice the effects of trade-off
parameters. The following sections describe a method
using as a case study which describes the trade-off de-
sign process with domain-specific generators.

2 Problem and Motivation

2.1 Trade-off Design Problem in Software
Synthesis

In the software industry, designers must routinely
design software approaching the absolute limits of the
hardware resource to reduce cost, that is, for exam-
ple, equipment with built-in software and real-time
software. In these cases, software designers must sat-
1sfy not only function requirements but also perfor-
mance requirements, e.g., memory size limits and ex-
ecution time limits. In general, memory size and ex-
ecution time have a trade-off relationship, that is, a
larger memory size shortens the execution time, and
vice versa. Actually, at NEC, software designers must
take the trade-off relationship between memory size



Design Coding
knowledge knowledge

Specifications iProgram

Program
Generator

Design
knowledge knowledge
; ' _
. . rogram
Specifications Generator Program
/'Y
easy to
modify

Performance ‘
not satisfy\  Evaluation

(a) Easy to modify design specifications

difficult to

not satisfy modify

Performance
Evaluation

(b) Difficult to modify generator

Figure 1: Trade-off design problem in software synthesis.

and execution time into consideration in terms of ex-
acting performance requirements.

Trade-off design between memory size and execu-
tion time needs to be done in both the designing phase
and the coding phase. From the viewpoint of automat-
ing a coding phase by generators,

e For trade-off in the designing phase, generators
support trade-off design by generating programs.
That is, trade-off designers can immediately know
the performance evaluation results by executing a
generated program without programming. Trade-
off designers can trade-off design by describing
the trade-off parameters as design specifications
which can be easily modified, as shown in Figure

1 (a).
However, Figure 1 (b) shows that,

e For trade-off in the coding phase, generators de-
cide the fixed implementation using their own de-
cisions. Thus, for trade-off design, designers must
modify the design decisions encoded in the trans-
formation rules. However, this modification is dif-
ficult for the designers, because this situation is
the same as a C-language programmer having to
modify a C-language compiler.

In short, generators are very useful for trade-off de-
sign without programming by modifying the design
specifications. However, generators can be very dif-
ficult for trade-off design if the key parameters for
trade-off have been encoded into their transformation
rules. The explicitness of the trade-off parameters is
especially important. This is a crucial problem for
trade-off design in software synthesis.

2.2 Example of Trade-off Design

This subsection describes the trade-off design prob-
lem through an actual example. First, the file access
program generator, called POT-DB (portable termi-
nal database system), is explained as an example. Fig-
ure 2 shows the POT-DB system structure. POT-
DB is a software synthesis systemn which generates file
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access programs (API: application interface program
and Loader: index construction program) and a mem-
ory size document from file access specifications (logi-
cal data access specifications, index specifications, and
file structure specifications).
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Specifications

Index
Specifications

Logical Data Access
Specifications

Document

Memory Size

Index

Document
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Y
Application

PR— o1
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Figure 2: POT-DB system structure.

Application

The file access program is executed with portable
terminals, which is running on MS-DOS. The portable
terminals have 640 Kbytes of a main memory, 2
Mbytes of an extended memory, a memory card and
an Intel 486 processor. In general, a portable terminal
needs to have a limited hardware resource, e.g., small
size of memory and a low performance processor, for
cost reduction. Thus, in the case of this file access
program, designers must design and modify software
again and again to satisfy the performance require-
ments. Therefore, POT-DB is useful for trade-off de-
sign to improve software productivity.

The loader program constructs many indexes of files
on a memory card. The application program can log-
ically read/write the files on a memory card through
the application interface (API) without implementa-
tion knowledge of the file structure. The application
interface program uses the index to read/write the
files on a memory card. POT-DB helps programmers
and designers through loader program generation and
application interface program generation. Moreover,



POT-DB also helps them to design trade-off by gener-
ating a memory size document and an execution time
document. Designers can easily modify the specifica-
tions to satisfy performance requirements by taking
these documents into consideration.

Figure 3 shows a logical file access mechanism us-
ing a index. The loader program constructs indexes
as lists of address pointers which are sorted based
on their key items. For example, sales-index has
a list of address pointers as <003, 001, 002>, which
is sorted based on its key item as sales. Thus, the ap-
plication program can read the data (<$5,300, 8895,
orange juice>)in the first place, which is the largest
sales based on the index sales-index, through an ap-
plication interface.

By using POT-DB, many application systems can
easily be developed. The target application system
in this paper is a sales analysis and ordering system,
which displays sales in various styles, e.g., daily sales
graphs, monthly sales tables, etc., and it is used for
placing an order for an article.

Table 1: Performance requirements for the sales anal-
ysis and ordering system.

l Requirements | Values / Limits

Function Number of indexes: about 20-30

Item number of each index: max 4000 items

Memory size | Heap memory size: max 121 Kbytes

*2 (132KB/ 7.7 sec)

50

121 150 200
Memory size (Kbytes)

Figure 4: Performance evaluation results for naive im-
plementation.

Performance requirements for the sales analysis and
ordering system are listed in Table 1. To evaluate of
these performance requirements, a loader program has
been arbitrarily developed as an experiment. This ar-
bitrary implementation of a loader program makes 28
indexes for a total of 6,400 data records, and each
index has the same implementation coding style. Fig-
ure 4 shows the results of evaluation. The results of
a memory-priority program which needs 48 Kbytes of

Execution Index construction:
time max 8.0 seconds for total indexes
3
5 401
&, *
@ 1 (48 KB /372 se0) Number of indexes: 28
E 30 Number of data records: 6,400 (total)
g
i (NOT satisfied)
2% 20
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memory and 37.2 seconds of execution time are indi-
cated by *1 in Figure 4. This result do not satisfy
the execution time requirements. Conversely, the re-
sults of a time-priority program are indicated by *2,
which needs 132 Kbytes of memory and 7.7 seconds
of execution time. These results do not satisfy the
performance requirements, because the memory size
exceeds the limit of 121 Kbytes.

According to an evaluation of the above results,
the naive implementations cannot satisfy the perfor-
mance requirements, and a more detailed design needs
to be developed to satisfy the requirements. In the
above two implementations, each index of the 28 in-
dexes has the same implementation model (or coding
style). However, each index should have its own op-
timal implementation model. Consequently, the de-
signers need a trade-off design between memory size
and execution time, and need to select an implementa-
tion model which is suitable for each index. Trade-off
design can be described as an activity moving an eval-
uation result into a solution space on a problem space
by trial and error.

In general, this example indicates that the naive
implementation of a software synthesis system may
satisfy function requirements, however, it is difficult to
satisfy exacting performance requiremernts. Therefore,
a technique for trade-off design in software synthesis
i$ very important in satisfying performance require-
ments. This is the motivation for this paper.

3 Software Syhthesis Mechanism for
Trade-off Design

As stated above, there is a great need to satisfy the
following conditions for trade-off design in software
synthesis.

e Specifications modification must be modification
of input specifications for a generator with trade-
off parameters rather than modification of the
generator itself.

e Performance requirements must be satisfied with
modification of trade-off parameters, that is, a
solution exists.

This section proposes a total development process
for trade-off design with a software synthesis system
so that the process satisfies the above two conditions,
and it describes each substep of the process with the
POT-DB example.

3.1 Total Process of Trade-off Design

3.1.1 Process Policy

The proposed process allows human designers to con-
trol trade-off parameters rather than designing them
automatically without human designers. This ap-
proach indicates that trade-off design should be done
by human designers. It is supported that (1) the
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Figure 3: Logical file access mechanism using indexes.

threshold for performance should be decided by hu-
mans, and (2) evaluation values depend on individual
execution situations. Based on these points, the sup-
port of human designers in trade-off design must be
more effective than a fully-automatic approaches. The
human-centered approach of the DODEs (domain-
oriented design environment approaches) 2] [4] is the
same approach as this paper’s.

3.1.2 Trade-off Design Process

The following two approaches are presented to solve
the problem:

¢ Transformation rules are designed so that there
is no need for modification for trade-offs.

e Transformation rules are designed to be modified
easily.

This paper employs the first, and proposes the fol-
lowing total process for trade-off design as also shown
in Figure 5. The whole process can be divided into
two parts: application engineering and method engi-
neering.

Method engineering [5] [6], in general, is responsible

for designing and constructing a development method
that provides application engineers with systematic
procedures, tools and guidance on how to deploy one
or more notations (including trade-off parameters) for
describing a problem or solution domain. The follow-
ing five substeps construct a process in method en-
gineering, which take performance requirements and
provide the application engineers with notation for
performance specifications, program generators and
performance measurement tools.
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Another part of the whole process in Figure 5 is
application engineering, which is responsible for de-
signing application systems using the assets provided
by method engineering, i.e. the notation of perfor-
mance specifications, the program generators and the
performance measurement tools in the case of trade-
off design. Application system design can be efficiently
done by using these assets from method engineering.

The proposed five substeps of trade-off design in
method engineering are as follows:

(1) Software model design — to determine an in-
put specification model and an output software model
for a program generator.

(2) Trade-off parameter design (Design deci-
sion analysis) — to determine key points as param-
eters for performance trade-offs using prototyping and
evaluation program.

(3) Solution existence check — to evaluate per-
formance of a trial program to satisfy performance re-
quirements.

(4) Software synthesis system design — to design
transformation rules which generate programs from
specifications, so that implementation can be con-
trolled by trade-off parameters.

(5) Performance measure design — to design per-
formance (memory size and execution time) evaluation
rules, which are added to transformation rules.

A closely related body of work has been done by
Smith end Setliff [8]. They put more emphasis on
automating the exploration of the design space, rather
than lifting decisions to the level of the specifications,
however. The following subsections explain the above-
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Figure 5: Total process for trade-off design.

mentioned substeps with the POT-DB example.

3.2  Software Model Design

The first substep is designing a software model
which is an input specification model and an output
software model for a program generator. This soft-
ware model should be designed individually based on
a specific domain or system. Consequently, a general
method for designing a software model is difficult to
define in advance. This subsection describes a soft-
ware model employed in the POT-DB example. A
main part of the trade-off design is the Loader subsys-
tem of the POT-DB system. A software model of this
subsystem is described in Figure 6.

The loader generator generates a loader program
from two types of specifications, index specifications
and file structure specifications. Index specifications
include two items for each index, which are index
name, and key items. Key items mean the items
which define the order of file records for sorting. File
structure specifications include two items which are
file name and record layout.

The loader program corsists of four parts, that
1s, the main part, the sorting algorithm, the read-
ing part and the storage part. All of the four parts
are in the main memory. The Indez is in an EMS (ex-

148

Index File structure
specifications specifications
index name, file name,

key items record layout

Loader generator

Sorting
algorithm .
Storage & Reading Unsorted
Index part part
(sorted) (random) data
Main part
EMS Main memory Memory card

Figure 6: Software model for POT-DB loader subsys-

tem.

tended memory system) for MS-DOS. The total mem-
ory size of indexes is estimated to be at least 100 to
200 Kbytes. This size is quite large comparing with
640 Kbytes of a main memory, which is the limits for
MS-DOS. This is the reason why indexes use the EMS.
The memory card has unsorted (random) data. The
loader program reads the data from the memory card,



sorts the data according to the key items, and writes
the sorted index to the EMS.
3.3 Design Decision Analysis

The second substep of the trade-off design pro-
cess is designing trade-off parameters. In a con-
ventional transformation process, trade-off design is
usually done at the transformation rule in designing
phase, and the fixed decision is usually implemented as
transformation rules. However, the proposed method
extracts trade-off parameters from the software imple-
mentation model, and the values of these parameters
can be defined as input specifications for the genera-
tors. Trade-off parameter candidates are evaluated by
the following criteria:

e which are related to trade-offs — to be embedded
in an input specification model,

e which are independent of trade-offs — to be em-
bedded in transformation rules.

However, in general, there are no optimal concrete
criteria. That is, trade-off parameters should be de-
fined with their domain knowledge. In this subsection,
for the POT-DB example, design decision analysis was
conducted as follows.

Memory card read part — from the viewpoint of
execution time, a memory card is quite slow in
reading data. The access time for a memory card
actually takes 50% of the whole execution time.
Moreover, the number of accesses is very large. A
key point is to reduce the number of memory card
accesses. To achieve this, a read buffer has been
set up in the main memory. As a result, read
buffer size is a trade-off parameter.

Index storage part — Indexes are stored in an
EMS rather than in the main memory. There is
a buffering problem between the EMS and the
main memory, because EMS access is slower than
main memory access. Thus EMS buffer size
is a trade-off parameter. Buffer allocation
timing is also a trade-off parameter because
each index needs its own buffer.

Sorting algorithm part — Each index record
needs to be sorted based on its key items. Thus,
the sorting algorithm is a candidate for a trade-off
parameter. However, the insertion sorting algo-
rithm has been chosen as a fixed sorting algorithm
in the transformation rules, because a file record
may be added sporadically. According to appli-
cation data characteristics, there are some cases
where file records in a memory card have already
been sorted. Thus a sorting on/off switch is
a trade-off parameter.

From the above analysis, the following four param-
eters are trade-off parameters in the POT-DB system.
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memory card read buffer size,
EMS buffer size,

buffer allocation timing, and
sorting on/off switch.

Ll o e

The above trade-off relationships may seem to be
quite simple. However, memory size limits and ex-
ecution time limits are unclear beforehand. Conse-
quently, the problem is not so simple even in this case.
In designing of a software synthesis system, the non-
determinism of the evaluation function for trade-off
relationships is a crucial problem of this paper. That
is, this paper gives a method to delay the design deci-
sion (or the determination of the evaluation function)
for trade-off relationships using the method engineer-
ing approach. '

3.4 Solution Existence Problem

e

Exection time (seconds)
Exection time (seconds)

8.0-] 8.0

50

121 150 200
Memory size (Kbytes)
(a) Solution exists

50 121 150

(b) Solution is empty

Figure 7: Solution existence problem in trade-off de-
sign.

The third substep of the trade-off design process is
confirming the existence of a solution. Solution here
means satisfaction of performance requirements. Ex-
tracting trade-off parameters from the software model
corresponds to defining the performance range (i.e.
the problem space) with the trade-off parameters.
Therefore, it is necessary that the intersection be-
tween the problem space and solution space is non-
empty (shown in Figure 7 (a)), because performance
requirements cannot be satisfied if the intersection is
an empty space (shown in Figure 7 (b)).

Although the solution existence problem is essen-
tial, solution existence confirmation is very difficult to
obtain in advance, because it is a solution itself. That
is, there is no need to confirm solution existence if the
solution is already known. Consequently, this paper
has approached this problem using trial program de-
velopment and evaluation. First, a sample program
was developed, which was comparable to the target
program (sales analysis and ordering system). Next,
the program was evaluated with various values for each
trade-off parameter (the above-mentioned four param-
eters). The results of performance evaluation for the
trial program are shown in Figure 8., The solution
space is quite small, but it really exists. Consequently,

Memory size (Kbytes)
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Figure 8: The results of performance evaluation for
the trial program.

the sales analysis and ordering system which is to be
developed using POT-DB is expected to satisfy the
performance requirements?!.
3.5 Designing Transformation Rules for
Trade-off Parameters

The fourth substep of the trade-off design process
is designing generators. Generators consist of sets of
transformation rules. Transformation rules process
trade-off parameters so that a generated program con-
structs the problem space. This subsection proposes
three types of rule description methods, shown in Fig-
ure 9, as follows:

3.5.1 Full Generation in Rules (Type 1)

This type of transformation rule makes design de-
cisions with trade-off parameters, and generate the
implementation algorithm. The rule implementation
cost tends to be higher than for other types, because
both design decision and algorithm generation are
done in the rules. However, from these full generation
characteristics, the design decision and implementa-
tion algorithm can be optimized for each trade-off pa-
rameter in the rules, even if a library or a platform
are difficult to modify. Thus, this type is easy to use
to embed performance (e.g., memory size and execu-
tion time) evaluation routines in the implementation
algorithm.

In the POT-DB example, transformation rules for
the trade-off parameter related to EMS buffer alloca-
tion timing were developed with Type 1. The range
of this parameter is (1) lump allocation and (2) in-
dividual allocation. A rule for the lump allocation is
shown as Rule 1, and a rule for the individual alloca-
tion is shown as Rule 2. In these rules, £ (lump) and
f(individual) correspond to design decision, and
the left-hand-side of the two rules corresponds to two
types of algorithms.

The lump allocation algorithm allocates a heap
memory in the lump for all indexes. Therefore, al-

1However, the solution space nearly equals zero in this case.
That is, there is no margin. In this situation, it is quite a
gamble to start designing transformation rules. From the trade-
off design view point, it is a very important large solution space.
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though there is a need for large scale memory at the
same time, the number of allocation times is one for
each index. Thus execution time can be reduced with
the lump allocation method. On the other hand,
the individual allocation algorithm allocates at most
one buffer at the same time. Consequently, maxi-
mum memory size is limited to a maximum buffer size
among indexes. However, there is more execution time
than with the lump allocation algorithm, because of
many allocations.

Rule 1:
£(lump) ->
malloc(1), malloc(2),
read(1.1), read(2.1), read(1.2), read(2.2), ...
free(1), free(2)
Rule 2:
f(individual) ->
malloc(l), read(i.1), free(1),
malloc(2), read(2.1), free(2),
malloc(l), read(1.2), free(1),
malloc(2), read(2.2), free(2), ...
3.5.2 Design Decision Generation in Rules

(Type 2)

This type of transformation rule only makes design
decisions. A library and a platform have some types
of implementation algorithms. Consequently, the rule
implementation cost tends to be inexpensive. Rule
modification cost depends on variations in the algo-
rithm. There are some interfaces between the design
decision in the rules and a library or a platform. This
type is useful in using the algorithms of a library and
a platform from a generator. These types of rules are
shown as Rule 3 and Rule 4. In the POT-DB ex-
ample, the sorting algorithm is implemented as a sub-
routine in a library. Thus, the sorting on/off swith
trade-off parameter was implemented with Type 2 as

Rule 3 and Rule 4.
Rule 3:
f(sorting _switch_on) ->
call_library(insertion_sorting_subroutine)
Rule 4:
f{sorting_swith_off) ->
call_library(empty)

3.5.3 Macro Data Generation in Rules (Type
3)

This type of transformation rule generates macro data
rather than program procedures. An example of this
type of rule is shown as Rule 5 which processes the
EMS buffer size trade-off parameter in the POT-DB
example. This type tends to be very inexpensive for
developing transformation rules, because almost all
rules only exchange the syntax of trade-off parame-
ters. This is useful in encoding fixed coding knowl-
edge into a library or a platform rather than into a

transformation rule.
Rule 5:
f(bufsize) ->
make_macro('#define EMS_BUFFERSIZE bufsize")
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Figure 9: Types of designing transformation rules for trade-off parameters.

3.6 Performance Measurement Rule

Performance measurement and identifying effects of
trade-off parameters on performance are very impor-
tant for trade-off design, because the trade-off rela-
tionship must be controllable. That is, even if enough
trade-off parameters can be explicitly defined in input
specifications for a generator, when the effects of the
trade-off parameters on performance are unclear, de-
signers cannot specify the optimal values for the trade-
off parameters to satisfy performance requirements.

The last substep of the trade-off design process is
designing performance (memory size and execution
time) evaluation rules, which are added into trans-
formation rules. This subsection proposes the follow-
ing two methods: the dynamic performance measure-
ment method and the static performance measure-
ment method.

3.6.1 Dynamic Performance Measurement

Dynamic performance here means performance with
the execution of a program, for example execution
time and the size of a dynamic allocation memory.
The above-mentioned Type 1 is suitable for dynamic
performance measurement, because the implementa-
tion algorithm is designed in the transformation rules.
Detailed performance data can be measured with Type
1 rules. In the POT-DB example, the following Rule
6 is an extension of the above-mentioned Rule 2 to al-
low execution time for each cycle of memory allocation
~ buffer read — memory free to be measured.
Rule 6:
f(individual) ->

insert("#ifdef DEBUG"),

insert(" time_measure_point(1);"),

insert ("#endif"),

malloc(1l), read(i.1), free(l),

insert("#ifdef DEBUG"),

insert(" time_measure_point(2);"),

insert ("#endif"),

malloc(2), read(2.1), free(2)

insert("#ifdef DEBUG"),

insert(" time_measure_point(3);"),

insert("#endif"),
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3.6.2 Static Performance Measurement

Static performance here means performance without
the execution of a program, for example, the static
allocated memory size specified in a program and the
name of the sorting algorithm. In the POT-DB ex-
ample, the following Rule 7 is an extension of the
above-mentioned Rule 5 to notify trade-off designers
of buffer size.
Rule 7:
f(bufsize) ->
macro_with_document(
make_macro("#define EMS_BUFFERSIZE bufsize'),
document (">>>EMS buffer size is ",
multiply(bufsize, 512),
" bytes."))
4 Evaluations
4.1 Performance Requirements

This section evaluates the. results of applying the
proposed trade-off design method to the development
of the sales analysis and ordering system with POT-
DB. Table 2 lists an abstract process for the trade-off
design of the sales analysis and ordering system with
POT-DB. First, each index of the total 28 indexes was
implemented for optimizing memory size. Then, by
controlling the trade-off parameters, the memory size
restriction is gradually relaxed so that the execution
time requirements are to be satisfied.

At the beginning, the trade-off parameter of each
index for sorting on/off switch is settled off if the in-
dex has already been sorted. The performance results
in this case are indicated by *1 in Table 2 and also
in Figure 10, which are not satisfy the execution time
requirements. Next, the trade-off parameter for fim-
ing to EMS buffer allocation timing is optimized. The
performance results in this case are indicated by *2,
which are better but not satisfy the execution time.
Then, the performance results by optimizing the EMS
buffer size trade-off parameter are indicated by *3. It
takes 10.2 seconds of execution time and 73 Kbytes
of memory, however, it is not satisfied the time re-
quirements. Finally, the memory card read buffer size



Table 2: Performance requirement evaluation results.

« Jé] v | Time | Memory
(sec) | (Kbytes)
*1 | each time | normal | 1 50.0 34
*2 | delayed | normal | 1 20.5 50
*3 | delayed fast | 1 10.2 73
*4 | delayed fast 20 7.3 80

a: the timing to release EMS buffer memory for index registra-

tion

B: buffer size for index registration(between 16 Kbytes and the
size of the entire buffer)

v: buffer size for memory card read(between 1 to 20 records)
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Figure 10: Performance evaluation results for the sales
analysis and ordering system.

trade-off parameter is optimized. Then, the perfor-
mance results indicated by *4 satisfy the performance
requirements, which take 7.3 seconds and 80 Kbytes.

Table 3: An example of the memory size and execution
time documents.

Memory Size | Execution Time
index Name (KBy?;) teotont)
number-index 312 14
name-index 87.4 28
sales-index 261 1.9
Total 144.7 6.1

During the above trade-off design, the designers
took the memory size documents and the execution
time documents (see Table 3) generated by POT-DB
into. consideration to choose the optimal values of the

trade-off parameters. These documents greatly con-

tributed to the quick convergence of the performance
results, that is, the satisfaction of performance re-
quirements. For example, in the case of Table 3, the
name-index takes 87.4 KBytes of memory. From this
table, the designers can know the key index of the
memory size is the name-index, and the trade-off pa-
rameters of the name-index should be tuned.

As aresult, all performance requirements have been
satisfied with trade-off design, the developed sales
analysis and ordering system has been in daily op-
eration with over 10,000 portable terminals at more

than one hundred branch stores.

4.2 Productivity

This section evaluates the productivity of develop-
ing a sales analysis and ordering system by using the
proposed trade-off design method. It also evaluates
overall productivity including the development cost
for software synthesis systems (or POT-DB).

4.2.1 Productivity of Application Develop-
ment

Table 4 conipares the development costs for the data
management sub-system of the sales analysis and or-
dering system using the proposed method with POT-
DB and a conventional method.

Table 4: Development cost results with POT-DB

Proposed method Conventional method
with POT-DB
Descrip- | 25 logical data 9 Klines of C codes
tion access spec.
size 28 index spec.
19 file structure spec.
1 Kline of C codes
Cost 4.9 man-months 9.4 man-months
(measured) (estimated by
1 Kline = 160 man-hour)

Using POT-DB, it took 4.9 man-months to define
25 logical data access specifications, 28 index speci-
fications, 19 file structure specifications and 1 Kline
of C program codes. It is estimated that a program
with the same function can be developed by hand-
coding 9 Klines of C program codes, which is esti-
mated to take 9.4 man-months based on the standard
productivity of C programs, which is 1 Kline = 160
man-hours. Therefore, the productivity of application
development with the proposed method is 1.9 times
higher than that with the conventional method.

4.2.2 Productivity including the Generator
Development Cost

When evaluating the productivity of application
systems with special purpose program generators, it
is important to consider the development cost of the
program generators. If the productivity improvement
is not substantially greater than the development cost
for the program generator, it is merely shifting the
application development cost to the generator devel-
opment cost, and not improving total productivity. In
other words, only when the following formula holds,
can it be said that the total productivity has been im-
proved [7].
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Figure 11: Productivity including the generator devel-
opment costs.

Table 5: Generator development cost.
[ Sub-generator | man-month ]

Loader generator 7
API generator "
Specification checker 1
Memory usage documenter , 1

[ Total | 16 |

(Application development cost reduction) — (Generator
development cost) > 0

Table 5 shows the development cost for POT-DB.

As shown in the previous subsection, the applica-
tion development cost reduction is (9.4 — 4.9) = 4.5
man-months. Therefore, the total cost reduction by
applying POT-DB to a single sales analysis and or-
dering system is:

(Application development cost reduction) — (Generator
development cost)

= 4.5 man-months — 16 man-months
— 11.5 man-months

resulting not in total cost reduction, but in a 11.5
man-month cost increase.

However, the above evaluation assumes that only a
single application system is developed with POT-DB.
The reality is that POT-DB can be used to develop
more than one application system, making it possible
to reduce total costs. Figure 11 shows the total cost
reduction/increase when numbers of application sys-
tems of equivalent size are developed with POT-DB.
It shows that when at least four application systems
are developed with POT-DB, total development cost
including the POT-DB development cost can be re-
duced.

5 Conclusion
This paper has proposed a method of trade-off de-
sign in software synthesis, and this method has been
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applied to develop a file access program generator
called POT-DB. Proposed method emphasizes lifting
decisions to the level of the specifications, and delays
the design decision (or the determination of the eval-
uation function) for trade-off relationships using the
method engineering approach.

Based on the results of applying POT-DB in de-
veloping a sales analysis and ordering system, all per-
formance requirements were satisfied, and application
productivity was improved 1.9 times. Moreover, it
was shown that total productivity including the de-
velopment cost for POT-DB itself could be improved
if POT-DB was applied to at least four application
systems. The developed sales analysis and ordering
system has been in daily operation with over 10,000
portable terminals at more than one hundred branch
stores.
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