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ABSTRACT

Given an application problem, a hardware-software solution is derived such that the synthesized software, a parallel
pseudo-program, can be scheduled and executed on the synthesized hardware, a set of system-level parallel computer
specifications, with heuristically optimal performance. This is known as system-level cosynthesis of application-oriented
general-purpose parallel systems for which a novel methodology called Cosynthesis Methodology for Application-Oriented

Parallel Systems, is presented.

1. INTRODUCTION

A system is often designed from a set of behavioral
or architectural specifications, than from the original
requirements of a user. This is called system design.
Before system design, a user’s requirements must of-
ten be analyzed to derive system specifications. This
is called requirements analysis. Much research work
have been done in developing methods, either techni-
cal or formal, to design a system from specifications.
A user often has to specify in elaborate detail the be-
havior or architecture of the desired system. As far as
design automation is concerned, it would be certainly
desirable if a user’s requirements could be directly in-
put to a synthesis methodology and a system designed
from the requirements. This paper provides a solution
within the hardware-software codesign perspective.

Synthesis is the process of automatically transform-
ing a set of high-level system specifications to a lower-
level design schematic that includes more architectural
details required for the physical design of the sys-
tem. Hardware synthesis has helped designers to re-
duce design time, effort, and cost. Several method-
ologies and tools have been proposed at each level of
synthesis [1, 2, 3, 4]. When software is simultane-
ously synthesized, it is called cosynthesis or codesign
which requires system partitioning, hardware-software
tradeoff refinements, and cosimulation. Embedded dig-
ital systems and DSP applications are often targets of
hardware-software cosynthesis [5, 6].

Increasing diversity in user requirements for com-
puter applications implies higher budget allocation for
several different specialized systems. The overall cost
expended by a user needing to run several applications
can be lowered at the expense of a slight decrease in

performance by using a general-purpose parallel com-
puter system whose subsystems are appropriately con-
figured for executing some given applications. Our tar-
get system of cosynthesis is somewhat different from
the traditional application-specific parallel (ASP) sys-
tems. We consider the codesign of application-oriented
general-purpose parallel (AOGPP) systems, which are
defined as general-purpose systems with their subsys-
tems designed for the efficient execution of some soft-
ware solution to a given problem. The reason for se-
lecting such a target system is intuitive. On one hand,
a purely general-purpose system is a performance-
balanced system which may not give the best perfor-
mance in solving a specific problem, and on the other
hand, an application-specific system often cannot be
used to solve any problem besides the original appli-
cation that it was designed for.

Section 2 describes some previous and related
work. Section 3 defines AOGPP system cosynthesis
and the three repositories used in the design. Section
4 describes our cosynthesis methodology for AOGPP
systems. A conclusion is drawn in Section 5.

2. PREVIOUS WORK

As far as hardware design is concerned, methodolo-
gies for the system-level synthesis of general-purpose
multiprocessor systems have been proposed recently.
Performance Synthesis Methodology (PSM) [1] and In-
telligent Concurrent Object-Oriented Synthesis (ICOS)
methodology [2] are two of the most recently proposed
methodologies. Some other successful methodologies
for hardware design include the MICON System [3, 4]
and the Megallan System [7].

TThis research was supported by the National Science Council, Taipei, Taiwan under grant NSC 86-2221-E002-066.

1222



Current codesign researches are all devoted to
application-specific systems such as heterogenous mul-
tiprocessor systems [8], DSP applications [6], embed-
ded digital systems [9], and distributed embedded com-
puting systems [5, 10, 11, 12]. Application-specific
systems typically require system partitioning into hard-
ware and software parts. Therefore, current researches
are typically devoted to hardware-software partitioning
and tradeoffs exploration [13, 14], which include strate-
gies to move operations from software to hardware [15]
and from hardware to software [9], to allocate func-
tions in an 1-CPU/n-ASIC system [16], to use multiple
task graphs for heuristic cosynthesis [10], and to de-
rive method datafiow graphs from object-oriented spec-
ifications for the construction of distributed hardware-
software topologies [11].

The codesign framework proposed by Kumar et al.
[17] presented an important concept of iterative sys-
tem refinements using an integrated hardware-software
model. The codesign methodology proposed by
Thomas et al. [18] used a mixed hardware-software
system model that facilitated cosimulation and cosyn-
thesis. Gupta and De Micheli [9] proposed the cosyn-
thesis of digital systems which used timing constraints
to delegate tasks between hardware and software. Yen
and Wolf [5] considered the codesign of embedded
computing systems. Their target design consisted of
a hardware engine made up of several processing el-
ements (PE) which could be either CPUs or ASICs
and an application software architecture with alloca-
tion and scheduling of processes and communication
[10]. The advantages of an object-oriented (OO) speci-
fication were explored by Wolf [11], including the two
levels of partition granularity inherent in OO specifi-
cations, the encapsulation of system objects, and the
natural cut points provided by method decomposition.

From the above literatures, we have adapted a few
techniques into our methodology such as the itera-
tive refinement of an integrated system, the mixed
hardware-software model, and the graph-based soft-
ware models.

3. COSYNTHESIS PROBLEM

System-level cosynthesis of application-oriented
general-purpose parallel systems is defined as follows.

Definition 1 AOGPP System Cosynthesis:

Given an application problem composed of several el-
ementary subproblems, a complete parallel system in-
cluding the hardware system architecture description
and the software program solution, is to be synthesized
such that the given problem can be optimally solved by
executing the synthesized software on the synthesized
hardware system.

Optimal execution of software tasks on a paral-
lel system requires multiprocessor task scheduling [19]
which is a known NP-complete problem [20], hence it
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is concluded that AOGPP system cosynthesis is at least
NP-hard.

Since we work at the system-level of design, scal-
ability in terms of the complexity of the application
problem and the upgradability to new technologies are
two major issues of any proposed codesign method-
ology. Scalability is increased in our methodology
through the use of modularized problem models. A
user can specify a complex application problem by re-
ferring to the elementary problems in a Problem Base
and describing how the selected elementary problems
compose into the desired application problem. Upgrad-
ability is made easy through the use of elementary al-
gorithms which act as off-the-shelf building blocks for
software and the use of subsystem architecture mod-
els for hardware. Three repositories are used in our
methodology, namely Problem Base (PB), Algorithm
Base (AB), and Model Base (MB), which represent the
modularizations of specification input, of software syn-
thesis, and of hardware synthesis, respectively.

PB is used to store elementary problems and re-
lated information such as the unique problem name and
pointers to the corresponding elementary algorithms
that can be used to solve the specific problem. For ex-
ample, sorting a sequence, solving a set of linear equa-
tions, generating permutations and combinations, and
computing the discrete Fourier transform are all ele-
mentary problems. A list of elementary problems is
shown in Table 1. AB is a collection of elementary
parallel algorithms that can be used to solve the prob-
lems in PB. Related information, such as the time and
space complexities, and the requirement restrictions on
the hardware architecture are all stored along with each
algorithm. A partial Algorithm Base is shown in Ta-
ble 1. The algorithms are from Akl’s book on paral-
lel algorithms [21]. MB is a repository of models for
hardware subsystems, such as Communication models
(CM), Memory Latency models (M L), Memory Ac-
cess models (M A), and Control models (CO).

4. COSYNTHESIS METHODOLOGY

Having gone through the basic concepts, we explain
our methodology called Cosynthesis Methodology for
Application-Oriented Parallel Systems (CMAPS) in
this section. As shown in Fig. 1, the design flow is
divided into three main phases: (1) Initialization, (2)
Modeling and Evaluation, and (3) Synthesis and Simu-
lation.

In brief, designers can input their specifications by
constructing a Problem Graph using elementary sub-
problems from a Problem Base, along with subproblem
sizes and other related constraints. First, CMAPS maps
this graph into an initial solution. Then, CMAPS trans-
forms the initial solution into hardware models and
software models, and coevaluates them while check-
ing which models can be eliminated to decrease the
complexity of synthesis. Finally, the hardware and



Table 1: The three repositories: PB, AB, and MB

p# | Problem a# | t(n) p(n) CM | ML MA cO
Names
Do | Sortinga aq, | O n? SM | NUMA CRCW | SIMD
sequence aq, | O(nlogn) N SM | NUMA CREW | SIMD
aas | O(nlogn/N) | N SM | NUMA EREW | SIMD
aq, | O(n) n SM | NUMA EREW | SIMD
p» | Solving sys- ap, | O(n) n’ SM | NUMA CREW | SIMD
tems of linear
equations ap, | N/IA N SM | NUMA CREW | MIMD
pe | Finding roots of | ac; | Oflogyw) | N SM | NUMA CREW [ SIMD
nonlinear
equations ac, | N/A N SM | NUMA CRCW | SIMD
pd | Minimum a4, | O@*/N) N SM | NUMA EREW | SIMD
spanning tree
pe | Prefix sums ae; | O(logn) n SM | NUMA EREW | SIMD
ae, | O(logn) 2n—1 | MP [ Tree EREW | SIMD
des | O(n'7?) n MP | Mesh EREW | SIMD

software models are synthesized into hardware system-
level specifications and software pseudo-programs, re-
spectively, and a cosimulation of hardware and soft-
ware is performed after having chosen an appropriate
scheduling algorithm.

Initialization Phase

The designer specifies his or her problem using a
Problem Graph (PG) which is a directed acyclic
graph Gp(Vp,Ep), such that Vp = {v; |
v; represents a problem p; € P} and Ep = {(vy,vs) |
v, must be solved before v; and v,,vs € Vp}, where
P is a set of problems in PB. This graph is similar
to the traditional task graph specification used in dis-
tributed system synthesis [22] and cosynthesis algo-
rithms [8, 10, 11, 12].

This phase results in a Solution Graph (SG), which
is defined to be a directed acyclic graph Gg(Vs, Es),
where each vertex in Vg represents an elementary al-
gorithm from AB and each edge in Es represents the
order of precedence between two algorithms.

A PG input (Gp(Vp, Ep)) is transformed into an
SG result (Gs(Vs, Es)) through the following solution
modeling process:

model_solution(G_P, G_S, A)
begin
for each v_i in V_P do
select a_i from A such that

(1)a_1i solves p_i

(2)c(a_i)=MIN{c(a_k) |la_k solves p_i}
where c(a_i)=time(a_i) *#cpu(a_1i)

V_S = set_union(V_S, {a_i})
endfor

for each (v_r, v_s) in E_P do

E_S = union(E_S, {(a_r, a_s)})
endfor
end.
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The resulting SG may not be a feasible solution, but
it serves as a useful initial solution for the Modeling
and Evaluation phase. The various phases in this sec-
tion are illustrated using a small running example given
in Fig. 2. The Problem Graph consists of five subprob-
lems, p1, p2, ..., ps, each being an elementary prob-
lem from the Problem Base. Five subalgorithms, a1,
as, ..., as, are selected from the Algorithm Base, each
being the algorithm that best solves the corresponding
problem. These subalgorithms are composed into the
initial Solution Graph, as shown in Fig. 2.

Modeling and Evaluation Phase

Solution Graph (SG) obtained in the Initialization
phase is made feasible iteratively through an interleav-
ing of hardware and software modeling processes. This
phase consists of three subphases: Hardware Model-
ing, Software Modeling, and Coevaluation. Using SG,
a Hardware Model (HM) is generated in the Hard-
ware Modeling subphase by going through the follow-
ing steps: Initialization, Model-Space Exploration, and
Model Configuration steps. The Software Modeling
subphase mainly constitutes the transformation of a So-
lution Graph (SG) into a Software Model (SM), the dif-
ference is that SG may be non-feasible, but SM has to
be feasible, that is, its requirements match those pro-
vided by the corresponding HM. The final Coevalu-
ation subphase reduces the number of hardware and
software models to be considered for synthesis, thus
significantly decreasing the complexity of cosynthesis.

Hardware Modeling

In the following, we assume that a given problem has n
subproblems, that is, |Vs| = n, where SG = (Vs, Es)
is the Solution Graph of the given problem. We also
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Figure 1: CMAPS Design Flow

assume that a Hardware Model (HM) has m features,
where a feature is a hardware design characteristic; for
example, some features can be the memory organiza-
tion, the system interconnection network, etc. Fur-
ther, each hardware feature may have different values
assigned to it, we call them feature options; for ex-
ample, Shared Bus, Mesh, and Hypercube are
feature options for the system interconnection network
feature. As described below, this subphase consists
of three steps Initialization, Model-Space Exploration,
and Model Configuration.

Step a. Initialization: An n X m hardware re-
quirement matrix, M (m;;), is constructed as follows
such that m;; represents the jth hardware model fea-
ture (f;) of the ith subalgorithm (a;), ¢ = 1,2,...,n
andj =1,2,...,m.

1. Sort the hardware model features in a descending
order of the overall degree of effect that a feature
has on the system or in a descending order of the
degree of importance as stipulated by a system
designer.

2. Denote feature options using binary values from
the set {1,10, 100, ...} such that a larger value
indicates a functionally stronger option, e.g.,
CRCW = 100, CREW = 010, and EREW = 001
in the case of memory access models.

3. Let bit(m;j, k) return the kth least significant bit
of m;; and let b; be the number of significant bits
in the binary representation of the jth feature f;,
forallk =1,2,...,b;.

bit(m;;, k) = 1if a; requires kth option of f;
ey
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For instance, the matrix M for the small running
example given in Fig. 2 is given in the figure.

Step b. Model-Space Exploration: In this step, as
given in Equation (2) the kth option of the jth feature
is considered for further software modeling (denoted
by t;jx = 1) if the option demand (s k) is at least the
mean demand (n/b;), k = 1,2,...,b;. Here, the op-
tion demand is defined as the number of subalgorithms
which demand the kth option of the jth feature and the
mean demand is the average weight assigned to each
feature, that is, the mean demand for f; is n/b;.

tir = {
2

For the running example in Fig. 2, n = 5, m = 4,
and using Equation (1) and Equation (2) t;; are com-
puted.

Step ¢. Model Configuration: In this step, the
hardware model configurations are generated from the
hardware model vector, U, which is defined from ¢, as
T = (t11.--t1py,t21 - - 200+ - ->tm1 - - s, ). For
the running example, ¥ = (10,1001,101,01). A de-
signer may specify some hardware requirements which
will be represented by a hardware specification vector
. The hardware model configurations are then gener-
ated.

The configurations are generated starting from
the functionally strongest one. Non-feasible hard-
ware models are eliminated. For our running ex-
ample in Fig. 2, after eliminating non-feasible hard-
ware models, the final feasible configurations gen-
erated are (10,1000, 100,01) and (10, 1000,001,01)

Lif 5 > gt where sj, = Sn bit(m, k)
0 otherwise
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Figure 2: CMAPS Running Example

corresponding to HM; = (SM, NUMA, CRCW, SIMD)
and HM; = (SM, NUMA, EREW, SIMD).

Software Modeling

Considering one at a time the feasible hardware mod-
els generated in the Modeling and Evaluation Sub-
phase, software models are generated by transform-
ing the Solution Graph (SG) into a feasible soft-
ware solution. This transformation process checks
the compatibility of each subalgorithm in SG with
the hardware model under consideration. Compati-
bility is defined in terms of the hardware model fea-
tures, {CM, ML, MA,CO}, of which Communica-
tion (C M) model and Control (CO) model require an
exact match, whereas Memory Latency (M L) model
and Memory Access (M A) model are defined compat-
ible when the hardware feature is functionally stronger
than the software requirement; for example, CRCW
PRAM and CREW algorithm are assumed compatible.
Due to space limitations, the software modeling phase
is not explained in detail here.

Coevaluation

The final step is to coevaluate the software mod-
els (SM;) with their corresponding hardware models
(HM;) in order to reduce the total number of models
that have to be synthesized in the next phase. Corre-
sponding to each combination of (SM;, HM;), com-
pute the degree of feasibility, f = e/n, where n is the
number of subproblems in PG and e is the ease of soft-
ware modeling for SM; with respect to HM; as defined
below,
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fam; = e(H,llVI') =13 1€k
1 if compatible(ay, HM;)
where e, = { 0.5 if ay, is reselected from A

0 if ax is modified
3)
Hardware models are selected based on the follow-
ing criteria:

A
1
Select HM, such that fyv, > > Z (fum;) @

where h is the total number of HM generated in the
Hardware Modeling step.

For the running example as shown in Fig. 2, the de-
grees of feasibility for HM; and HM; computed using
Equation (3) are 3/5 and 1/5, respectively. Using the
criteria given in Equation (4), only HM; is considered
for further synthesis.

Synthesis and Simulation Phase

In this phase, the hardware and software models are
now individually synthesized into parallel system spec-
ifications and parallel pseudo-programs, respectively,
and then cosimulated by scheduling the parallel pro-
gram on the parallel architecture defined by the par-
allel system specifications. The Hardware Synthesis
subphase consists of four steps: System Configura-
tion, Processor Clustering, System Interconnection Se-
lection, and Cluster Design. The Software Synthe-
sis subphase interconnects the final choice of algo-
rithms by Algorithm Interface Construction, Serializa-
tion of Memory Accesses, and Addition of Communi-
cation Constructs. In the Cosimulation subphase, the



hardware and software solutions generated in the previ-
ous two subphases are now inter-related by scheduling
the software on the hardware using;:

1
(SM;, HM;, TSy) x C(HM;)

m(SM;, HM;, TS;) = = ©)

where T(SM;, HM;, TS;) is the execution time of SM;
on HM; scheduled using task scheduling algorithm
TSy, and C(HM,) is the total hardware cost of the sys-
tem. Here, three task scheduling algorithms were used
for our experiments, namely, List Scheduling, Largest
Scheduled Parallelism First, and Largest Width with
Largest Processing Time First [19].

5. CONCLUSION

A methodology called Cosynthesis Methodology for
Application-Oriented Parallel Systems (CMAPS) was
presented for synthesizing both the software and hard-
ware of AOGPP systems. CMAPS uses an iterative
procedure beginning with a solution graph and go-
ing through interleaved phases of software and hard-
ware modeling. The software-hardware model combi-
nations are coevaluated in order to decrease the size of
the design space to be explored. Hardware and soft-
ware are then synthesized separately and cosimulated
by scheduling the synthesized software on the hard-
ware using multiprocessor task scheduling algorithms.
The three repositories: PB, AB, and MB, constructed
using OO technology [23], also contribute towards easy
upgrading to new technologies such that new hard-
ware components, new algorithms, and new elementary
problems can be integrated.

Future work would be applying OO technology not
only to the repositories, but to the codesign process it-
self [11]. Hardware and software dependence on each
other also need further investigation. A formal verifi-
cation model [24] for the codesign of AOGPP systems
would also be an interesting research topic.
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