

Computer Aided Verification

計算機輔助驗證

Bounded Model Checking

有限模型檢驗

Pao-Ann Hsiung
Department of Computer Science and Information Engineering
National Chung Cheng University, Taiwan

熊博安 國立中正大學 資訊工程研究所

Contents

- ◆ Introduction to BMC
- Reducing BMC to SAT
- Techniques for Completeness
- Propositional SAT Solvers
- Experiments
- Related Work and Conclusions
- References

Contents

- ◆ Introduction to BMC
- ◆ Reducing BMC to SAT
- ◆ Techniques for Completeness
- ◆ Propositional SAT Solvers
- **♦** Experiments
- ◆ Related Work and Conclusions
- ♦ References

- History of Model Checking
 - Explicit Model Checking
 - A few million states
 - Bottleneck: explicit enumeration of all states
 - Symbolic Model Checking using OBDD
 - 10²⁰ states and beyond
 - Bottleneck: exponential sizes of OBDD
 - Bounded Model Checking (BMC)
 - No BDD, uses SAT techniques

- First proposed by Biere et al. in 1999 [1, 2]
- Does not solve complexity problem of MC
 - Still relies on an exponential procedure (SAT)
- Can solve many cases that cannot be solved by BDD-based techniques
 - Converse also true!
- Application of BMC
 - Falsification
 - Complementary to Unbounded MC (UMC)

- Two unique characteristics
 - User has to provide a bound k on the number of steps (cycles in HW) to be explored
 - Uses SAT techniques, instead of BDDs

- ♦ Basic Idea in BMC
 - Search for a counterexample in executions of length bounded by some integer k
- k = 0, 1, 2, ... until:
 - A bug is found, or
 - Problem becomes intractable, or
 - Completeness Threshold reached.
- ♦ BMC problem can be efficiently reduced to propositional SATisfiability problem

- Modern SAT solvers can handle propositional satisfiability problems with hundreds of thousands of variables or more
- Example of SAT Solvers
 - GRASP
 - CHAFF
 - PROVER
 - SIMO
 - MATHSAT

- Experiment Results
 - If k is small (60 ~ 80 cycles), depending on the model and SAT solver, BMC outperforms
 BDD-based techniques
 - Little correlation between hard SAT problems
 vs. hard BDD problems
 - SAT solvers can be tuned for BMC
 - Intel verified Pentium-4™ using BMC
 - Increased capacity and productivity!

- Advantages
 - Counterexamples found fast and of minimal length
 - Significantly less space requirements
 - No manual or dynamic reordering (as in BDD)
 - Can be extended to unbounded MC
 - Wide industry acceptance as soon as it was proposed
 - Intel, IBM, Compaq, ...

- Disadvantages
 - Need to determine the bound k
 - Need to be extended to UMC if a "proof" is required, instead of only "falsification"
 - SAT solvers need to be tuned for BMC

BMC Example

- ◆ 3-bit shift register (x[0], x[1], x[2])
- ◆ T(x,x'): $(x'[0]=x[1]) \land (x'[1]=x[2]) \land (x'[2]=1)$
- "Eventually register will be empty": AF(x = 0)
- AF(x = 0) $\Leftrightarrow \neg EG(x!= 0)$
- ◆ Restrict search to path having k+1 states (k=2)

BMC Example

- $\bullet \quad f_m = I(x_0) \wedge T(x_0, x_1) \wedge T(x_1, x_2)$
- "Any path with three states that is a witness for G(x != 0) must contain a loop" \rightarrow add $T(x_2, x_i)$ Let $L_i = T(x_2, x_i)$
- Constraint imposed by the formula (S_i defined as $x_i != 0$): ($x_i[0] = 1$) $V(x_i[1] = 1)$ $V(x_i[2] = 1)$
- Final Propositional Formula

-
$$f_m \wedge \bigvee_{i=0}^2 \bigcup_{i=0}^2 \bigvee_{i=0}^2 S_i \Leftrightarrow \text{Counterexample of length 2}$$

- ◆ ACTL* :
 ⊆ CTL* that are in Negative Normal Form (NNF) & contain only 'A's
- ◆ ECTL*
- LTL: No path quantifiers are allowed
 - Consider only X , F , G, U operators
- Let's concentrate on LTL model checking
 - BMC for LTL can be extended to handle ACTL*
 and ECTL*

- ◆ Definition 1 : A Kripke structure is a tuple M = (S,I,T,L) with a finite set of states S, the set of initial states I ⊆ S , a transition relation between states T ⊆ S X S and the labeling of the states L: S → P(A) with atomic propositions A
- Boolean encoding of state (vector of state variables)
- Each state has a successor state (total)
- Path $\pi = (s_0, s_{1,},...)$ $\pi(i) = s_i$ and $\pi^i = (s_i, s_{i+1},...)$

• **Definition 2 (Semantics)**: Let M be a Kripke structure, π be a path in M and f be an LTL formula. Then $\pi \models f$ (f is valid along π) is defined as:

```
\pi \models p \qquad iff \quad p \in \ell(\pi(0)) \qquad \pi \models \neg p \qquad iff \quad p \notin \ell(\pi(0))
\pi \models f \land g \quad iff \quad \pi \models f \text{ and } \pi \models g \qquad \pi \models f \lor g \quad iff \quad \pi \models f \text{ or } \pi \models g
\pi \models \mathbf{G}f \quad iff \quad \forall i. \pi^i \models f \qquad \pi \models \mathbf{F}f \quad iff \quad \exists i. \pi^i \models f
\pi \models \mathbf{X}f \quad iff \quad \pi^1 \models f
\pi \models f \mathbf{U}g \quad iff \quad \exists i \left[\pi^i \models g \text{ and } \forall j, j < i. \pi^j \models f\right]
\pi \models f \mathbf{R}g \quad iff \quad \forall i \left[\pi^i \models g \text{ or } \exists j, j < i. \pi^j \models f\right]
```


Semantics - Validity

- ◆ **Definition 3**: An LTL formula is universally valid in a Kripke structure M (in symbols M |= Af) iff π |= f for all paths π in M with π (0) ∈ I. An LTL formula f is existentially valid in a Kripke structure M (in symbols M |= Ef) iff there exists a path π in M with π |= f and π (0) ∈ I
- Let's consider existential model checking problem (Search for a counterexample for EMCP)

Semantics - Basic Idea of BMC

- Consider only a finite prefix of a path (bounded by k) and look for possible counterexample
- Finite prefix may represent an infinite path if there is a back loop from the last state of the prefix to any of the previous states.
- If no back loop, can't say anything about infinite behavior
- Example: Gp Even if p holds from s₀ to s_k, can't conclude anything if there is no back loop from s_k to s₀

◆ **Definition 4**: For I ≤ k we call a path π a (k, I)-loop if $\pi(k) \to \pi(I)$ and $\pi = u.v^ω$ with $u = (\pi(0),..., \pi(I-1))$ and $v=(\pi(I),..., \pi(k))$. We call π simply a k-loop if there is an I ∈ N with I <= k for which π is a (k, I)-loop

- ◆ Definition 5 (Bounded Semantics for a Loop) : Let $k \in N$ and π be a k-loop. Then an LTL formula is valid along the path π with bound k (in symbols $\pi \models_k f$) iff $\pi \models_k f$.
- ◆ Definition 6 (Bounded Semantics without a Loop): Let $k \in \mathbb{N}$ and π be a path that is not a k-loop. Then an LTL formula is valid along the path π with bound k (in symbols $\pi \models_k^0 f$ where:

$$\pi \models_{k}^{i} p \qquad iff \quad p \in \ell(\pi(i)) \qquad \pi \models_{k}^{i} \neg p \qquad iff \quad p \notin \ell(\pi(i))$$

$$\pi \models_{k}^{i} f \land g \quad iff \quad \pi \models_{k}^{i} f \text{ and } \pi \models_{k}^{i} g \qquad \pi \models_{k}^{i} f \lor g \quad iff \quad \pi \models_{k}^{i} f \text{ or } \pi \models_{k}^{i} g$$

$$\pi \models_{k}^{i} \mathbf{G} f \quad is \text{ always false} \qquad \pi \models_{k}^{i} \mathbf{F} f \quad iff \quad \exists j, i \leq j \leq k. \ \pi \models_{k}^{j} f$$

$$\pi \models_{k}^{i} \mathbf{X} f \quad iff \quad i < k \text{ and } \pi \models_{k}^{i+1} f$$

$$\pi \models_{k}^{i} f \mathbf{U} g \quad iff \quad \exists j, i \leq j \leq k \ [\pi \models_{k}^{j} g \text{ and } \forall n, i \leq n < j. \ \pi \models_{k}^{n} f]$$

$$\pi \models_{k}^{i} f \mathbf{R} g \quad iff \quad \exists j, i \leq j \leq k \ [\pi \models_{k}^{j} f \text{ and } \forall n, i \leq n \leq j. \ \pi \models_{k}^{n} g]$$

- Lemma 7 : Let f be an LTL formula and π be a path and $\pi \models_k f \rightarrow \pi \models_k f$
- Lemma 8 : Let f be an LTL formula and M a
 Kripke structure. If M |= Ef then there exists k ∈
 N with M |=_k Ef
- Theorem 9: Let f be an LTL formula and M a
 Kripke structure. Then M |= Ef iff there exists k
 ≥ 0 such that M |= Ef

Contents

- ♦ Introduction to BMC
- Reducing BMC to SAT
- **◆** Techniques for Completeness
- ◆ Propositional SAT Solvers
- **♦** Experiments
- ◆ Related Work and Conclusions
- ♦ References

- Given a Kripke structure M, LTL formula f, bound k :
 - We need to construct a **Propositional Formula** [[M,f]]_k which represents the constraints on $s_0,...,s_k$ (variables denoting a finite sequence of states on a path π) such that [[M,f]]_k is satisfiable iff f is valid along π
 - Size poly(f), quadratic(k), linear(size(prop(T,I,p ε A))
- Definition 10 (Unfolding the Transition Relation)
 For a Kripke structure M, k ε N,

$$[[M]]_k = I(s_0) \land \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})$$

- Depending on whether a path is a k-loop or not, two different translations for temporal formula f.
- Translation if path not a k-loop :

$$[[\cdot]]_k^i$$

Translation if path is a k-loop :

$$_{l}[[\cdot]]_{k}^{i}$$

◆ Example : h = p U q on a non-k-loop-path

 Definition 11 (Translation of an LTL formula without a Loop): For an LTL formula f and k, i ε N

Defn 12(Successor in a Loop): Let k,l,i ε N, with l,i ≤ k. Define the successor succ(i) in a (k,l)-loop as succ(i) = i+1 for i < k and succ(i) = l for i = k</p>

 Definition 13 (Translation of an LTL formula for a Loop): Let f be an LTL formula, k,l,i e N

with I,i $\leq k$

- **Definition 14 (Loop Condition)**: For k,l ϵ N , let $_{l}L_{k} = T(s_{k,}s_{l}), L_{k}=V_{l=0}{}^{k}L_{k}$
- Definition 15 (General Translation): Let f be an LTL formula, M a Kripke structure and k ε N

$$[\![M,f]\!]_k := [\![M]\!]_k \wedge \left(\left(\neg L_k \wedge [\![f]\!]_k^0 \right) \vee \bigvee_{l=0}^k \left({}_l L_k \wedge {}_l [\![f]\!]_k^0 \right) \right)$$

- ◆ Theorem 16 : [[M,f]]_k is satisfiable iff M |=_k Ef
- Corollary 17 : $M \models A \neg f \text{ iff } [[M,f]]_k \text{ is unsatisfiable for all } k \in N$

Kripke structure for 2 process mutual exclusion

Initial state

$$-I(s) := \neg s[1] \land \neg s[0]$$

Transition relation

$$-T(s,s'):=(\neg s[1] \land (s[0] \leftrightarrow \neg s'[0])) \lor (\neg s[0] \land (s[1] \leftrightarrow \neg s'[1])) \lor (s[0] \land s[1] \land \neg s'[1] \land \neg s'[0])$$

Faulty transition relation

$$-T_{f}(s,s'):=T(s,s')\vee(s[1]\wedge\neg s[0]\wedge s'[1]\wedge s'[0])$$

A faulty transition

- Property to model check
 - **G** ¬p, where p = s[1] ∧ s[0]
- Use BMC to find counterexample
 - Witness of **F** p
 - Exists \rightarrow M does not satisfy $\mathbf{G} \neg \mathbf{p}$
 - None \rightarrow M satisfies $G \neg p$ up to the given bound

- Let bound k = 2
- Unrolling transition relation

$$- [[M]]_2 := I(s_0) \wedge T_f(s_0, s_1) \wedge T_f(s_1, s_2)$$

Loop condition

$$- L_2 := \vee_{i=0,1,2} T_f(s_2,s_i)$$

Translation for paths without loops

- Translation with loops can be done similarly
- Putting everything together

$$[\![M, \mathsf{F}p]\!]_2 := [\![M]\!]_2 \land \left((\neg L_2 \land [\![\mathsf{F}p]\!]_2^0 \right) \lor \bigvee_{i=0}^2 (_i L_2 \land_i [\![\mathsf{F}p]\!]_2^0 \right)$$

 For falsifying a safety property, loop condition can be omitted

- Assignment 00, 10, 11 satisfies $[[M, Fp]]_2$
 - Violates mutual exclusion property

Contents

- ◆ Introduction to BMC
- ◆ Reducing BMC to SAT
- Techniques for Completeness
- ◆ Propositional SAT Solvers
- **♦** Experiments
- ◆ Related Work and Conclusions
- ♦ References

Determining the Bound

- ◆ To check whether M |= E f, the procedure checks M |= E f for k = 0,1, 2, ...
- ♦ If M |=_k E f, then the procedure proves that M |= E f and produces a witness of length k.
- ◆ If M |= E f, we have to increment the value of k indefinitely, and the procedure does not terminate.

Why completeness?

- ◆ BMC may be used to clear a module level proof obligation which may be an assumption for another module
- ◆ A missed counterexample in a single module may break the entire proof!
- ♦ In such compositional reasoning environments, completeness becomes important!

- ◆ ECTL ⊆ ECTL* with each temporal operator preceded by one 'E'
- Theorem 18: Given an ECTL formula f and a Kripke structure M, let |M| be the number of states in M, then M |= E f iff there exists k ≤ |M| with M |= k E f

Completeness Threshold

- ◆ For every finite state system M, a property p, and a given translation scheme, there exists a number CT, such that the absence of errors up to cycle CT proves that M |= p.
- ◆ CT is the *Completeness Threshold* of M with respect to p and the translation scheme.
- ◆ For Gp formulas, CT is simply the reachability diameter

- **Definition 19 (Reachability Diameter)**. Given a Kripke structure M, the reachability diameter of M is the minimal number d ε N with the following property. For every sequence of states $s_{0..}$ s_{d+1} with (s_i, s_{i+1}) ε T for $i \le d$, there exists a sequence of states $t_0...t_l$ where $l \le d$ such that $t_0 = s_0$, $t_l = s_{d+1}$ and $(t_{i,t_{l+1}})$ ε T for $j \le l$.
- In other words, if a state v is reachable from a state u, then v is reachable from u via a path of length d or less.

- Theorem 20: Given an ECTL formula f := EFp and a Kripke structure M with diameter d, M |=
 EFp iff there exists k ≤ d with M |=_k EFp.
- Theorem 21: Given a Kripke structure M, its diameter d is the minimal number that satisfies the following formula:

$$\forall s_0, \dots, s_{d+1}. \exists t_0, \dots, t_d. \bigwedge_{i=0}^d T(s_i, s_{i+1}) \to (t_0 = s_0 \land \bigwedge_{i=0}^{d-1} T(t_i, t_{i+1}) \land \bigvee_{i=0}^d t_i = s_{d+1})$$

♦ Definition 22 (Recurrence Diameter): Given a Kripke structure M, its recurrence diameter is the minimal number d ε N with the following property. For every sequence of states $s_0...s_{d+1}$ with $(s_i, s_{i+1}) ε$ T for i ≤ d, there exists j ≤ d such that $s_{d+1} = s_j$.

Theorem 23 :Given an ECTL formula f and a
Kripke structure M with recurrence diameter d,
M |= E f iff there exists k ≤ d with M |= E f

 Theorem 24: Given any Kripke structure M, its recurrence diameter d is the minimal number that satisfies the following formula:

$$\forall s_0, \ldots, s_{d+1}. \bigwedge_{i=0}^{d} T(s_i, s_{i+1}) \to \bigvee_{i=0}^{d} s_i = s_{d+1}$$

- LTL model checking is known to be PSPACE complete
- LTL model checking can be reduced to propositional satisfiability and thus it is in NP
- Theorem 25. Given an LTL formula f and a Kripke structure M, let |M| be the number of states in M, then M |= E f iff there exists k ≤ |M| X 2 |f| with M |= E f.

- Definition 26 (Loop Diameter): We say a Kripke structure M is lasso shaped if every path p starting from an initial state is of the form u_p v^ω_p, where u_p and v_p are finite sequences of length less or equal to u and v, respectively. We define the loop diameter of M as (u,v).
- Theorem 27: Given an LTL formula f and a lasso shaped Kripke structure M, let the loop diameter of M be (u,v), then M |= E f iff there exists k ≤ u+v with M |= E f.

Determining the Bound - Liveness

Translation of Liveness Properties

$$[[M, \mathbf{AF}p]]_k := I(s_0) \land \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \to \bigvee_{i=0}^k p(s_i)$$

◆ Theorem

$$M \models \mathbf{AF}p \ iff \ \exists k \ [[M, \mathbf{AF}p \]]_k \ is \ valid.$$

Determining the Bound - Liveness

- ◆ If the liveness property AFp holds, the BMC procedure terminates
 - k = length of longest sequence from initial state
 without hitting a state where p holds
- ◆ If AFp does not hold, then EG¬p holds, and we have a BMC procedure for EG¬p that terminates
- Does BMC is complete for liveness properties, too!

- Induction techniques for making BMC complete for safety properties
- ◆ To prove M |= AGp by induction, we need to find manually a strengthening inductive invariant
 - An expression that
 - is inductive (correctness in previous step implies correctness in current step)
 - implies the property

- Proofs based on inductive invariants
 - Base case,
 - Induction step, and
 - Strengthening step.

- ◆ Base Case
- Given a bound n (induction depth), prove that φ holds in the first n steps, by checking:

$$\exists s_0,\ldots,s_n.\ I(s_0) \wedge \bigwedge_{i=0}^{n-1} T(s_i,s_{i+1}) \wedge \bigvee_{i=0}^n \neg \phi(s_i)$$

- Induction Step:
- Prove the following is unsatisfiable

$$\exists s_0,\ldots,s_{n+1}.\bigwedge_{i=0}^n(\phi(s_i)\wedge T(s_i,s_{i+1}))\wedge\neg\phi(s_{n+1}).$$

- Strenthening Step:
- Prove inductive invariant implies property

$$\forall s_i. \ \phi(s_i) \rightarrow p(s_i)$$

Contents

- ♦ Introduction to BMC
- ◆ Reducing BMC to SAT
- ◆ Techniques for Completeness
- Propositional SAT Solvers
- **◆** Experiments
- ◆ Related Work and Conclusions
- ♦ References

Propositional SAT Solvers

- ◆ Given a propositional formula f, a SAT solver
 - finds an assignment to the variables of f that satisfy it, if such an assignment exists, or
 - return 'unsatisfiable' otherwise.

Conjunctive Normal Form (CNF)

- SAT solvers accept formulas in CNF
 - A conjunction of clauses
 - Each clause is a disjunction of literals and negated literals
- ◆ To satisfy a CNF formula, the assignment has to satisfy
 - At least ONE literal in EACH clause.

Conjunctive Normal Form (CNF)

- Every propositional formula can be transformed into CNF
 - Naïve Translation: |CNF| = exponential(|f|)
 - To avoid exponential size:
 - Add O(|f|) auxiliary Boolean variables, where |f| is the number of sub expressions in f.

- Most modern SAT-checkers are variations of the well known Davis-Putnam procedure
 [5] and its improvement called DPLL [6].
- ◆ DP or DPLL Procedure
 - A back tracking search algorithm that, at each node in the search tree,
 - decides an assignment (i.e. a variable = Boolean value, which determines the next sub-tree to be traversed), and
 - computes its immediate implications by iteratively applying the 'unit clause' rule.

- Example iteration of 'unit clause rule'
 - If decision is x_1 =1, then the clause $(\neg x_1 \lor x_2)$ immediately implies x_2 =1.
 - This, in turn, can imply other assignments.
- ◆ Unit clause rule is also called "Boolean Constraint Propagation" (BCP)
- Common result of BCP
 - A clause is unsatisfiable → backtrack and change of the previous decisions

◆ Example of BCP result

$$-f: (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2),$$

- decision $x_1=1$
 - x_2 =1 (applying BCP on first clause)
 - $\neg x_1 \lor \neg x_2 = 0$ (applying BCP on second clause)
- decision $x_1=1$ must be changed, and
- implications of new decision must be recomputed.

- Backtracking
 - Pruning parts of the search tree
 - At a point of backtracking, if there are n unassigned variables
 - A sub tree of size 2^n is pruned!
- Pruning is the main reason why SAT is efficient!!!


```
// Input arg: Current decision level d
// Return value:
// SAT(): {SAT, UNSAT}
// Decide(): {DECISION, ALL-DECIDED}
// Deduce(): {OK, CONFLICT}
// Diagnose():\{SWAP, BACK-TRACK\} also calculates \beta
SAT (d)
l_1:
     if (Decide (d) == ALL-DECIDED) return SAT;
l_2: while (TRUE) {
l_3:
          if (Deduce(d) != CONFLICT) {
l_4:
             if (SAT (d+1) == SAT) return SAT;
            else if (\beta < d \mid \mid d == 0)
l_5:
               { Erase (d); return UNSAT; }
l_6:
l_7:
         if (Diagnose (d) == BACK-TRACK) return UNSAT;
```


- At each decision level d in the search
 - A variable assignment $V_d = \{T, F\}$ is selected with **Decide()**
 - All variables decided (**ALL-DECIDED**)
 - Return SAT
 - Otherwise, implied assignments are identified with **Deduce()** (BCP)
 - No conflict \rightarrow recurse with higher decision level d+1
 - CONFLICT → analyze conflict with Diagnose()
 - Swap assignment
 - BACK-TRACK to decision level β (a global variable)
 - Erase()-ing current and all implied assignments (d
 β) times

Modern SAT Checkers

- Original Davis-Putnam Procedure
 - $-\beta = d 1$ (backtracked one step at a time)
- Modern SAT checkers
 - *Non-chronological* Backtracking search strategies ($\beta = d j$, $j \ge 1$)
 - Skipping a large number of irrelevant assignments
 - Learning
 - Adds constraints in the form of new clauses (called conflict clauses)
 - To prevent repetition of bad assignments
 - Backtracks immediate if bad assignment is repeated

Learning Example

- (a) Clause data base
- Current truth assignment $\{x_5 = 0\}$
- Current decision assignment $\{x_1 = 1\}$
- (b) Implication graph

$$c_{1} = (\neg x_{1} \lor x_{2})$$

$$c_{2} = (\neg x_{1} \lor x_{3} \lor x_{5})$$

$$c_{3} = (\neg x_{2} \lor x_{4})$$

$$c_{4} = (\neg x_{3} \lor \neg x_{4})$$
(a)

Learning Example

- ♦ Conflict → either c_3 or c_4 cannot be satisfied
- Diagnose() determines the assignments directly responsible for conflict

$$-\{x_1=1, x_5=0\}$$

- $(x_1 = 1) \land (x_5 = 0)$ gives rise to conflict
- ◆ Must ensure: $\neg((x_1 = 1) \land (x_5 = 0))$ - That is, $\neg(x_1 \land \neg x_5) = \neg x_1 \lor x_5$
- Add new conflict clause π : $(\neg x_1 \lor x_5)$

New Decision Heuristics

- Decide(): strategy for picking the next variable and its value
- Order
 - Static: predetermined by some criterion
 - **Dynamic**: according to current state of search
 - Pick an assignment leading to largest number of satisfied clauses (**DLIS Strategy**: good decision, very large overhead)
 - Count number of times a variable occurs in a formula, newly added conflict clauses are given more weight (conflict-driven) (Variable State Independent Decaying Sum (VSIDS) strategy: Faster than DLIS by an order of magnitude)

Contents

- ♦ Introduction to BMC
- ◆ Reducing BMC to SAT
- ◆ Techniques for Completeness
- ◆ Propositional SAT Solvers
- Experiments
- ◆ Related Work and Conclusions
- ♦ References

Industrial Examples

- Comparing BMC with BDD-based MC
 - IBM
 - Intel
 - Compaq
 - Biere et al.
- Conclusion
 - SAT based BMC is typically faster in finding bugs compared to BDDs.
 - The deeper the bug is (i.e. the longer the shortest path leading to it is), the less advantage BMD has
 - Typical hardware design: at most 80 cycles

16x16 shift and add multiplier

- A known hard problem for BDDs
- Property
 - The output of the sequential multiplier is the same as the output of a combinational multiplier applied to the same input words
 - Verified for each of the 16 output bits separately
 - To verify bit i, sufficient to set k = i+1
- ◆ BDD model checker: SMV

16x16 shift and add multiplier

♦ Time: seconds

Memory: MB

bit	k	SMV_2	MB	PROVER	MB
0	1	25	79	< 1	1
1	2	25	79	< 1	1
2	3	26	80	< 1	1
3	4	27	82	1	2
4	5	33	92	1	2
5	6	67	102	1	2
6	7	258	172	2	2
7	8	1741	492	7	3
8	9		>1GB	29	3
9	10			58	3
10	11			91	3
11	12			125	3
12	13			156	4
13	14			186	4
14	15			226	4
15	16			183	5

[2] DAC'1999

13 hardware designs with known bugs

- ◆ IBM's BDD model checker
 - RULEBASE₁: default configuration, with dynamic reordering
 - RULEBASE₂: without dynamic reordering, initial order from RULEBASE₁
- SAT solvers
 - GRASP: without tuning
 - GRASP (tuned): tuned for BMC
 - CHAFF: without tuning (2001)

13 hardware designs with known bugs

Model	k	RULEBASE ₁	RULEBASE ₂	GRASP	GRASP (tuned)	CHAFF
Design 1	18	7	6	282	3	2.2
Design 2	5	70	8	1.1	0.8	< 1
Design 3	14	597	375	76	3	< 1
Design 4	24	690	261	510	12	3.7
Design 5	12	803	184	24	2	< 1
Design 6	22	*	356	*	18	12.2
Design 7	9	*	2671	10	2	< 1
Design 8	35	*	*	6317	20	85
Design 9	38	*	*	9035	25	131.6
Design 10	31	*	*	*	312	380.5
Design 11	32	152	60	*	*	34.7
Design 12	31	1419	1126	*	*	194.3
Design 13	14	*	3626	*	*	9.8

17 circuit designs from Intel

- ◆ BDD model checker
 - FORECAST
- ◆ Bounded model checker
 - THUNDER (SAT solver: SIMO)

17 circuit designs from Intel

Model	k	FORECAST (BDD)	THUNDER (SAT)
Circuit 1	5	114	2.4
Circuit 2	7	2	0.8
Circuit 3	7	106	2
Circuit 4	11	6189	1.9
Circuit 5	11	4196	10
Circuit 6	10	2354	5.5
Circuit 7	20	2795	236
Circuit 8	28	*	45.6
Circuit 9	28	*	39.9
Circuit 10	8	2487	5
Circuit 11	8	2940	5
Circuit 12	10	5524	378
Circuit 13	37	*	195.1
Circuit 14	41	*	*
Circuit 15	12	*	1070
Circuit 16	40	*	*
Circuit 17	60	*	*

Time in seconds [8] CAV'2001

Memory system of Alpha microprocessor

- Compaq
- ◆ SAT solver
 - PROVER
- ◆ BDD model checker
 - SMV

Memory system of Alpha microprocessor

k	SMV	PROVER
25	62280	85
26	32940	19
34	11290	586
38	18600	39
53	54360	1995
56	44640	2337
76	27130	619
144	44550	10820

Time in seconds [9] CAV'2001

Contents

- ◆ Introduction to BMC
- ◆ Reducing BMC to SAT
- ◆ Techniques for Completeness
- ◆ Propositional SAT Solvers
- **♦** Experiments
- Related Work and Conclusions
- ♦ References

- Verification techniques based on satisfiability checking
 - Early 1990's by G. Stalmarck (Prover Technologies) based on PROVER SAT solver
 - Inductive reasoning
 - Integration with several domains achieved impressive results

- Strichman [7] tuned SAT solvers for BMC
 - Problem-dependent variable ordering
 - Splitting heuristics
 - Pruning heuristics by exploiting regular structure of BMC formulas
 - Reusing learned information

- ◆ BMC for Timed Systems [10]
 - MATHSAT: SAT solver extended to deal with linear constraints over real variables
 - Encoding: extends encoding for untimed systems
 - Constraints: over real variables to represent time aspects

- SAT-based unbounded CTL model checking [McMillan CAV'02]
 - Quantifier elimination procedure
 - Top level algorithm same as BDD-based CTL model checking
 - Sets of states represented as CNF formulas,
 rather than with BDDs
 - Can compete with BDD-based methods and outperforms in some cases

- ◆ SAT-based techniques used in abstraction/refinement
 - BDD-based model checker proves the abstract model
 - SAT solvers
 - Check the counterexamples to see if they are real or spurious
 - Derive refinement to abstraction

- ◆ Structural analysis of hardware designs to derive an over approximation of the reachability diameter, thus achieving completeness.
 - Identifying frequently occurring components like memory registers, queue registers, etc.
 - Identifying SCC
 - Reachability diameter as small as 20

Conclusions

- Bounded model checking is now widely accepted by industry as a complementary tool to BDD-based model checking
- ♦ Both tools run in parallel, the first tool that finds a solution, terminates the other process

Contents

- ◆ Introduction to BMC
- ◆ Reducing BMC to SAT
- ◆ Techniques for Completeness
- ◆ Propositional SAT Solvers
- **♦** Experiments
- ◆ Related Work and Conclusions
- ◆ References

References

- 1. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, "Symbolic Model Checking without BDDs," In *Proc. of the Workshop on Tools and Algorithms for the Construction and Analysis of Systems* (TACAS), LNCS, Springer-Verlag, 1999.
- A. Biere, A. Cimatti, E. Clarke, M. Fujita, Y. Zhu, "Symbolic Model Checking using SAT procedures instead of BDDs," In *Proc. of Design Automation Conference* (DAC), 1999.
- 3. A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu, "Bounded Model Checking," *Advances in Computers*, Vol. 58, Academic Press, 2003.
- 4. M. Prasad, A. Biere, A. Gupta, "A Survey of Recent Advances in SAT-Based Formal Verification," *International Journal on Software Tools and Technology Transfer*, Vol. 7, No. 2, Springer, 2005.
- M. Davis and H. Putnam, "A Computing Procedure for Quantification Theory," Journal of the ACM, Vol. 7, pp. 201-215, 1960.

References

- 6. M. Davis, G. Longemann, and D. Loveland, "A Machine Program for Theorem-Proving," Communications of the ACM, Vol. 5, pp. 394-397, 1962.
- 7. O. Strichman, "Tuning SAT checkers for bounded model checking," Proc. of the 12th Intl Conference on CAV, LNCS, Springer-Verlag, 2000.
- 8. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. Vardi, "Benefits of bounded model checking at an industrial setting," Proc. of the 13th Intl Conference on CAV, LNCS, pp. 436-453, 2001.
- 9. P. Bjesse, T. Leonard, and A. Mokkedem, "Finding bugs in an alpha microprocessor using satisfiability solvers," Proc. of the 13 Intl Conference on CAV, LNCS, Springer-Verlag, 2001.
- 10. G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani, "Bounded model checking for timed systems," 22nd Intl Conf. on Formal Techniques fro Networked and Distributed System (FORTE), LNCS, November 2002.