
1

Computer Aided Verification
計算機輔助驗證

Bounded Model Checking
有限模型檢驗

Pao-Ann Hsiung
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan
熊博安

國立中正大學 資訊工程研究所

2

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

3

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

4

Bounded Model Checking

♦ History of Model Checking
– Explicit Model Checking

• A few million states
• Bottleneck: explicit enumeration of all states

– Symbolic Model Checking using OBDD
• 1020 states and beyond
• Bottleneck: exponential sizes of OBDD

– Bounded Model Checking (BMC)
• No BDD, uses SAT techniques

5

Bounded Model Checking
♦ First proposed by Biere et al. in 1999 [1, 2]
♦ Does not solve complexity problem of MC

– Still relies on an exponential procedure (SAT)
♦ Can solve many cases that cannot be solved

by BDD-based techniques
– Converse also true!

♦ Application of BMC
– Falsification
– Complementary to Unbounded MC (UMC)

6

Bounded Model Checking

♦ Two unique characteristics
– User has to provide a bound k on the number of

steps (cycles in HW) to be explored
– Uses SAT techniques, instead of BDDs

7

Bounded Model Checking
♦ Basic Idea in BMC

– Search for a counterexample in executions of
length bounded by some integer k

♦ k = 0, 1, 2, … until:
– A bug is found, or
– Problem becomes intractable, or
– Completeness Threshold reached.

♦ BMC problem can be efficiently reduced to
propositional SATisfiability problem

8

Bounded Model Checking
♦ Modern SAT solvers can handle

propositional satisfiability problems with
hundreds of thousands of variables or more

♦ Example of SAT Solvers
– GRASP
– CHAFF
– PROVER
– SIMO
– MATHSAT

9

Bounded Model Checking

♦ Experiment Results
– If k is small (60 ~ 80 cycles), depending on the

model and SAT solver, BMC outperforms
BDD-based techniques

– Little correlation between hard SAT problems
vs. hard BDD problems

– SAT solvers can be tuned for BMC
– Intel verified Pentium-4TM using BMC

• Increased capacity and productivity!

10

Bounded Model Checking

♦ Advantages
– Counterexamples found fast and of minimal

length
– Significantly less space requirements
– No manual or dynamic reordering (as in BDD)
– Can be extended to unbounded MC
– Wide industry acceptance as soon as it was

proposed
• Intel, IBM, Compaq, …

11

Bounded Model Checking

♦ Disadvantages
– Need to determine the bound k
– Need to be extended to UMC if a “proof” is

required, instead of only “falsification”
– SAT solvers need to be tuned for BMC

12

BMC Example

♦ 3-bit shift register (x[0], x[1], x[2])
♦ T(x,x’): (x’[0]=x[1]) ∧ (x’[1]=x[2]) ∧ (x’[2]=1)
♦ “Eventually register will be empty”: AF(x = 0)
♦ AF(x = 0) ¬EG(x != 0)
♦ Restrict search to path having k+1 states (k=2)

x1[2]

x1[1]

x1[0]

x2[2]

x2[1]

x2[0]

x0[2]
x0[1]
x0[0]

x0 x1 x2

L0 L1

L2

loops

13

BMC Example
♦ fm = I(x0) ∧ T(x0,x1) ∧ T(x1,x2)
♦ “Any path with three states that is a witness for

G(x != 0) must contain a loop” → add T(x2,xi)
– Let Li = T(x2, xi)

♦ Constraint imposed by the formula (Si defined as
xi != 0) : (xi [0] = 1) V (xi [1] = 1) V (xi [2] = 1)

♦ Final Propositional Formula

– fm ∧ V Li ∧ V Si Counterexample of length 2
i=0 i=0

2 2

14

Semantics

♦ ACTL* : ⊆ CTL* that are in Negative Normal
Form (NNF) & contain only ‘A’ s

♦ ECTL*

♦ LTL : No path quantifiers are allowed
– Consider only X , F , G, U operators

♦ Let’s concentrate on LTL model checking
– BMC for LTL can be extended to handle ACTL*

and ECTL*

15

Semantics
♦ Definition 1 : A Kripke structure is a tuple M

= (S,I,T,L) with a finite set of states S, the set
of initial states I ⊆ S , a transition relation
between states T ⊆ S X S and the labeling of
the states L: S → P(A) with atomic
propositions A

♦ Boolean encoding of state (vector of state
variables)

♦ Each state has a successor state (total)
♦ Path π = (s0,s1,,…) π(i) = si and π i = (si,si+1,…)

16

Semantics
♦ Definition 2 (Semantics) : Let M be a Kripke

structure, π be a path in M and f be an LTL
formula. Then π |= f (f is valid along π) is
defined as :

17

Semantics - Validity
♦ Definition 3 : An LTL formula is universally

valid in a Kripke structure M (in symbols M |=
Af) iff π |= f for all paths π in M with π(0) ∈ I.
An LTL formula f is existentially valid in a
Kripke structure M (in symbols M |= Ef) iff
there exists a path π in M with π |= f and π(0)
∈ I

♦ Let’s consider existential model checking
problem (Search for a counterexample for
EMCP)

18

Semantics - Basic Idea of BMC

♦ Consider only a finite prefix of a path (bounded
by k) and look for possible counterexample

♦ Finite prefix may represent an infinite path if
there is a back loop from the last state of the
prefix to any of the previous states.

♦ If no back loop, can’t say anything about infinite
behavior

♦ Example : Gp – Even if p holds from s0 to sk ,
can’t conclude anything if there is no back loop
from sk to s0

19

Semantics

♦ Definition 4 : For l ≤ k we call a path π a (k, l)-
loop if π(k) → π(l) and π =u.vω with u = (π(0),….,
π(l-1)) and v=(π(l),.., π(k)). We call π simply a k-
loop if there is an l ∈ N with l <= k for which π
is a (k, l)-loop

20

Semantics
♦ Definition 5 (Bounded Semantics for a

Loop) : Let k ∈ N and π be a k-loop. Then an
LTL formula is valid along the path π with
bound k (in symbols π |=k f) iff π |= f.

♦ Definition 6 (Bounded Semantics without a
Loop) : Let k ∈ N and π be a path that is not a
k-loop. Then an LTL formula is valid along the
path π with bound k (in symbols π |=k f) iff
π | f where:0

k=

21

Semantics

22

Semantics
♦ Lemma 7 : Let f be an LTL formula and π be a

path and π |=k f → π |= f
♦ Lemma 8 : Let f be an LTL formula and M a

Kripke structure. If M |= Ef then there exists k ∈
N with M |=k Ef

♦ Theorem 9 : Let f be an LTL formula and M a
Kripke structure. Then M |= Ef iff there exists k
≥ 0 such that M |=k Ef

23

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

24

Translation
♦ Given a Kripke structure M, LTL formula f, bound k :

– We need to construct a Propositional Formula
[[M,f]]k which represents the constraints on s0,….,sk
(variables denoting a finite sequence of states on a path π)
such that [[M,f]]k is satisfiable iff f is valid along π

– Size poly(f) , quadratic(k), linear(size(prop(T,I,p ε A))

♦ Definition 10 (Unfolding the Transition Relation)
For a Kripke structure M, k ε N ,

[[M]]k = I(s0) ∧ ∧ T (si , si+1)
i=0

k-1

25

Translation
♦ Depending on whether a path is a k-loop or not,

two different translations for temporal formula f.
♦ Translation if path not a k-loop :

[[.]]ik
♦ Translation if path is a k-loop :

l[[.]]ik

♦ Example : h = p U q on a non-k-loop-path

26

Translation
♦ Definition 11 (Translation of an LTL formula

without a Loop): For an LTL formula f and k, i ε N
with i ≤ k

♦ Defn 12(Successor in a Loop) : Let k,l,i ε N, with
l,i ≤ k. Define the successor succ(i) in a (k,l)-loop
as succ(i) = i+1 for i < k and succ(i) = l for i = k

27

Translation
♦ Definition 13 (Translation of an LTL formula

for a Loop): Let f be an LTL formula, k,l,i e N
with l,i ≤ k

28

Translation
♦ Definition 14 (Loop Condition) : For k,l ε N , let lLk

= T(sk,sl), Lk= Vl=0
k Lk

♦ Definition 15 (General Translation) : Let f be an
LTL formula, M a Kripke structure and k ε N

♦ Theorem 16 : [[M,f]]k is satisfiable iff M |=k Ef
♦ Corollary 17 : M |= A ¬f iff [[M,f]]k is

unsatisfiable for all k ε N

29

Translation Example

Kripke structure for 2 process mutual exclusion

01 00 10

11
A faulty

transition

30

Translation Example

♦ Initial state
– I(s) := ¬s[1] ∧ ¬s[0]

♦ Transition relation
– T(s,s’):=(¬s[1] ∧ (s[0]↔ ¬s’[0]))∨

(¬s[0] ∧ (s[1]↔ ¬s’[1]))∨
(s[0] ∧ s[1] ∧ ¬s’[1] ∧ ¬s’[0])

♦ Faulty transition relation
– Tf(s,s’):= T(s,s’) ∨ (s[1] ∧ ¬s[0] ∧ s’[1] ∧ s’[0])

A faulty
transition

31

Translation Example

♦ Property to model check
– G ¬p, where p = s[1] ∧ s[0]

♦ Use BMC to find counterexample
– Witness of F p

• Exists M does not satisfy G ¬p

• None M satisfies G ¬p up to the given bound

32

Translation Example
♦ Let bound k = 2
♦ Unrolling transition relation

– [[M]]2 := I(s0) ∧ Tf(s0,s1) ∧ Tf(s1,s2)
♦ Loop condition

– L2 := ∨i=0,1,2Tf (s2,si)
♦ Translation for paths without loops

[][] [][]120
0
2 F)(:F pspp ∨= [][] [][]2

21
1
2 F)(:F pspp ∨=

[][] [][]3
22

2
2 F)(:F pspp ∨= [][] 0:F 3

2 =p

[][])()()(:F 210
0
2 spspspp ∨∨=

33

Translation Example
♦ Translation with loops can be done similarly
♦ Putting everything together

♦ For falsifying a safety property, loop condition
can be omitted

♦ Assignment 00, 10, 11 satisfies [[M, Fp]]2
– Violates mutual exclusion property

[][] [][] [][]() [][]()⎟
⎠
⎞

⎜
⎝
⎛ ∧∨∨∧¬∧=

=

0
22

2

0

0
2222 FF:F, pLpLMpM iii

[][] [][] [][]
())()()(),(),()(

F:F,

21021100

0
222

spspspssTssTsI
pMpM

ff ∨∨∧∧∧=
∧=

34

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

35

Determining the Bound
♦ To check whether M |= E f , the

procedure checks M |=k E f for k = 0,1,
2, …

♦ If M |=k E f , then the procedure proves
that M |= E f and produces a witness of
length k.

♦ If M |= E f, we have to increment the
value of k indefinitely, and the procedure
does not terminate.

36

Why completeness?

♦ BMC may be used to clear a module level
proof obligation which may be an
assumption for another module

♦ A missed counterexample in a single
module may break the entire proof!

♦ In such compositional reasoning
environments, completeness becomes
important!

37

Determining the Bound - ECTL

♦ ECTL ⊆ ECTL* with each temporal
operator preceded by one ‘E’

♦ Theorem 18 : Given an ECTL formula f
and a Kripke structure M, let |M| be the
number of states in M, then M |= E f iff
there exists k ≤ |M| with M |= k E f

38

Completeness Threshold

♦ For every finite state system M, a property p,
and a given translation scheme, there exists
a number CT, such that the absence of
errors up to cycle CT proves that M |= p.

♦ CT is the Completeness Threshold of M
with respect to p and the translation scheme.

♦ For Gp formulas, CT is simply the
reachability diameter

39

Determining the Bound - ECTL
♦ Definition 19 (Reachability Diameter).

Given a Kripke structure M, the reachability
diameter of M is the minimal number d ε N
with the following property. For every
sequence of states s0.. sd+1with (si ,si+1) ε T
for i ≤ d, there exists a sequence of states
t0…tl where l ≤ d such that t0 = s0 , tl = sd+1
and (tj,tj+1) ε T for j ≤ l.

♦ In other words, if a state v is reachable from
a state u, then v is reachable from u via a
path of length d or less.

40

Determining the Bound - ECTL
♦ Theorem 20: Given an ECTL formula f := EFp

and a Kripke structure M with diameter d, M |=
EFp iff there exists k ≤ d with M |=k EFp.

♦ Theorem 21: Given a Kripke structure M, its
diameter d is the minimal number that satisfies
the following formula:

41

Determining the Bound - ECTL

♦ Definition 22 (Recurrence Diameter) : Given
a Kripke structure M, its recurrence diameter is
the minimal number d ε N with the following
property. For every sequence of states s0..sd+1
with (si , si+1) ε T for i ≤ d, there exists j ≤ d such
that sd+1 = sj .

♦ Theorem 23 :Given an ECTL formula f and a
Kripke structure M with recurrence diameter d,
M |= E f iff there exists k ≤ d with M |=k E f

42

Determining the Bound - ECTL
♦ Theorem 24: Given any Kripke structure M, its

recurrence diameter d is the minimal number
that satisfies the following formula:

43

Determining the Bound - LTL
♦ LTL model checking is known to be PSPACE

complete
♦ LTL model checking can be reduced to

propositional satisfiability and thus it is in NP
♦ Theorem 25. Given an LTL formula f and a

Kripke structure M, let |M| be the number of
states in M, then M |= E f iff there exists k ≤ |M|
X 2 | f | with M |=k E f .

44

Determining the Bound - LTL
♦ Definition 26 (Loop Diameter): We say a

Kripke structure M is lasso shaped if every path
p starting from an initial state is of the form up
vω

p , where up and vp are finite sequences of
length less or equal to u and v, respectively.
We define the loop diameter of M as (u,v).

♦ Theorem 27: Given an LTL formula f and a
lasso shaped Kripke structure M, let the loop
diameter of M be (u,v), then M |= E f iff there
exists k ≤ u+v with M |=k E f .

45

Determining the Bound - Liveness

♦ Translation of Liveness Properties

♦ Theorem

46

Determining the Bound - Liveness

♦ If the liveness property AFp holds, the
BMC procedure terminates
– k = length of longest sequence from initial state

without hitting a state where p holds
♦ If AFp does not hold, then EG¬p holds, and

we have a BMC procedure for EG¬p that
terminates

♦ Does BMC is complete for liveness
properties, too!

47

Determining the Bound - Induction

♦ Induction techniques for making BMC
complete for safety properties

♦ To prove M |= AGp by induction, we need
to find manually a strengthening inductive
invariant
– An expression that

• is inductive (correctness in previous step implies
correctness in current step)

• implies the property

48

Determining the Bound - Induction

♦ Proofs based on inductive invariants
– Base case,
– Induction step, and
– Strengthening step.

49

Determining the Bound - Induction

♦ Base Case
♦ Given a bound n (induction depth), prove

that φ holds in the first n steps, by checking:

50

Determining the Bound - Induction

♦ Induction Step:
♦ Prove the following is unsatisfiable

♦ Strenthening Step:
♦ Prove inductive invariant implies property

51

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

52

Propositional SAT Solvers

♦ Given a propositional formula f, a SAT
solver
– finds an assignment to the variables of f that

satisfy it, if such an assignment exists, or
– return ‘unsatisfiable’ otherwise.

53

Conjunctive Normal Form (CNF)

♦ SAT solvers accept formulas in CNF
– A conjunction of clauses

• Each clause is a disjunction of literals and negated
literals

♦ To satisfy a CNF formula, the assignment
has to satisfy
– At least ONE literal in EACH clause.

54

Conjunctive Normal Form (CNF)

♦ Every propositional formula can be
transformed into CNF
– Naïve Translation: |CNF| = exponential(| f |)
– To avoid exponential size:

• Add O(| f |) auxiliary Boolean variables, where | f | is
the number of sub expressions in f.

55

Davis-Putnam Procedure
♦ Most modern SAT-checkers are variations

of the well known Davis-Putnam procedure
[5] and its improvement called DPLL [6].

♦ DP or DPLL Procedure
– A back tracking search algorithm that, at each

node in the search tree,
• decides an assignment (i.e. a variable = Boolean

value, which determines the next sub-tree to be
traversed), and

• computes its immediate implications by iteratively
applying the ‘unit clause’ rule.

56

Davis-Putnam Procedure

♦ Example iteration of ‘unit clause rule’
– If decision is x1=1, then the clause (¬x1∨x2)

immediately implies x2=1.
– This, in turn, can imply other assignments.

♦ Unit clause rule is also called “Boolean
Constraint Propagation” (BCP)

♦ Common result of BCP
– A clause is unsatisfiable backtrack and

change of the previous decisions

57

Davis-Putnam Procedure

♦ Example of BCP result
– f: (¬x1∨x2) ∧ (¬x1∨ ¬x2),
– decision x1=1

• x2=1 (applying BCP on first clause)
• ¬x1∨ ¬x2 = 0 (applying BCP on second clause)

– decision x1=1 must be changed, and
– implications of new decision must be re-

computed.

58

Davis-Putnam Procedure

♦ Backtracking
– Pruning parts of the search tree
– At a point of backtracking, if there are n

unassigned variables
• A sub tree of size 2n is pruned!

♦ Pruning is the main reason why SAT is
efficient!!!

59

Davis-Putnam Procedure

60

Davis-Putnam Procedure
♦ At each decision level d in the search

– A variable assignment Vd = {T, F} is selected
with Decide()

• All variables decided (ALL-DECIDED)
– Return SAT

• Otherwise, implied assignments are identified with
Deduce() (BCP)

– No conflict recurse with higher decision level d+1
– CONFLICT analyze conflict with Diagnose()

• Swap assignment
• BACK-TRACK to decision level β (a global variable)
• Erase()-ing current and all implied assignments (d

- β) times

61

Modern SAT Checkers
♦ Original Davis-Putnam Procedure

– β= d − 1 (backtracked one step at a time)
♦ Modern SAT checkers

– Non-chronological Backtracking search
strategies (β= d − j, j ≥ 1)

• Skipping a large number of irrelevant assignments
– Learning

• Adds constraints in the form of new clauses (called
conflict clauses)

– To prevent repetition of bad assignments
– Backtracks immediate if bad assignment is repeated

62

Learning Example
♦ (a) Clause data base
♦ Current truth assignment {x5 = 0}
♦ Current decision assignment {x1 = 1}
♦ (b) Implication graph

63

Learning Example
♦ Conflict either c3 or c4 cannot be

satisfied
♦ Diagnose() determines the assignments

directly responsible for conflict
– {x1 = 1, x5 = 0}

♦ (x1 = 1) ∧ (x5 = 0) gives rise to conflict
♦ Must ensure: ¬((x1 = 1) ∧ (x5 = 0))

– That is, ¬(x1 ∧ ¬x5) = ¬x1 ∨ x5

♦ Add new conflict clause π: (¬x1 ∨ x5)

64

New Decision Heuristics
♦ Decide(): strategy for picking the next variable

and its value
♦ Order

– Static: predetermined by some criterion
– Dynamic: according to current state of search

• Pick an assignment leading to largest number of satisfied
clauses (DLIS Strategy: good decision, very large overhead)

• Count number of times a variable occurs in a formula, newly
added conflict clauses are given more weight (conflict-driven)
(Variable State Independent Decaying Sum (VSIDS)
strategy: Faster than DLIS by an order of magnitude)

65

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

66

Industrial Examples
♦ Comparing BMC with BDD-based MC

– IBM
– Intel
– Compaq
– Biere et al.

♦ Conclusion
– SAT based BMC is typically faster in finding bugs

compared to BDDs.
– The deeper the bug is (i.e. the longer the shortest path

leading to it is), the less advantage BMD has
• Typical hardware design: at most 80 cycles

67

16x16 shift and add multiplier

♦ A known hard problem for BDDs
♦ Property

– The output of the sequential multiplier is the
same as the output of a combinational
multiplier applied to the same input words

– Verified for each of the 16 output bits
separately

• To verify bit i, sufficient to set k = i+1

♦ BDD model checker: SMV

68

16x16 shift and add multiplier

♦ Time: seconds
♦ Memory: MB

[2] DAC’1999

69

13 hardware designs with known
bugs
♦ IBM’s BDD model checker

– RULEBASE1: default configuration, with
dynamic reordering

– RULEBASE2: without dynamic reordering,
initial order from RULEBASE1

♦ SAT solvers
– GRASP: without tuning
– GRASP (tuned): tuned for BMC
– CHAFF: without tuning (2001)

70

13 hardware designs with known
bugs

Time in seconds, [7] CAV’2000

71

17 circuit designs from Intel

♦ BDD model checker
– FORECAST

♦ Bounded model checker
– THUNDER (SAT solver: SIMO)

72

17 circuit designs from Intel

Time in seconds
[8] CAV’2001

73

Memory system of Alpha
microprocessor
♦ Compaq
♦ SAT solver

– PROVER
♦ BDD model checker

– SMV

74

Memory system of Alpha
microprocessor

Time in seconds
[9] CAV’2001

75

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

76

Related Work

♦ Verification techniques based on
satisfiability checking
– Early 1990’s by G. Stalmarck (Prover

Technologies) based on PROVER SAT solver
– Inductive reasoning
– Integration with several domains achieved

impressive results

77

Related Work

♦ Strichman [7] tuned SAT solvers for BMC
– Problem-dependent variable ordering
– Splitting heuristics
– Pruning heuristics by exploiting regular

structure of BMC formulas
– Reusing learned information

78

Related Work

♦ BMC for Timed Systems [10]
– MATHSAT: SAT solver extended to deal with

linear constraints over real variables
– Encoding: extends encoding for untimed

systems
– Constraints: over real variables to represent

time aspects

79

Related Work

♦ SAT-based unbounded CTL model
checking [McMillan CAV’02]
– Quantifier elimination procedure
– Top level algorithm same as BDD-based CTL

model checking
– Sets of states represented as CNF formulas,

rather than with BDDs
– Can compete with BDD-based methods and

outperforms in some cases

80

Related Work

♦ SAT-based techniques used in
abstraction/refinement
– BDD-based model checker proves the abstract

model
– SAT solvers

• Check the counterexamples to see if they are real or
spurious

• Derive refinement to abstraction

81

Related Work

♦ Structural analysis of hardware designs to
derive an over approximation of the
reachability diameter, thus achieving
completeness.
– Identifying frequently occurring components

like memory registers, queue registers, etc.
– Identifying SCC
– Reachability diameter as small as 20

82

Conclusions

♦ Bounded model checking is now widely
accepted by industry as a complementary
tool to BDD-based model checking

♦ Both tools run in parallel, the first tool that
finds a solution, terminates the other
process

83

Contents

♦ Introduction to BMC
♦ Reducing BMC to SAT
♦ Techniques for Completeness
♦ Propositional SAT Solvers
♦ Experiments
♦ Related Work and Conclusions
♦ References

84

References
1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model

Checking without BDDs,” In Proc. of the Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS, Springer-Verlag, 1999.

2. A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu, “Symbolic Model
Checking using SAT procedures instead of BDDs,” In Proc. of
Design Automation Conference (DAC), 1999.

3. A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu, “Bounded
Model Checking,” Advances in Computers, Vol. 58, Academic Press,
2003.

4. M. Prasad, A. Biere, A. Gupta, “A Survey of Recent Advances in
SAT-Based Formal Verification,” International Journal on Software
Tools and Technology Transfer, Vol. 7, No. 2, Springer, 2005.

5. M. Davis and H. Putnam, “A Computing Procedure for
Quantification Theory,” Journal of the ACM, Vol. 7, pp. 201-215,
1960.

85

References
6. M. Davis, G. Longemann, and D. Loveland, “A Machine Program

for Theorem-Proving,” Communiations of the ACM, Vol. 5, pp.
394-397, 1962.

7. O. Strichman, “Tuning SAT checkers for bounded model checking,”
Proc. of the 12th Intl Conference on CAV, LNCS, Springer-Verlag,
2000.

8. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M.Y. Vardi, “Benefits of bounded model checking at an
industrial setting,” Proc. of the 13th Intl Conference on CAV, LNCS,
pp. 436-453, 2001.

9. P. Bjesse, T. Leonard, and A. Mokkedem, “Finding bugs in an alpha
microprocessor using satisfiability solvers,” Proc. of the 13 Intl
Conference on CAV, LNCS, Springer-Verlag, 2001.

10. G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani, “Bounded
model checking for timed systems,” 22nd Intl Conf. on Formal
Techniques fro Networked and Distributed System (FORTE),
LNCS, November 2002.

