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Bounded Model Checking

♦ History of Model Checking
– Explicit Model Checking

• A few million states
• Bottleneck: explicit enumeration of all states

– Symbolic Model Checking using OBDD
• 1020 states and beyond
• Bottleneck: exponential sizes of OBDD

– Bounded Model Checking (BMC)
• No BDD, uses SAT techniques
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Bounded Model Checking
♦ First proposed by Biere et al. in 1999 [1, 2]
♦ Does not solve complexity problem of MC

– Still relies on an exponential procedure (SAT)
♦ Can solve many cases that cannot be solved 

by BDD-based techniques
– Converse also true!

♦ Application of BMC
– Falsification
– Complementary to Unbounded MC (UMC)
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Bounded Model Checking

♦ Two unique characteristics
– User has to provide a bound k on the number of 

steps (cycles in HW) to be explored
– Uses SAT techniques, instead of BDDs
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Bounded Model Checking
♦ Basic Idea in BMC

– Search for a counterexample in executions of 
length bounded by some integer k

♦ k = 0, 1, 2, … until:
– A bug is found, or
– Problem becomes intractable, or
– Completeness Threshold reached.

♦ BMC problem can be efficiently reduced to 
propositional SATisfiability problem
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Bounded Model Checking
♦ Modern SAT solvers can handle 

propositional satisfiability problems with 
hundreds of thousands of variables or more

♦ Example of SAT Solvers
– GRASP
– CHAFF
– PROVER
– SIMO
– MATHSAT
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Bounded Model Checking

♦ Experiment Results
– If k is small (60 ~ 80 cycles), depending on the 

model and SAT solver, BMC outperforms
BDD-based techniques

– Little correlation between hard SAT problems 
vs. hard BDD problems

– SAT solvers can be tuned for BMC
– Intel verified Pentium-4TM using BMC

• Increased capacity and productivity!
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Bounded Model Checking

♦ Advantages
– Counterexamples found fast and of minimal 

length
– Significantly less space requirements
– No manual or dynamic reordering (as in BDD)
– Can be extended to unbounded MC
– Wide industry acceptance as soon as it was 

proposed
• Intel, IBM, Compaq, …
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Bounded Model Checking

♦ Disadvantages
– Need to determine the bound k
– Need to be extended to UMC if a “proof” is 

required, instead of only “falsification”
– SAT solvers need to be tuned for BMC



12

BMC Example

♦ 3-bit shift register (x[0], x[1], x[2])
♦ T(x,x’): (x’[0]=x[1]) ∧ (x’[1]=x[2]) ∧ (x’[2]=1)
♦ “Eventually register will be empty”: AF( x = 0 )
♦ AF( x = 0 ) ¬EG( x != 0 )
♦ Restrict search to path having k+1 states (k=2)

x1[2]

x1[1]

x1[0]

x2[2]

x2[1]

x2[0]

x0[2]
x0[1]
x0[0]

x0 x1 x2

L0 L1

L2

loops
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BMC Example
♦ fm = I(x0) ∧ T(x0,x1) ∧ T(x1,x2)
♦ “Any path with three states that is a witness for     

G(x != 0 ) must contain a loop” → add T(x2,xi )
– Let Li = T(x2, xi) 

♦ Constraint imposed by the formula ( Si defined as    
xi != 0 ) : ( xi [0] = 1) V ( xi [1] = 1 ) V ( xi [2] = 1 )

♦ Final Propositional Formula

– fm ∧ V Li ∧ V Si Counterexample of length 2
i=0 i=0

2 2
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Semantics

♦ ACTL* : ⊆ CTL*  that are in Negative Normal 
Form (NNF) & contain only ‘A’ s

♦ ECTL*

♦ LTL : No path quantifiers are allowed
– Consider only X , F , G, U operators

♦ Let’s concentrate on LTL model checking
– BMC for LTL can be extended to handle ACTL* 

and ECTL*
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Semantics
♦ Definition 1 : A Kripke structure is a tuple M 

= (S,I,T,L) with a finite set of states S, the set 
of initial states I ⊆ S , a transition relation 
between states T ⊆ S X S and the labeling of 
the states L: S → P(A) with atomic 
propositions A

♦ Boolean encoding of state ( vector of state 
variables )

♦ Each state has a successor state (total)
♦ Path π = (s0,s1,,…) π(i) = si and π i = (si,si+1,…)
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Semantics
♦ Definition 2 (Semantics) : Let M be a Kripke

structure, π be a path in M and f be an LTL 
formula. Then π |= f ( f is valid along π) is 
defined as :
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Semantics - Validity
♦ Definition 3 : An LTL formula is universally 

valid in a Kripke structure M ( in symbols M |= 
Af ) iff π |= f for all paths π in M with π(0) ∈ I. 
An LTL formula f is existentially valid in a 
Kripke structure M ( in symbols M |= Ef ) iff
there exists a path π in M with π |= f and π(0) 
∈ I

♦ Let’s consider existential model checking 
problem ( Search for a counterexample for 
EMCP )
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Semantics - Basic Idea of BMC

♦ Consider only a finite prefix of a path (bounded 
by k) and look for possible counterexample 

♦ Finite prefix may represent an infinite path if 
there is a back loop from the last state of the 
prefix to any of the previous states.

♦ If no back loop, can’t say anything about infinite 
behavior 

♦ Example : Gp – Even if p holds from s0 to sk , 
can’t conclude anything if there is no back loop 
from sk to s0
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Semantics

♦ Definition 4 : For l ≤ k we call a path π a (k, l)-
loop if π(k) → π(l) and π =u.vω with u = (π(0),…., 
π(l-1)) and v=(π(l),.., π(k)). We call π simply a k-
loop if there is an l ∈ N with l <= k for which π
is a (k, l)-loop
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Semantics
♦ Definition 5 (Bounded Semantics for a 

Loop) : Let k ∈ N and π be a k-loop. Then an 
LTL formula is valid along the path π with 
bound k ( in symbols π |=k f ) iff π |= f.

♦ Definition 6 (Bounded Semantics without a 
Loop) : Let k ∈ N and π be a path that is not a 
k-loop. Then an LTL formula is valid along the 
path π with bound k ( in symbols π |=k f ) iff
π |    f where:0

k=
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Semantics
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Semantics
♦ Lemma 7 : Let f be an LTL formula and π be a 

path and π |=k f → π |= f
♦ Lemma 8 : Let f be an LTL formula and M a 

Kripke structure. If M |= Ef then there exists k ∈
N with M |=k Ef

♦ Theorem 9 : Let f be an LTL formula and M a 
Kripke structure. Then M |= Ef iff there exists k 
≥ 0 such that M |=k Ef
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Translation
♦ Given a Kripke structure M, LTL formula f, bound k :

– We need to construct a Propositional Formula
[[ M,f ]]k which represents the constraints on s0,….,sk
(variables denoting a finite sequence of states on a path π) 
such that [[ M,f ]]k is satisfiable iff f is valid along π

– Size  poly(f) , quadratic(k), linear(size(prop(T,I,p ε A))

♦ Definition 10 ( Unfolding the Transition Relation )
For a Kripke structure M, k ε N ,

[[ M ]]k  = I(s0) ∧ ∧ T (si , si+1)  
i=0

k-1
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Translation
♦ Depending on whether a path is a k-loop or not, 

two different translations for temporal formula f.
♦ Translation if path not a k-loop : 

[[ . ]]ik
♦ Translation if path is a k-loop :

l[[ . ]]ik

♦ Example : h = p U q on a non-k-loop-path
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Translation
♦ Definition 11 (Translation of an LTL formula 

without a Loop): For an LTL formula f and k, i ε N 
with i ≤ k

♦ Defn 12(Successor in a Loop) : Let k,l,i ε N, with 
l,i ≤ k. Define the successor succ(i) in a (k,l)-loop 
as succ(i) = i+1 for i < k and succ(i) = l for i = k
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Translation
♦ Definition 13 (Translation of an LTL formula 

for  a Loop): Let f be an LTL formula, k,l,i e N 
with l,i ≤ k
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Translation
♦ Definition 14 ( Loop Condition) : For k,l ε N , let   lLk

= T(sk,sl), Lk= Vl=0
k  Lk

♦ Definition 15 ( General Translation ) : Let f be an 
LTL formula, M a Kripke structure and k ε N 

♦ Theorem 16 : [[ M,f ]]k is satisfiable iff M |=k Ef
♦ Corollary 17 : M |= A ¬f iff [[ M,f ]]k is 

unsatisfiable for all k ε N
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Translation Example

Kripke structure for 2 process mutual exclusion

01 00 10

11
A faulty 

transition
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Translation Example

♦ Initial state
– I(s) := ¬s[1] ∧ ¬s[0]

♦ Transition relation
– T(s,s’):=(¬s[1] ∧ (s[0]↔ ¬s’[0]))∨

(¬s[0] ∧ (s[1]↔ ¬s’[1]))∨
(s[0] ∧ s[1] ∧ ¬s’[1] ∧ ¬s’[0])

♦ Faulty transition relation
– Tf(s,s’):= T(s,s’) ∨ (s[1] ∧ ¬s[0] ∧ s’[1] ∧ s’[0])

A faulty 
transition
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Translation Example

♦ Property to model check
– G ¬p, where p = s[1] ∧ s[0]

♦ Use BMC to find counterexample
– Witness of F p

• Exists M does not satisfy G ¬p

• None M satisfies G ¬p up to the given bound
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Translation Example
♦ Let bound k = 2
♦ Unrolling transition relation

– [[M]]2 := I(s0) ∧ Tf(s0,s1) ∧ Tf(s1,s2)
♦ Loop condition

– L2 :=  ∨i=0,1,2Tf (s2,si)
♦ Translation for paths without loops

[ ][ ] [ ][ ]120
0
2 F)(:F pspp ∨= [ ][ ] [ ][ ]2

21
1
2 F)(:F pspp ∨=

[ ][ ] [ ][ ]3
22

2
2 F)(:F pspp ∨= [ ][ ] 0:F 3

2 =p

[ ][ ] )()()(:F 210
0
2 spspspp ∨∨=
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Translation Example
♦ Translation with loops can be done similarly
♦ Putting everything together

♦ For falsifying a safety property, loop condition 
can be omitted

♦ Assignment 00, 10, 11 satisfies [[M, Fp]]2
– Violates mutual exclusion property

[ ][ ] [ ][ ] [ ][ ]( ) [ ][ ]( )⎟
⎠
⎞

⎜
⎝
⎛ ∧∨∨∧¬∧=

=

0
22

2

0

0
2222 FF:F, pLpLMpM iii

[ ][ ] [ ][ ] [ ][ ]
( ))()()(),(),()(

F:F,

21021100

0
222

spspspssTssTsI
pMpM

ff ∨∨∧∧∧=
∧=
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Determining the Bound
♦ To check whether M |= E f , the 

procedure checks M |=k E f for k = 0,1, 
2, …

♦ If M |=k E f , then the procedure proves 
that M |= E f and produces a witness of 
length k.

♦ If M |= E f, we have to increment the 
value of k indefinitely, and the procedure 
does not terminate.
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Why completeness?

♦ BMC may be used to clear a module level 
proof obligation which may be an 
assumption for another module

♦ A missed counterexample in a single 
module may break the entire proof!

♦ In such compositional reasoning
environments, completeness becomes 
important!



37

Determining the Bound - ECTL

♦ ECTL ⊆ ECTL*  with each temporal 
operator preceded by one ‘E’

♦ Theorem 18 : Given an ECTL formula f 
and a Kripke structure M, let |M| be the 
number of states in M, then M |= E f iff
there exists k ≤ |M| with M |= k E f
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Completeness Threshold

♦ For every finite state system M, a property p, 
and a given translation scheme, there exists 
a number CT, such that the absence of 
errors up to cycle CT proves that M |= p.

♦ CT is the Completeness Threshold of M 
with respect to p and the translation scheme.

♦ For Gp formulas, CT is simply the 
reachability diameter
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Determining the Bound - ECTL
♦ Definition 19 (Reachability Diameter). 

Given a Kripke structure M, the reachability 
diameter of M is the minimal number d ε N 
with the following property. For every 
sequence of states s0.. sd+1with (si ,si+1 ) ε T 
for i ≤ d, there exists a sequence of states 
t0…tl where l ≤ d such that t0 = s0 , tl = sd+1
and (tj,tj+1 ) ε T for j ≤ l. 

♦ In other words, if a state v is reachable from 
a state u, then v is reachable from u via a 
path of length d or less. 
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Determining the Bound - ECTL
♦ Theorem 20: Given an ECTL formula f := EFp

and a Kripke structure M with diameter d, M |= 
EFp iff there exists k ≤ d with M |=k EFp. 

♦ Theorem 21: Given a Kripke structure M, its 
diameter d is the minimal number that satisfies 
the following formula:
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Determining the Bound - ECTL

♦ Definition 22 (Recurrence Diameter) : Given 
a Kripke structure M, its recurrence diameter is 
the minimal number d ε N with the following 
property. For every sequence of states s0..sd+1
with (si , si+1) ε T for i ≤ d, there exists j ≤ d such 
that sd+1 = sj .

♦ Theorem 23 :Given an ECTL formula f and a 
Kripke structure M with recurrence diameter d,    
M |= E f iff there exists k ≤ d with M |=k E f 
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Determining the Bound - ECTL
♦ Theorem 24: Given any Kripke structure M, its 

recurrence diameter d is the minimal number 
that satisfies the following formula:
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Determining the Bound - LTL
♦ LTL model checking is known to be PSPACE 

complete
♦ LTL model checking can be reduced to 

propositional satisfiability and thus it is in NP
♦ Theorem 25. Given an LTL formula f and a 

Kripke structure M, let |M| be the number of 
states in M, then M |= E f iff there exists k ≤ |M| 
X 2 | f | with    M |=k E f . 
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Determining the Bound - LTL
♦ Definition 26 (Loop Diameter): We say a 

Kripke structure M is lasso shaped if every path 
p starting from an initial state is of the form up
vω

p , where up and vp are finite sequences of 
length less or equal to u and v, respectively. 
We define the loop diameter of M as (u,v).

♦ Theorem 27: Given an LTL formula f and a 
lasso shaped Kripke structure M, let the loop 
diameter of M be (u,v), then M |= E f iff there 
exists k ≤ u+v with M |=k E f .
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Determining the Bound - Liveness

♦ Translation of Liveness Properties

♦ Theorem
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Determining the Bound - Liveness

♦ If the liveness property AFp holds, the 
BMC procedure terminates
– k = length of longest sequence from initial state 

without hitting a state where p holds
♦ If AFp does not hold, then EG¬p holds, and 

we have a BMC procedure for EG¬p that 
terminates

♦ Does BMC is complete for liveness 
properties, too!
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Determining the Bound - Induction

♦ Induction techniques for making BMC 
complete for safety properties

♦ To prove M |= AGp by induction, we need 
to find manually a strengthening inductive 
invariant
– An expression that

• is inductive (correctness in previous step implies 
correctness in current step)

• implies the property
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Determining the Bound - Induction

♦ Proofs based on inductive invariants
– Base case,
– Induction step, and
– Strengthening step.
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Determining the Bound - Induction

♦ Base Case
♦ Given a bound n (induction depth), prove 

that φ holds in the first n steps, by checking:
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Determining the Bound - Induction

♦ Induction Step:
♦ Prove the following is unsatisfiable

♦ Strenthening Step:
♦ Prove inductive invariant implies property
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Propositional SAT Solvers

♦ Given a propositional formula f, a SAT 
solver
– finds an assignment to the variables of f that 

satisfy it, if such an assignment exists, or 
– return ‘unsatisfiable’ otherwise.
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Conjunctive Normal Form (CNF)

♦ SAT solvers accept formulas in CNF
– A conjunction of clauses

• Each clause is a disjunction of literals and negated 
literals

♦ To satisfy a CNF formula, the assignment 
has to satisfy
– At least ONE literal in EACH clause.
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Conjunctive Normal Form (CNF)

♦ Every propositional formula can be 
transformed into CNF
– Naïve Translation: |CNF| = exponential(| f |)
– To avoid exponential size:

• Add O(| f |) auxiliary Boolean variables, where | f | is 
the number of sub expressions in f.
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Davis-Putnam Procedure
♦ Most modern SAT-checkers are variations 

of the well known Davis-Putnam procedure 
[5] and its improvement called DPLL [6].

♦ DP or DPLL Procedure
– A back tracking search algorithm that, at each 

node in the search tree, 
• decides an assignment (i.e. a variable = Boolean 

value, which determines the next sub-tree to be 
traversed), and 

• computes its immediate implications by iteratively 
applying the ‘unit clause’ rule.
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Davis-Putnam Procedure

♦ Example iteration of ‘unit clause rule’
– If decision is x1=1, then the clause (¬x1∨x2) 

immediately implies x2=1.
– This, in turn, can imply other assignments.

♦ Unit clause rule is also called “Boolean 
Constraint Propagation” (BCP)

♦ Common result of BCP
– A clause is unsatisfiable backtrack and 

change of the previous decisions
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Davis-Putnam Procedure

♦ Example of BCP result
– f: (¬x1∨x2) ∧ (¬x1∨ ¬x2), 
– decision x1=1 

• x2=1 (applying BCP on first clause)
• ¬x1∨ ¬x2 = 0 (applying BCP on second clause)

– decision x1=1 must be changed, and 
– implications of new decision must be re-

computed.
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Davis-Putnam Procedure

♦ Backtracking
– Pruning parts of the search tree
– At a point of backtracking, if there are n

unassigned variables
• A sub tree of size 2n is pruned!

♦ Pruning is the main reason why SAT is 
efficient!!!
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Davis-Putnam Procedure
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Davis-Putnam Procedure
♦ At each decision level d in the search

– A variable assignment Vd = {T, F} is selected 
with Decide()

• All variables decided (ALL-DECIDED)
– Return SAT

• Otherwise, implied assignments are identified with 
Deduce() (BCP)

– No conflict recurse with higher decision level d+1
– CONFLICT analyze conflict with Diagnose()

• Swap assignment
• BACK-TRACK to decision level β (a global variable)
• Erase()-ing current and all implied assignments (d

- β) times
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Modern SAT Checkers
♦ Original Davis-Putnam Procedure

– β= d − 1 (backtracked one step at a time)
♦ Modern SAT checkers

– Non-chronological Backtracking search 
strategies (β= d − j,   j ≥ 1)

• Skipping a large number of irrelevant assignments
– Learning

• Adds constraints in the form of new clauses (called 
conflict clauses)

– To prevent repetition of bad assignments
– Backtracks immediate if bad assignment is repeated
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Learning Example
♦ (a) Clause data base
♦ Current truth assignment {x5 = 0}
♦ Current decision assignment {x1 = 1}
♦ (b) Implication graph
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Learning Example
♦ Conflict either c3 or c4 cannot be 

satisfied
♦ Diagnose() determines the assignments 

directly responsible for conflict
– {x1 = 1, x5 = 0}

♦ (x1 = 1) ∧ (x5 = 0) gives rise to conflict
♦ Must ensure: ¬((x1 = 1) ∧ (x5 = 0))

– That is, ¬(x1 ∧ ¬x5) = ¬x1 ∨ x5

♦ Add new conflict clause  π: (¬x1 ∨ x5)



64

New Decision Heuristics
♦ Decide(): strategy for picking the next variable 

and its value
♦ Order

– Static: predetermined by some criterion
– Dynamic: according to current state of search

• Pick an assignment leading to largest number of satisfied 
clauses (DLIS Strategy: good decision, very large overhead)

• Count number of times a variable occurs in a formula, newly 
added conflict clauses are given more weight (conflict-driven) 
(Variable State Independent Decaying Sum (VSIDS) 
strategy: Faster than DLIS by an order of magnitude)
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Industrial Examples
♦ Comparing BMC with BDD-based MC

– IBM
– Intel
– Compaq
– Biere et al.

♦ Conclusion
– SAT based BMC is typically faster in finding bugs 

compared to BDDs.
– The deeper the bug is (i.e. the longer the shortest path 

leading to it is), the less advantage BMD has
• Typical hardware design: at most 80 cycles
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16x16 shift and add multiplier

♦ A known hard problem for BDDs
♦ Property

– The output of the sequential multiplier is the 
same as the output of a combinational 
multiplier applied to the same input words

– Verified for each of the 16 output bits 
separately

• To verify bit i, sufficient to set k = i+1

♦ BDD model checker: SMV
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16x16 shift and add multiplier

♦ Time: seconds
♦ Memory: MB

[2] DAC’1999
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13 hardware designs with known 
bugs
♦ IBM’s BDD model checker

– RULEBASE1: default configuration, with 
dynamic reordering

– RULEBASE2: without dynamic reordering, 
initial order from RULEBASE1

♦ SAT solvers
– GRASP: without tuning
– GRASP (tuned): tuned for BMC
– CHAFF: without tuning (2001)
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13 hardware designs with known 
bugs

Time in seconds, [7] CAV’2000
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17 circuit designs from Intel

♦ BDD model checker
– FORECAST

♦ Bounded model checker
– THUNDER (SAT solver: SIMO)
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17 circuit designs from Intel

Time in seconds 
[8] CAV’2001



73

Memory system of Alpha 
microprocessor
♦ Compaq
♦ SAT solver

– PROVER
♦ BDD model checker

– SMV
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Memory system of Alpha 
microprocessor

Time in seconds 
[9] CAV’2001
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Related Work

♦ Verification techniques based on 
satisfiability checking
– Early 1990’s by G. Stalmarck (Prover

Technologies) based on PROVER SAT solver
– Inductive reasoning
– Integration with several domains achieved 

impressive results
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Related Work

♦ Strichman [7] tuned SAT solvers for BMC
– Problem-dependent variable ordering
– Splitting heuristics
– Pruning heuristics by exploiting regular 

structure of BMC formulas
– Reusing learned information
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Related Work

♦ BMC for Timed Systems [10]
– MATHSAT: SAT solver extended to deal with 

linear constraints over real variables
– Encoding: extends encoding for untimed

systems
– Constraints: over real variables to represent 

time aspects
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Related Work

♦ SAT-based unbounded CTL model 
checking [McMillan CAV’02]
– Quantifier elimination procedure
– Top level algorithm same as BDD-based CTL 

model checking
– Sets of states represented as CNF formulas, 

rather than with BDDs
– Can compete with BDD-based methods and 

outperforms in some cases
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Related Work

♦ SAT-based techniques used in 
abstraction/refinement
– BDD-based model checker proves the abstract 

model
– SAT solvers 

• Check the counterexamples to see if they are real or 
spurious

• Derive refinement to abstraction
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Related Work

♦ Structural analysis of hardware designs to 
derive an over approximation of the 
reachability diameter, thus achieving 
completeness.
– Identifying frequently occurring components 

like memory registers, queue registers, etc.
– Identifying SCC
– Reachability diameter as small as 20
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Conclusions

♦ Bounded model checking is now widely 
accepted by industry as a complementary 
tool to BDD-based model checking

♦ Both tools run in parallel, the first tool that 
finds a solution, terminates the other 
process
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